To appear in the 1998 Symposium on the Virtual Reality Modeling Language, Monterey, CA, Feb 16-19 1998

Efficient Dynamics Modeling for VRML and Java

Stephen Chenney

Jeffrey Ichnowski

David Forsyth*

University of California at Berkeley

Abstract

Using dynamical systems rather than keyframing to animate
a world is a desirable yet computationally expensive ap-
proach. We present techniques for culling dynamical systems
that avoid unnecessary computation, and describe tools for
automating much of the required work. Based on qualitative
observations of how viewer’s predict dynamical state over
time, we identify methods for generating state while ensuring
consistency, which we define as ensuring that a viewer’s pre-
dictions are satisfied. Our tools take as input a description
of a dynamical system, and produce an alternate description
that may be efficiently culled. We also describe an interac-
tive modeler in which authors attach dynamic variables to
geometric transformations, allowing the modular re-use of
dynamical systems. Together, our tools enable large num-
bers of complex dynamic models to be efficiently and easily
included in a VRML world while maintaining high frame
rates.

CR. Descriptors: 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism - Virtual reality; 1.6.5
[Simulation and Modeling]: Model Development - Mod-
eling methodologies 1.6.8 [Simulation and Modeling]:
Types of Simulation - Animation

1 Introduction

To date the majority of animation in VRML worlds has been
achieved through key-framing, which can offer only a finite
number of motion sequences in any world. The alternative,
which allows for constantly changing and adaptable motion,
is to express the motion of objects through a set of state
variables and descriptions of how these variables change over
time - a dynamical system. Such a model offers significant
advantages: motion need only be designed once for arbitrary
animation times, and the representation is compact. This
allows long running, interesting environments to be authored
and described in a format that is small enough to download
over modem speed lines.

Dynamical systems have been extensively used for gen-
erating animation [1][5][9][13] yet in real-time environments
the cost of dynamics can easily dominate the cost of render-
ing. This situation is likely to worsen with the use of PC
hardware rendering and advanced visibility schemes. VRML

*[schenney |jeffi|daf]@cs.berkeley.edu

is particularly prone to this effect - while a browser can im-
prove rendering performance, it has no control over the cost
of evaluating animation scripts. Hence, to improve the effi-
ciency of dynamics, optimization must be part of the author-
ing phase. Incorporating dynamics into the authoring pro-
cess also abstracts the dynamic simulation above the level
of scripts, routes and naming required for the VRML file.

If we are to place large numbers of complex dynamic mod-
els in an environment, then we should compute state only
for objects in view, and cull dynamics for objects that are
out of view. This is the traditional approach in graph-
ics: compute only what is important to the current view.
Knowledge of what to cull is provided in VRML through
the VisibilitySensor mechanism. In current implementa-
tions this culls to the view volume, but future implemen-
tations may include occlusion culling and other advanced
techniques. If a world is designed as multiple files which are
loaded in memory only as required, then it must be possible
to cull dynamics, because the script will not even be present
in memory if the subsection of the world it animates is not
visible.

In a previous paper [4] we showed how to build complex
dynamical models that can be culled using any visibility
scheme. That paper demonstrated significant and scalable
speedups, allowing worlds of arbitrary size to be built with-
out sacrificing dynamic content or frame rate. Sudarsky and
Gotsman [12] demonstrate mechanisms for incorporating dy-
namic models into a BSP tree visibility scheme. They as-
sume models that are closed-form functions of time, both
to generate space-time bounding volumes and to generate
new state quickly. This excludes most interesting models.
Papers by Carlson and Hodgins [3] and Setas et. al. [11]
have shown how to achieve speedups by applying level of de-
tail techniques to a dynamic game environment and a forest
environment respectively.

For all the previous results, the models and approxima-
tions used were hand generated for a specific environment.
This paper describes methods that automatically generate
models for culling in a standard environment. We present
two tools that work together to generate efficient dynamic
models for VRML worlds. These tools take a basic de-
scription of the dynamical system, modify it to support ef-
ficient culling, then allow a user to associate dynamic state
with geometric transformations - thereby specifying what
moves and how. The result is a VRML prototype and Java
class structure which is suitable for culling. The process,
apart from the interactive modeling, is completely auto-
matic, avoiding the need for an author to write highly com-
plex and error-prone code to implement the dynamics effi-
ciently. The final output of the process may be included
seamlessly in any VRML environment.

We now provide an overview of issues involved with culling
dynamics. We then discuss our dynamics optimization ap-
proach; we give a detailed description of its components, in-
cluding our dynamic transformation modeler, and conclude
with example systems and comments on future work.

To appear in the 1998 Symposium on the Virtual Reality Modeling Language, Monterey, CA, Feb 16-19 1998

1.1 Culling Dynamics

Culling dynamics means computing dynamic state only for
systems that influence the current view. This leads to three
problems:

o Consistency: if the view turns away from a system of
moving objects whose dynamics are then culled, in what
state should those objects be when the view turns back?
In an ideal system, an observer should not be able to
obtain contradictions by looking away from an object,
and then back at it. For example, consider a damped
pendulum. When a viewer turns back to the pendulum,
it should have less energy than the last time it was
sighted, and it should satisfy some phase relationship.

e Completeness: objects that are out of the view vol-
ume often travel into it of their own accord - for exam-
ple, consider a view into a room full of balls bouncing
off walls. If the dynamics of a ball are culled as soon
as it leaves the view volume, a fixed view could contain
a steadily decreasing number of balls. This is probably
not what the simulation author intended. Avoiding this
difficulty requires some way of telling where an object
might be, without necessarily solving its equations of
motion.

o Causality: relationships often exist between the states
of distinct objects, and these relationships must be
maintained, even if one or other object is culled. Lights
and their switches are one example.

In practice, the extent to which these problems manifest
themselves is highly dependent on the system being culled.
The ability to solve these problems depends both on the
systems involved and the requirements of the simulation. If
a system is intended to give very accurate measurements
about the behaviour of a system, most culling may be un-
acceptable. If a simulation is intended to produce visually
convincing renderings, then these problems are significantly
easier to solve - particularly if the viewer is not actively
seeking errors in the simulation. The majority of VRML en-
vironments fall into the latter category, so we can expect to
achieve significant savings through culling.

This paper is concerned with solving only the consistency
problem. For systems that don’t move very far, and whose
behaviour is largely independent of other objects, this is the
only problem that arises. We use amusement park rides
as examples, but kinetic sculptures or factory machines are
equally applicable.

The methods presented will ensure that when a system
moves back into view its state is consistent with what a
viewer previously knew about the system. The naive way
to generate consistent state is to determine exactly how the
system behaved while it was out of view, and display the re-
sulting state. This will work for systems expressed as closed
form functions of time (simply evaluate at the new time),
but for systems that are evaluated by summing incremen-
tal changes over time, the resulting state may take a very
long time to compute - arbitrarily long if an object can be
out of view for arbitrary periods of time. This introduces
substantial lag, and is a poor solution.

2 Generating Consistent State

A better way of generating new state when an object re-
enters the view comes from observing that viewers cannot
accurately predict the behaviour of a system over time. If
accurate predictions were possible, a viewer could know all

the future of a world simply by observing it for a short pe-
riod of time, which is obviously not the case. Solving con-
sistency means satisfying viewer predictions, so if viewers
cannot predict everything, we need not compute everything.
All we need do is compute those things a viewer can predict.

A viewer’s inability to predict is the result of several fac-
tors: a viewer’s uncertainty in the last known state of the
system; a viewer’s uncertainty in the details of the model;
and a viewer’s lack of knowledge about factors that influence
the system. Our methods are based primarily on uncertainty
in the last known state of the system. In other words, when
a system leaves the view, it is not possible for a viewer to
have a completely accurate picture of, for instance, how fast
it’s moving, because of inaccuracies in the rendering (timing
inconsistencies and pixel sampling errors) and limitations in
a viewer’s perception. By taking the uncertainty, and prop-
agating it forward through the time an object is out of view,
it is possible to find out how uncertain an object’s state is
when it re-enters the view. Provided the new state we gen-
erate is within this re-entry region of uncertainty, a viewer
cannot detect an inconsistency.

Based on viewer prediction we qualitatively identify three
regimes of viewer prediction, characterized by short, medium
and long time periods out of view.

2.1 Short periods out of view

Figure 1: An example of short term prediction: A
falling rock may be accurately predicted until it hits
the ground.

Over short periods of time, viewers can make accurate pre-
dictions of smooth dynamics. Consider the case of a falling
rock, where the viewer sees the rock go over the edge (fig-
ure 1). While the rock is in flight, but before it hits the
ground, a viewer can make quite accurate predictions about
its state. Uncertainty doesn’t grow very much over short
periods of time for smooth dynamics.

To ensure consistency in this situation we must use the
most accurate model of the system available, saving no com-
putation. To avoid lag, we attempt to run the dynamic sim-
ulation ahead of the rendering and buffer values (figure 2).
When an object goes out of view, we stop filling the buffer,
but if it re-enters the view soon after, we have a value ready
in the buffer without incurring lag.

A dynamical system is free to buffer values at any fixed
time-step, and by interpolating between these values the ren-
dering can run at a different, varying time-step. This is im-
portant in VRML because the frame rate is not constant
within a given simulation nor across the same simulation
on different platforms, yet we would like to do a constant
amount of work on the dynamics between each rendered
frame.

To appear in the 1998 Symposium on the Virtual Reality Modeling Language, Monterey, CA, Feb 16-19 1998

|
|
|
|
|
] System
|
|
|
|

t
out of
view
Figure 2: We buffer dynamic state ahead of the

rendering, as indicated by the shaded regions. When
the object is in view, we fill the buffer faster than the
renderer consumes values - three times faster in this
case. When the system is not in view, no new values
are computed, but the old values become redundant
as time passes. If the object re-enters the view before
the buffer is empty, as is the case here, then there
18 no lag. We also interpolate between values in the
buffer to make the frame rate independent of the
stmulation time steps.

)

Figure 3: An example of medium term prediction:
Once the falling rock hits the ground, its position
and orientation are uncertain. However, a viewer
does know for certain that the rock is on the ground
at the bottom of the hill.

2.2 Medium periods out of view

Over the medium term, viewers may still be able to predict
some things accurately, but for most parameters they can
predict little. Following the rock example (figure 3), once the
rock hits the ground a viewer can no longer say accurately
where it is, nor how it is oriented. More complex motion may
have several intermediate, medium term regimes, reflecting
a viewer’s decreasing ability to predict.

To provide a consistent state in this situation we are free
to use approximations to the system. The approximation
must generate a new state for the system given an old state
and the time out of view. The errors in the approximation
should reflect a viewer’s uncertainty. Conversely, because a
viewer is uncertain, they cannot detect reasonable approxi-
mation errors. Many methods exist for approximation; we
use neural networks.

50%

2%

0O0@

48%

@CO||0@0|| 0@

Figure 4: A traffic light is an example of long
term prediction. If the light has been oul of view
for more than a few minutes, a viewer cannot say
exactly which state it is in. However, a viewer does
expect the light to be red or green more often than
it is yellow.

2.3 Long periods out of view

In the long term, a viewer can no longer use information
from a previous sighting to predict a new state, nor are they
completely ignorant of the system’s behaviour. Traffic lights
provide a good demonstration (figure 4). A viewer’s predic-
tion reflects the general behaviour of a traffic light, which
is to be red more often than green, with yellow least likely.
To exploit this, we sample a new state from some statis-
tical distribution over states. The sample is independent
of any previous state, but the distribution reflects the long
term behaviour of the system - generally referred to as the
stationary distribution. 1f a fully computed system was sam-
pled many times at random intervals, these samples would
be distributed according to the stationary distribution. We
can use standard density estimation techniques from various
sources to model these distributions [2][8].

The use of a stationary distribution reflects that eventu-
ally a small region of uncertainty in a viewer’s knowledge of
state may grow over time to match the stationary distribu-
tion. We base some of our techniques for analyzing systems
on that observation.

2.4 Overview of the Modeling Process

To build a dynamic model using our system, a user provides
a description of the basic dynamics and the geometry to
be animated. As output, our system generates a VRML file
containing the geometric transformations and event routing,
and a set of Java classes implementing the dynamics. The
process we use consists of two phases (figure 5):

e The dynamics optimization process takes the dynamics
code provided, analyses it, and transforms it into a new
Java class which implements the same dynamics but in
a way that can be culled efficiently.

o The dynamic transformation modeler is an interactive
system in which a user describes the transformation
hierarchy and identifies which dynamic state variables
apply to which geometric transformations.

All our software is implemented in Java, to take advantage
of platform independence and other language features. How-
ever, the underlying techniques are language and rendering

To appear in the 1998 Symposium on the Virtual Reality Modeling Language, Monterey, CA, Feb 16-19 1998

\L Dynamics Description

Dynamics
Optimizer
VRML Prototypes

Optimiz
Dynamics

Rigid Body
Modeler

VRML +Javal/

Figure 5: The process for building dynamic mod-
els. Our tools take a Java class describing the sys-
tem dynamics and analyze it to produce a more de-
tailed description of the system, but one that may be
culled efficiently and consistently. This is combined
with the resulls of an interactive modeling process,
by which an author has identified which variables
in the dynamical system map to which values in a
set of VRML transformations. The final result is a
VRML prototype describing the geometry, transfor-
mations and routes, and a set of Java script files
for evaluating the state of the system. Note the
loose correspondence to an optimizing compiler. We
take a system description in one format, optimize it
to tmprove performance, and produce another sys-
temn as output for our target machine - the VRML
browser.

system independent. We now describe each sub-system in
detail.

3 Optimizing Dynamics for Culling

The optimization software takes as input the accurate model
- a description of the dynamics which we assume to be the
most accurate required for simulation. As output, we pro-
duce the efficient model - an expanded description of the sys-
tem now suitable for efficient culling. Our software is useful
only if the accurate model is expensive to evaluate over long
time intervals. This is the case with, for instance, systems of
differential equations evaluated by numerical integration, or
systems described by state machine transitions. As a further
restriction, our software currently assumes a continuous, low
dimension state space.
The sequence of steps in analyzing a system is:

1. Find the range of the system. This allows us to build
cell structures over the space and to scale values if re-
quired.

2. Build the stationary distribution that will be sam-
pled to generate new state when a system has been out
of view for a long time.

3. Determine tiong, the time an object must be out of
view before we can sample a new state.

4. Build approximations for generating new state when
a system has been out of view for a medium period of
time.

5. Determine tyedium, the time a system must be out
of view before we use approximations instead of the
accurate model.

6. Generate code incorporating the stationary distribu-
tion for sampling, the approximations, buffers for short
term evaluation and control logic for determining which
method to use for a given time out of view.

3.1 The Accurate Model

Our software takes as input an accurate model, consisting of
a single Java class file which may instantiate other classes.
The class must implement the DynamicsSystem interface,
which defines functions for querying important features of
the dynamics (such as the state space and initial conditions)
and a function for evaluating the system using the accurate
model. This function must be able to determine the final
state given an initial state and time, and the final time. It is
an abstraction of the system to a simple mapping function
from one state to another over a specified, variable time in-
terval. The function must as a minimum be able to generate
state in real time (it will be used when the system is in view).
However, for best results with the buffering techniques we
use, the system should be able to generate state at twice the
rate the renderer consumes it.

3.2 Finding the Range

The range of the system is important because it restricts
the region of state space we must concern ourselves with,
and it allows us to re-scale each of the state variables to
the range [0,1]. The latter is necessary because the neural
network approximations we use that map [0,1] inputs to
[0, 1] outputs. Some variables may be bound by the author in
the input description, particularly angular variables (which
are bounded by (-,]).

For each variable not bound by the author, we run a simu-
lation for a large number of time steps and maintain the max-
imum and minimum defining the range. This method is not
foolproof - the simulation will not visit regions of state space
that are reachable from a different starting point. However,
we can be arbitrarily certain of how good the bounds are
by tracing a larger number of trajectories from appropri-
ately distributed starting values. We find in practice that
small errors in the bounds do not affect the quality of our
optimizations.

3.3 Building the Stationary Distribution

The stationary distribution is the distribution indicating
how much time a long running system spends in any region
of the state space. To model the distribution, the reachable
regions of state space are divided into constant size cells,
and a probability, P;, is attached to each cell 2. The result
is a discrete distribution on cells, where P; is the probabil-
ity that, at a random point in time, the system is within
that cell. Given that a viewer cannot distinguish differences
in state smaller than the size of a cell, we assume that the
distribution on points within a single cell is uniform. This
approach is similar to that of cell-to-cell mapping [6] as a
means of analyzing dynamical systems, but we seek to dis-
cover different types of system behaviour.

To build the distribution, we begin with a large number
of paths at random starting points and integrate them for
a short period of time to eliminate startup transients (burn
in the paths). We continue to integrate for fixed time-steps,
maintaining a counter for each cell measuring how many
times a path is in that cell at the end of a time-step. Then,

count;

P =
Zi count;

To appear in the 1998 Symposium on the Virtual Reality Modeling Language, Monterey, CA, Feb 16-19 1998

According to the weak law of large numbers, the P; will con-
verge to fixed values as the system is integrated for longer
periods of time (assuming a stationary distribution exists).
We monitor how much the distribution changes between
time-steps, and stop when the change falls below a small
threshold. As a measure of the difference between two dis-
tributions, we use the I; norm,

n

dist(z,y) = Y |Pf - PY|

=1

where n is the number of cells and P;* is the probability of
cell ¢ in distribution z. We represent cells using a probability
tree data structure [8]. To reduce the overall size of the final
data structure, we recursively combine neighboring cells with
similar probability densities.

3.4 Determining t;,,,

The sampling threshold, tiong, is the period of time that
must elapse before a new state may be sampled from the sta-
tionary distribution, rather than computed based on some
initial conditions. Is is equivalent to the time taken for a
small region of viewer uncertainty to evolve into the station-
ary distribution. To see why this is the case, consider what a
viewer knows when the object leaves the view. There is some
error in this knowledge, which means that the system could
be moving on one of several different paths. As time moves
on, these paths do different things, until finally the distri-
bution of possible paths looks like any other distribution of
paths for the system - the stationary distribution. Because
the two distributions are now the same, sampling from one
is the same as sampling from the other, and a viewer can’t
detect that we sampled from the stationary rather than the
exact distribution defined by their knowledge.

To determine tjong, we sort the cells of the stationary dis-
tribution according to P;, then take the N most probable
cells such that Zf\il P; < Simportant, Where Simportant 18 a
constant in (0,1]. For each of these cells, we take a large
number of paths with starting points uniformly distributed
in the cell, then integrate these paths for fixed time-steps.
At each time-step, we look at the instantaneous distribution
of paths. If the difference between this distribution and the
stationary is less than some threshold, we stop and record
the simulation time as ¢;. Finally, we take tjong such that it
is greater than 80% of the ¢; values. This effectively ignores
a few cells with very long ¢;, which reduces the maximum
time over which we must approximate the system.

There are several parameters implicit in this approach:

o The cell size. The size of the cells used as initial regions
of uncertainty encodes how well a viewer can measure
the state of an object leaving the view. Adjusting this
value is a trade-off between the quality of the simulation
and the efficiency gains achieved by culling. Large cells
assume larger errors. However, larger cells will also give
smaller thresholds, which is desirable.

e The number of paths to trace from each cell. Larger
values are likely to give a more accurate measure tiong,
but also increase the analysis time.

e The difference between the instantaneous distribution
and the stationary distribution. We allow quite large
distances, because viewers cannot accurately compare
the distributions in the course of a running simulation.

® Simportant, Which determines how many cells will be
traced. Using a value of 1 would trace every cell, but it
is unlikely that every cell is equally important, because

the system is more likely to leave the view in some cells
than in others. With simportan: less than 1, some cells
will not be tested, but these will be cells that the system
rarely visits, and hence the viewer rarely sees.

We allow these parameters to be set as part of the description
of each system.

3.5 Building Approximations

The approximation functions we build in this step will be
used to generate new state quickly, with some error allowed.
After a short period of time, they must be cheaper to evalu-
ate than the most accurate routine supplied by the user, and
we want the cost of evaluating them to grow slower than the
time period over which they are evaluating. For this task
we use neural networks. They have the advantage of near
constant evaluation time for a given network, and they rep-
resent well the highly non-linear functions we wish to model.
Specifically, we use a standard feed-forward neural network
with two hidden layers and a variable number of nodes per
hidden layer.

As our approximation, we use a hierarchy of neural nets.
One net evaluates a function over a period of half the sam-
pling threshold, tiong/2. The next function evaluates over
half this time, the next over half of that and so on until we
reach some minimum time step (specified as part of the sys-
tem description). By chaining neural nets together, we can
evaluate over any period to within some small amount, which
we will clean up using the accurate model. This structure of
networks has the following advantages:

o We expect the cost of evaluate networks to grow at a
slower rate than the time interval they evaluate over,
resulting in computational savings over the cost of eval-
uating one network over many steps.

e We can build the network’s dependence on time into
the network itself, rather than making it an input pa-
rameter. This significantly simplifies the network, and
allows lower errors for the same size net.

o We can tolerate larger errors in networks that evaluate
over longer times, without sacrificing accuracy in net-
works that will evaluate over short periods. This ties
in with our model for viewer prediction - the increasing
errors in the networks correspond to a viewer’s greater
inability to predict.

e We can learn networks concurrently, with significant
improvements in training time and efficiency.

To train our networks, we take a set of paths and inte-
grate them through time. Let ¢,,;, be the shortest time
period over which any network must evaluate the system.
We store values at multiples of time ,,:n, up to some max-
imum number of values, N. Within this set of values, there
are N — 1 intervals of length t,m:n, N — 2 intervals of length
2tmin, N — 4 intervals of length 4ty and so on (figure 6).
For every interval of a given length, we store the scaled start-
ing value and change in value for that interval as a training
example for the appropriate network. After randomizing the
order, we train the network using the examples. We evaluate
the error and if necessary repeat the whole process, starting
with further integration of the paths through time (we never
reuse training data).

This process will generate training examples that are dis-
tributed in state space according to the stationary distri-
bution. In other words, we are implicitly using a form of
importance sampling to generate our training samples. This
is a desirable outcome, because we prefer our network to do
better on values that are frequently seen by a viewer, and

To appear in the 1998 Symposium on the Virtual Reality Modeling Language, Monterey, CA, Feb 16-19 1998

vaes |
Intervals:
lengthy @ — 4 4 4 4 L
Imervals |+ L | L L |
. L N 1 L N I L N I L N I
length2 & o T
Intervals - i i i
ngha |)
. . . . N | L
i . . . |
Figure 6: In order to generate training patterns

for the neural networks, we generate a sequence of
values at fized intervals. From this sequence, we
can extract intervals of length 1, 2, 4 and so on.
By generating training patterns in this way we gel
the mazimum amount of training data oul of each
evaluation of the accurate model.

are not interested in how well it approximates state values
that a viewer never sees.

We terminate learning if the error falls below a threshold
value. We grow the network by adding new nodes each time
its learning rate slows, up to a maximum size. We also force
termination after a fixed number of cycles if the network has
not reduced its error to an acceptable level, and allow a user
to stop the training at any time.

We could use other approximating functions, such as ra-
dial basis functions, wavelets or splines. These methods
have the advantage of elegant subdivision schemes, but in
general lack the ability to compactly represent highly non-
linear functions. In future versions of our tools, it is likely
that a range of approximators will be tried, with the best
one chosen dependent on the dynamical system.

3.6 Determining t,,cdium

The approximation threshold, tmedium, 1s the time at which
two conditions are satisfied:

e [t is more efficient to evaluate the approximation func-
tion than the accurate model.

e The error in the approximation function is within a
viewer’s ability to predict.

The neural network learning procedure ensures that the lat-
ter condition is met for each network. We simply assume the
first condition is met by the first network, and use its time
step as tmedium. T0 be more accurate, we could look at each
network in turn, starting with the cheapest, and compare its
expected evaluation time with that for the accurate model -
taking the first network that was faster to evaluate.

3.7 Code Generation

As output, the optimizer produces an extension of the ac-
curate model class that incorporates additional evaluation
routines and control logic for choosing which routine to use.
The components of the new model are:

e A buffer for state variables and code for interpolating
between values within it.

e A representation of the stationary distribution and code
to sample from it.

o Code to evaluate the series of neural networks for time
intervals in the range [tmedium tiong)-

o An evaluation routine that takes the desired evaluation
time as input, and sets state variables as output.

The evaluation routine examines the difference between
the desired time and the last time the system was evalu-
ated. If the difference is greater than ¢iong it samples new
values and returns. Otherwise, if the difference is greater
than tmedium, it uses a neural network approximation and
returns. Otherwise, it tries filling the buffer using the accu-
rate model, ensuring that there are at least values up to the
desired time, and maybe beyond if there is enough time left
to compute extra values.

4 Adding Dynamics to Geometry

Ebynamncs Modeller ¥1.0a =] E3 ||
File Help
Dynamic Variables

theta |

phil

Create Delatel

phi2
DiveBomberya

Figure 7: The interface for our dynamic trans-
formation modeler consists of three regions. In the
top left the current geometric arrangement of the
system is displayed. Top right is a list of all the
dynamics variables defined for this system, which
allows the user to edit the Java class that evaluates
that variable, plus its initial value. The transforma-
tion hierarchy for the system is displayed across the
bottom. By clicking on a node in the tree, a user
can edit the fields of that transformation, entering
a constant or a variable to animate the field.

The dynamic transformation modeler allows a user to load
objects described by the PROTO mechanism, display them,
and build transformation hierarchies consisting of objects,
rotations, translations and bounding boxes. The interface is
shown in figure 7.

The fields of transformations are specified either as con-
stant values, or as references to variables. Each variable is
in turn associated with a Java class to evaluate that vari-
able. Each variable is an array of floating point values, and

To appear in the 1998 Symposium on the Virtual Reality Modeling Language, Monterey, CA, Feb 16-19 1998

the mapping between variables and fields specifies not only
the variable but also the element within it. It is assumed
that each variable will correspond to a complete, indepen-
dent dynamical system, and that each element of the array
is a state variable for the system.

The bounding boxes in the hierarchy are used to tell the
system which dynamics may be culled. Each bound has
associated with it a set of variables whose visual effect is
contained within the bound. If the bound is not visible the
dynamics for those variables will be culled.

As output, the modeling program produces a file describ-
ing the variables used and the transformation hierarchy. We
have a filter program that takes that description and gen-
erates a VRML prototype node implementing the complete
object, along with a script file in Java to manage the dynam-
ics. The prototype node includes VisibilitySensor nodes
to direct culling, and all the event structure for setting trans-
formations from within the script. The prototype defines
eventIns for receiving timer events. The Java script pro-
duced instantiates all the variables when it initializes, and
then manages the visibility and evaluation of dynamics.

The modeler expects any variables to be of a class that im-
plements DynamicsVariable, an interface that defines func-
tions for evaluating the state at a given time, and for return-
ing the value of a state variable. Our dynamics optimiza-
tion code produces classes of this form, but system authors
are also free to define classes directly. This is desirable for
systems expressed as closed-form functions of time, which
do not benefit from optimization yet are still important for
modeling dynamics.

We also emphasize that the dynamics are largely indepen-
dent of the geometry they are attached to. There is some
dependence if the simulation is to be physically plausible,
such as lengths of geometric objects appearing as parameters
in the dynamical system, but as parameters they are read-
ily made available to a user, and don’t change the structure
of the underlying equations. This allows re-use of parame-
terized dynamics with different geometries, and vice-versa.
More importantly, it makes possible a library of dynamical
systems, each with efficient cullable code, which could be
used by authors in the same way 3d geometry libraries are
used today.

5 Example Systems

We used our tools to produce efficient dynamic models of
four amusement park rides. We describe one, the Tilt-A-
Whirl, in detail and present summary information for the
other three.

5.1 The Tilt-A-Whirl

The Tilt-A-Whirl (figure 8) is an amusement park ride that
exhibits highly complex motion despite a simple dynamics
description. The ride has seven cars, each attached to a plat-
form on which it is free to rotate. The platforms are driven
around a circular hilly track according to known functions
of time. As the platforms move around the track they tilt
so as to remain tangential to the surface, which results in
complex motions for each car.

The state variables of this system are elapsed time, £,
the position of the car on the platform, ¢ and its first time
derivative, ¢. The fixed parameters to the system are: rq,
the radius of the track; ra, the distance from the center of
the platform to the car’s center of mass; a1, ag, the size of
the hills; 6o and éo, the platform’s initial angular position
and velocity around the track; and p, a damping constant.

Figure 8: A Tilt-A-Whirl amusement park ride.

The governing equation of motion for the car, derived from
Lagrange’s equation and making use of small angle approx-
imations (following [7]) is:

r§$+p$—gr2(ozsinq5—ﬂcos¢) +rira6ising =0

6 = 8o + 6ot
o = g — aq cos 38
B = 3 sin 36

In modeling this system, we use one DynamicsVariable
class for 6, o and 3. These values are all evaluated by closed
form functions of time, so there is no point in performing
the culling analysis on them. We use another system for ¢
and ¢, which is coded as a DynamicsSystem, and which we
analyze for culling. ¢ is an angular variable, so it is bounded
by (—m, 7). The evaluation code uses a numerical integration
routine (taken from [10]) to generate new state.

Figure 9: The stationary distribution for the Tilt-
A-Whirl system. The intensity of a cell indicates
it’s probability. Darker cells indicate that the sys-
tem’s state is more likely to be in that cell. Note
that many cells are completely white, indicating that
the system never enters a state within that cell. If
we were to use a sampled state from within such a
cell, the viewer might detect an inconsistency in the
ride’s behaviour.

To appear in the 1998 Symposium on the Virtual Reality Modeling Language, Monterey, CA, Feb 16-19 1998

ke,

Figure 10: The convergence of one cell into the
stationary distribution. Starting top left and mov-
ing clockwise, the plots show the distribution of 5000
paths after 3.07 seconds, 6.15 seconds, 9.23 seconds
and 12.31 seconds. The distribution in the lower
right is sufficiently close to the stationary distribu-
tion to stop testing for this cell. Other cells take up
to 24.6 seconds to converge.

After writing the initial evaluation code, we run the
culling analysis software on the system. The bounds for
¢ are found to be [—4.21,3.59]. The stationary distribu-
tion is found (figure 9) along with a sampling threshold of
roughly 18.46 seconds. The convergence of a small set of ini-
tial paths to the stationary distribution is shown in figure 10.
In this analysis, the cell size was approximately #/15.0 by
0.3, Simportant was 0.8 and the maximum difference between
distributions used to measure convergence was 0.8.

The software learns three neural networks, one for each of
approximately three, six and twelve seconds. The mapping
learned by the six second network and the errors it makes
are shown in figure 11. Training the neural network is the
most costly part of the optimization process. The complete
analysis process, from bounding the variables to generating
code, took approximately two hours.

The resulting DynamicsVariable class is several hundred
lines long. This code is ready for use with the interactive
modeling program. Producing the same code by hand would
not only take a significant amount of time, but would also
be very prone to errors.

Independent of the dynamics modeling, the various geo-
metric components were modeled. Any geometric modeler
that produces VRML prototype nodes could be used.

To complete the process, we use the dynamic transforma-
tion modeler to describe how the transformations are con-
trolled by the dynamics variables. In this case there are nine
objects connected by 43 transformations. There are 26 vari-
ables to animate the transformations. One variable animates
the rotation of all the cars around the platform. There are
three variables for each car, one for the orientation of the car
on its platform and two for the orientation of the platform
on the track. Bounding boxes are defined for all of the vari-
ables involved. The resulting description file is transformed
into VRML and a Java script file.

Figure 11: An ezxample of the function learned by
a neural network. The network shown is attempting
to learn the change in orientation and change in ve-
locity of a Tilt-A-Whirl car over a 6.15 second inter-
val. The left column plots the change in position as
a function of initial conditions, and the right column
plots the change in velocity. The top row shows the
true function, the middle images show the function
learned by the network, and the bottom row shows
the difference image, masked by the stationary dis-
tribution shown in figure 9. In each frame, the ini-
tial orientation increases from —m to w along the
horizontal axis, and the velocity increases vertically
from -4.21 to 3.59. Note that we are not concerned
with errors that are masked out by the stationary
distribution, because these errors will never be seen
by a viewer. Such regions include the top left and
bottom left corners of each frame.

5.2 Other Models

We modeled three other rides with our system:

e The octopus consists of eight cars, each free to rotate
about a vertical axis at the end of a rotating beam.
The beam is attached to a central frame, which itself
rotates.

e The dive-bomber consists of four cars held in cradles at
the end of a rotating frame. Fach car is free to rotate
about an axis perpendicular to the frame’s axis.

e The pendulum is based on a forced double pendulum.
It produces violent motion, to dangerous for anything
but a virtual ride.

The key parameters inferred by the analysis software, with
some information about the systems, are shown in table 1.

To appear in the 1998 Symposium on the Virtual Reality Modeling Language, Monterey, CA, Feb 16-19 1998

Name Octopus DiveBomber Pendulum
Vars 10 5 3
Dim 2 2 2

tmedium 15.0s 8.0s 1.92s
tiong 30.0s 16.0s 23.1s
Nets 1 1 4
Time 11h53m 10h47m 6h46m

Table 1: Various statistics for three fun park rides.
Vars is the total number of animated variables in
the system. Dim is the dimension of the dynami-
cal system that is optimized. It is lower than vars
because each ride consists of several independent
systems, and some variables are modeled as closed-
form functions of time. tmedium and tiong are the
thresholds for approxzimation and sampling respec-
tively, and nets is the number of networks trained.
Time is the total time taken for the optimization
process. Note that a longer tmedium, which corre-
sponds to a longer forcing function period, implies
longer running times, because we integrate in steps
of one period.

6 Speedup Results

To measure the performance improvement while culling dy-
namics, we studied the time spent computing the dynamics
for each rendered frame of a simulation. We used all our ex-
ample models as test subjects, beginning with one instance
of each in the world, then adding additional objects up to
a maximum of 20 (five of each example). We used a single
point for each of the geometric components of the rides, as an
approximation to ignoring the cost of rendering. In each test,
the average frame time was measured for a viewpoint ani-
mated such that the center of view moved in a circle around
the world while the view direction oscillated through a 90°
angle. Rides were added so that the density of rides in the
world was approximately constant. With culling turned on,
the dynamics for a ride were computed only if the ride was
visible, and we used the models generated by our software
to ensure fast, consistent evaluation. With culling off, the
dynamics were computed for every frame using the accurate
model for the system.

Table 2 presents the timing values recorded in our exper-
iments. Figure 12 plots the speedups obtained by culling.
The speedups obtained are between 1.5 and 2.0, and increase
as the number of systems increases. This is mostly due to
the fact that, as the time per frame increases, the time per
frame without culling increases superlinearly: each system
must integrate over a longer period per frame, which takes
more time.

We expect the speedups to be roughly proportional to the
ratio of the number of systems in view to the number of
systems out of view. In our experiments, this ratio is near
constant because we keep the density of systems constant
and the ratio of volume in view to volume out of view the
same. We hence see near constant speedups. Using more
advanced visibility schemes, not currently offered in VRML,
we would expect the number of systems in view to be con-

Total | Culling | No Culling | In View | % in View
4 0.018s 0.028s 1.0 25%
8 0.034s 0.057s 2.0 25%
12 0.053s 0.092s 3.2 26%
16 0.068s 0.130s 4.0 25%
20 0.088s 0.176s 4.9 25%

Table 2: Average time per frame with and without
culling, and the number of systems in view, for in-
creasing numbers of systems. The time per frame
with culling on grows approximately linearly with
the number of systems in view, as we would expect
from our set up. The time per frame with culling
turned off does not scale linearly with the total num-
ber of systems. This is because, in addition to there
being more systems, each system must evaluate over
a longer period of time for each frame.

Speedups
21 T

Speedup
=
(e}

17 1

15
12 16 20
Number of systems

Figure 12: The speedups obtained plotted as a func-
tion of the number of systems in the world. The
speedup is not constant, as we would expect in our
experimental set up. This is mostly a result of the
time per frame with culling turned off not scaling
linearly with the number of systems. Note that the
vertical axis does not start at zero.

stant, while the number out of view increased. In this case,
the speedups would improve roughly linearly in the number
of systems added to the world.

7 Conclusions and Future Work

We have presented a set of tools for authoring efficient dy-
namic models in VRML and Java. They make use of novel
techniques for automatically generating dynamical models
that may be culled when not in view. With these mod-
els the dynamics computation time may be halved on aver-
age using only view volume culling to determine visibility.
Our interactive modeler allows geometry and dynamics to
be combined by associating geometric transforms with dy-
namic state variables. This supports the modular re-use of
both geometry and dynamics.

One significant extension to our optimization software is
to add the capacity to handle state machines and hierarchies
of systems. The optimization approach is similar, and the
range of systems that can be modeled would be greatly in-
creased. For example, the Tilt-A-Whirl ride would be able
to stop to let off and collect passengers, rather than running
indefinitely.

For novice users, an authoring tool would ideally hide any

To appear in the 1998 Symposium on the Virtual Reality Modeling Language, Monterey, CA, Feb 16-19 1998

equations of motion for the system from the author. Such
a tool would approach modeling from the point of view of
geometric constraints and common forces (such as gravity or
motors). The modeler would then infer the dynamics and
generate the accurate model required by our current system.
With this architecture the optimization process is carried out
as a subsystem of the modeler, and the dynamics need never
be explicitly stated by the user.

In incorporating our models into VRML environments we
have pushed the boundaries of VRML’s timing model and
script evaluation specifications. When doing dynamic simu-
lation, one would like to know the time the frame currently
being computed will be displayed, so that the state shown is
accurate for that time. In VRML this is extremely difficult,
largely because the simulation does not run to a fixed frame
rate. Furthermore, in our experience browsers do not send
timer events once per frame, and we must write special pur-
pose filters to distribute timer events that are guaranteed to
be in chronological order and strictly increasing. Secondly,
we do not know for certain that timer events will not be sent
to scripts controlling systems out of view. To work around
this, we include scripts to manage the visibility of top level
objects and forward timer events only to visible systems.

Also of interest to the VRML community is the inter-
action of culling with multi-user networked environments.
The methods for generating alternate dynamic models de-
scribed here are independent of the determination of which
model to use in a given environment. That issue depends
on how viewer prediction is modeled in the environment. A
conservative culling approach for multi-user worlds would
keep track of the last time each system was seen by any
viewer, and apply the same tests used in this paper to deter-
mine how the system should be evolved when it is next seen.
More aggressive approaches might allow different viewers to
see different things, based on the viewers’ ability to commu-
nicate. In particular, as long as each viewer perceives the
same events, their accounts will agree. If the actual dynamic
motion that led to the percept is slightly different, that is
unlikely to lead to noticeable inconsistencies.

Our results show that large numbers of models can be in-
cluded in a VRML world without sacrificing frame rate. We
achieve this by performing only work that is necessary to en-
sure a consistent environment for the viewer. Our tools make
it possible for those inexperienced with dynamics to achieve
similar results, while strongly encouraging the development
of a library of dynamics for use with varying geometry.

8 Acknowledgments

Our work was performed on machines donated by Intel, and
funded by the Office of Naval Research grant ONR-MURI-
N00014-96-1200. We used the Worldview for Netscape Nav-
igator browser running under Windows NT on a 200MHz
Pentium Pro. Our Java code for optimizing the system was
compiled using the just-in-time compiler for the JDK v1.1.4.
We used Sced, a public domain constraint-based modeler, for
the geometric modeling.

References

[1] David Baraff. Analytical methods for dynamic simu-
lation of non-penetrating rigid bodies. In Computer
Graphics, volume 23(3), pages 233-232. ACM SIG-
GRAPH, July 1989. Boston, Massachusetts.

[2] Christopher M. Bishop. Neural Networks for Pattern
Recognition. Oxford University Press, 1995.

[3] Deborah A. Carlson and Jessica K. Hodgins. Simulation
levels of detail for real-time animation. In Graphics

10

[10]

[11]

[12]

[13]

Interface ’97, pages 1-8, 1997. Kelowna, BC, Canada,
21-23 May 1997.

Stephen Chenney and David Forsyth. View-dependent
culling of dynamic systems in virtual environments. In
Proceedings 1997 Symposium on Interactive 3D Graph-
ics, pages 55—58, April 1997. Providence, RI, April 27-
30.

Jessica K Hodgins, Wayne . Wooten, David C Bro-
gan, and James F O’Brien. Animating human figures.
In Computer Graphics: Proceedings of SIGGRAPH 95,
pages 71-78, August 1995. Los Angeles, CA.

Chieh Su Hsu. Cell-to-cell mapping: a method of global
analysis for nonlinear systems. Springer-Verlag, New
York, 1987.

R. L. Kautz and Bret M. Huggard. Chaos at the amuse-
ment park: Dynamics of a tilt-a-whirl. American Jour-
nal of Physics, 62(1):59-66, January 1994.

Michael D. McCool and Peter K. Harwood. Probability
trees. In Graphics Interface ‘97, pages 37-46, 1997.

Brian Mirtich. Impulse-based Dynamics for Rigid-Body
Simulation. PhD thesis, University of California, Berke-
ley, 1996.

William H. Press, Saul T. Teukolsky, William T. Vet-
terling, and Brian P. Flannery. Numerical Recipes in C:
The Art of Scientific Computing. Cambridge University
Press, Cambridge, England, 2nd edition, 1992.

M. N. Setas, M. R. Gomes, and J. M. Rebordao. Dy-
namic simulation of natural environments in virtual re-
ality. In SIVE95: The First Workshop on Simulation
and Interaction in Virtual Environments, July 1995.
University of lowa, lowa City, TA.

Oded Sudarsky and Craig Gotsman. Output-sensitive
visibility algorithms for dynamic scenes with applica-
tions to virtual reality. In FUROGRAPHICS ’96, vol-
ume 15(3), 1996.

Xiaoyuan Tu and Demetri Terzopoulos. Artificial fishes:
Physics, locomotion, perception, behavior. In Computer
Graphics: Proceedings of SIGGRAPH 94, pages 43-50,
1994.

