
Eurographics/SIGGRAPH Symposium on Computer Animation (2003)
D. Breen, M. Lin (Editors)

Constrained Animation of Flocks

Matt Anderson, Eric McDaniel and Stephen Chenney†

University of Wisconsin – Madison

Abstract

Group behaviors are widely used in animation, yet it is difficult to impose hard constraints on their
behavior. We describe a new technique for the generation of constrained group animations that improves
on existing approaches in two ways: the agents in our simulations meet exact constraints at specific
times, and our simulations retain the global properties present in unconstrained motion. Users can
position constraints on agents’ positions at any time in the animation, or constrain the entire group
to meet center of mass or shape constraints. Animations are generated in a two stage process. The
first step finds an initial set of trajectories that exactly meet the constraints, but which may violate the
behavior rules. The second stage samples new animations that maintain the constraints while improving
the motion with respect to the underlying behavioral model. We present a range of animations created
with our system.
Keywords: flocking, constraints, sampling, plausible simulation

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism - Animation

1. Introduction

Simulated group behaviors are widely used in anima-
tion, with many production tools available, such as
Weta Digital’s MASSIVE11 and AI.implant1, a plug-
in for Maya. Groups typically consist of individual
agents, each with a set of parameterized rules govern-
ing its behavior (originally described by Reynolds21).
The global behavior emerges from the actions of the
individuals, producing large-scale effects that are oth-
erwise hard to model. However, emergent behavior
makes it very difficult to place constraints on the final
motion. In this paper we describe a new technique for
generating constrained group animations.

There are many situations in which constrained
group behaviors are necessary. In film, a director might
script the path of a particular character within the
group (for dramatic effect or as part of a story), while
retaining the overall group motion. Advertisers might
wish to use the shape or motion of the flock to con-
vey a message. We present examples, among others, of

† email: {manderso,chate,schenney}@cs.wisc.edu

an agent constrained to come from behind to win and
an entire flock forming letters. In the past such scenes
would be hand animated.

The simplest method for generating constrained
groups is to key-frame the agent of interest then sim-
ulate the other agents while the constrained agent fol-
lows its path (Figure 1). The key-framed agent in this
situation is unable to respond to the actions of the
other agents. One of two cases generally results: occa-
sionally, the key-framed agent finds itself leading the
group, but most often the constrained agent is unable
to influence the group enough to avoid breaking off,
as in Figure 1.

An alternate approach adds a constraint enforce-
ment behavior rule to the agents, such as the path
following behavior described by Reynolds22 or the
planning-based behaviors of Bayazit et. al.4 Addi-
tional rules can guide the flock in real-time, as in
gaming applications, but they must also interact with
other behavior rules, such as collision avoidance and
flock coherence rules. A significant parameter tuning
problem is thus introduced: the constraint behavior
must be strong to meet the constraints, yet not so

c© The Eurographics Association 2003.

Anderson et al / Constrained Animation of Flocks

Figure 1: A comparison between our system (left) and
a naively constrained agent (right). The same flock is
rendered in gray and black, representing earlier and
later timesteps. In the naive case, the key-framed agent
follows the path while the other agents follow their reg-
ular behavior rules. Despite the flock’s ability to see the
constrained agent, the result shown on the right is typ-
ical – the unconstrained agents fly off leaving the key-
framed agent behind. The standard fix for this problem
is a rule that tells the flock to follow the constrained
agent, but that requires the constrained agent to lead.
Our system solves for trajectories for all of the agents
such that the constraints are satisfied and the global
motion looks plausible, even if the constrained agent
is embedded in the flock.

strong that it overrides other, visually important be-
haviors. In an off-line production system, the tun-
ing may need to be repeated for every constrained
shot, resulting in inconsistency in the flock’s motion
across scenes. Duncan11 describes the extensive be-
havior tweaking for flocking scenes in the Lord of the
Rings, which ultimately required the addition of invis-
ible geometry elements to guide agents. Our method
works with existing, tuned models without modifica-
tion to the rule-set or any other parameters.

Timing constraints pose particular difficulties for
existing methods. Rules can guide a character along a
path, but the speed at which it moves is governed by
the interplay of many factors, such as the motion of
flock-mates. Cuts between shots are typically used to
address this problem, but they impose potentially un-
desirable artistic limitations on a director. For exam-
ple, the movie Spirit9, was hand animated to achieve
both good control and a long, continuous shot. Fur-
thermore, with existing approaches it remains very dif-
ficult to constrain multiple agents at the same time,
enforce global constraints on all members of the flock

(such as shape constraints), or enforce constraints on
only part of the motion. Our system handles all of
these cases.

Our major contribution is a method for imposing
hard constraints on the paths of agents at specific
times while retaining the global characteristics of an
unconstrained flock. Our approach has several advan-
tages for animators: it works with existing, tuned mod-
els; it can enforce timing constraints on long sequences
without imposing cuts; and it offers new types of con-
straints not previously available (e.g. global shape con-
straints). We use a sampling approach to explore the
space of animations that meet the constraints, and
offer one or more to the user. Our algorithms are ap-
plicable to an off-line production environment.

2. Related Work

Many techniques have been proposed to generate ani-
mations that satisfy constraints and respect some un-
derlying procedural model. Witkin and Kass26 worked
with articulated figures, and found joint torques over
time that produced the desired motion while minimiz-
ing energy. This work, dubbed Spacetime Constraints,
its extensions8, 18, and similar work2, 6, 14, 15, all use
some form of optimization to find the “best” solution
for the trajectories. They require derivatives of the
objective function with respect to the control parame-
ters, which are difficult to extract from flocking mod-
els. Specifically, the standard methods for perception
and inter-agent forces introduce significant disconti-
nuities. Ngo and Marks19 used genetic algorithms in
the absence of derivatives, and later extended their ap-
proach to collision intensive systems23, while Popović
et. al.20 used derivatives where possible and a random
search in other cases. However, these techniques do
not scale well as the numbers of agents grows large.

Group behavior models generally don’t have an op-
timal behavior. Randomness is frequently used to in-
crease the variability in each agent’s behavior, which
improves the appearance of the motion. Any one of
a large number of potential animations is thus con-
sidered acceptable, with no principled way to choose
a single best one. Barzel, Hughes and Wood3 noted
that randomness makes many types of simulation ap-
pear more plausible, and that randomness can help to
solve constrained problems. Following, Chenney and
Forsyth7 solved collision intensive constraint problems
by sampling from a distribution describing plausible
outcomes. We exploit the same ideas in our system.
However, unlike previous approaches we explicitly en-
force the constraints in a pre-sampling step, and then
maintain them throughout the process.

c© The Eurographics Association 2003.

Anderson et al / Constrained Animation of Flocks

3. Constraining Flocks

Our system works on group behavior models that pro-
duce agent trajectories and provide a way to evaluate
the plausibility of a given set of trajectories. In our
implementation we use a variant of Reynolds’ flocking
model22 (Section 3.1) that produces the positions of
agents over time, which in turn implicitly encodes the
velocities and orientations.

We aim to produce plausible animations that sat-
isfy constraints while retaining the realistic proper-
ties of the underlying behavior model. The flocking
model we use incorporates a wander behavior rule22

that adds a random acceleration to each agent on
each discrete simulation timestep. Many group behav-
ior models include such a random component to make
the motion appear less mechanical. Random compo-
nents provide a natural way to assess the plausibility
of an animation3, 7: a plausible motion is one in which
the random components used to generate the motion
are reasonably distributed. Our technique does not re-
quire random components – we could use any measure
of plausibility that can be expressed as an objective
function.

Our implementation supports three types of con-
straints: specific agents constrained to pass through a
location at a given time; the center-of-mass (COM)
of the group constrained to a point at a time; and
the members of the flock constrained to lie within a
given shape at a specific time. Constrained anima-
tions are produced in a two stage process. The first
stage enforces the constraints without explicit regard
to the plausibility of the result (Section 3.3). It uses
a combination of methods: Forward simulation that
enforces a particular set of initial conditions and gen-
erates unconstrained forward motion; Backward simu-
lation that generates a simulation that ends at partic-
ular positions; Path transformations that take group
motion along one path and transform it to follow an-
other path; and Path blending that interpolates the
motion of agents between two paths. The system com-
bines these methods to produce a set of trajectories
that satisfy the constraints.

The path transformation and blending techniques
do not take into account the behavior rules – they are
purely geometric operations – and hence the result-
ing paths may not be plausible. The second stage of
our solution method samples new animations to en-
force plausibility requirements while maintaining the
constraints (Section 3.4). A sampling process is used
with the output from the first phase as the initial sam-
ple. The sampler repeatedly proposes a new anima-
tion based on the old one, evaluates its plausibility,
and decides to accept it as the new sample or reject
it and stay with the current sample. Animations that

wc
i-1wc

i-1

^

wi
i

wc
i

Figure 2: The wander contribution for step i, wci is
computed based on the contribution for the previous
step and a randomly sampled wander impulse, wii, by
adding the impulse to the previous contribution (nor-
malized first to prevent it growing too large, as recom-
mended by Reynolds). Note that the wander impulse is
randomly chosen on each timestep and is uncorrelated
across steps, while each wander contribution is derived
from the previous one and hence is correlated. Given
a set of trajectories and the wander contributions, we
can infer wii and use it to evaluate the plausibility of
an animation (Section 3.4.2).

are more plausible than the current one will always be
accepted, while poorer examples will occasionally be
used. The process is similar to simulated annealing but
without the temperature reduction component. After
running the sampler until the average plausibility sta-
bilizes, or for a fixed number of steps, the last sam-
ple is presented as a solution. Multiple samples could
be kept to give a user several options, or multiple in-
stances of the process could be run.

The remainder of this section discusses each com-
ponent of our algorithm in detail. Section 4 presents
several animations produced with our system and dis-
cusses its limitations. We conclude in Section 5 with
a look at potential extensions and improvements.

3.1. Behavior Model

Our underlying behavior model is based on
Reynolds’22 work. The internal state of each
agent for each timestep consists of three vectors: its
position, velocity and wander contribution (described
below). For subsequent processing we keep only the
position and wander contribution, as the velocity can
be inferred from the sequence of positions.

Each agent has a set of rules that contribute acceler-
ation requests on each timestep. The requests are com-
bined through a weighted average and the result is ap-
plied as an impulse to the agent. The behavior of any
agent at any timestep depends only on the positions
of all the agents and obstacles at that timestep, and
the wander contribution from the previous timestep.
We use the following behavior rules:

Separation: Move away from your nearby neighbors.

c© The Eurographics Association 2003.

Anderson et al / Constrained Animation of Flocks

Cohesion: Move toward the average position of your
neighbors.

Alignment: Align your velocity with that of your
neighbors.

Collision Avoidance: Steer away from impending
collisions with static objects.

Speed Target: Try to attain a user defined speed.
Wander: Add a random wander contribution acceler-

ation based on the previous timestep’s wander con-
tribution and a random vector (Figure 2). The wan-
der contribution is designed to improve realism by
adding random variations to the paths of the agents.

The weights used in the averaging process are de-
fined as part of the behavior model and are a sig-
nificant factor in determining the appearance of the
flock. A user sets these weights in the absence of any
constraints to get the desired flock appearance, inde-
pendent of our algorithm, and our technique does not
manipulate them further.

Behavior models in our system must support three
operations: Forward simulation: The simulation of
the behaviors forward from a set of initial conditions;
Plausibility Assessment: Given a set of trajectories
and a timestep, the model must be able to assess the
plausibility of the state at the timestep; Backward

Simulation: Simulation of the behaviors backward
in time from a set of end conditions. In practice, we
simulate forward using the regular behavior rules, but
with sense of perception reversed so that agents see
those behind them. The resulting sequence of states
is then reversed. In effect, the agents react to those
behind them while simulating, but after reversal they
appear to be reacting to those in front, as they nor-
mally would. Our technique uses backward simulation
in an intermediate step, so it is not essential that it
be high quality motion. In Section 4 we discuss ways
to remove the requirement for backward simulation.

Our constraint solution process views an animation
as the set of trajectories of all the agents through the
time interval of interest. For all our examples, these
trajectories are the positions and wander components
of the agents sampled at 10Hz from the simulator.
Velocities are implied by the positions. It is common
practice to sample behaviors at such frequencies, and
it produces good results. The system can readily ac-
commodate variations in sampling rate, with compu-
tational cost increasingly roughly linearly with the
number of samples. Agents move in a piecewise lin-
ear manner between sample points, and are always
aligned with their velocities.

In principle our approach could handle other com-
ponents of agent state, such as explicit orientation,
but we have not experimented with such cases. Fur-
thermore, our approach should work with any group

behavior model that supports the forward, backward
and evaluation operations. We have, however, only ex-
perimented with the flocking model.

3.2. Constraints

Our system supports three types of constraints: point
constraints for which a specific agent must pass
through a given point at a given time; center-of-mass
(COM) constraints in which the COM, or average
position, of a subset of the flock must be at a spe-
cific point at a specific time; and shape constraints for
which a subset of the flock must lie inside a polygonal
shape. Constraints can be mixed in any sensible way.
For instance, different agents can be constrained at dif-
ferent times, or one agent can have a series of points
to pass through, effectively key-framed with flocking
motion interpolation. The COM constraint mimics the
traditional “fly to point” constraint, but with precise
control over timing.

Velocities must be associated with each constraint
to aid in the generation of an initial sample. A user
explicitly provides these for shape constraints, while
for point and COM constraints the velocities are in-
ferred by grouping contiguous constraints and fitting
a Bspline path. The arc length and time between con-
straints gives a velocity. Isolated point or COM con-
straints have their velocities provided by the user. Ve-
locities are only of temporary use and are not en-
forced by the system as currently implemented, al-
though they could be enforced with very little modi-
fication to our approach.

Point constraints are explicitly enforced when an
initial sample solution is generated, as described in
the next section, and then maintained throughout the
sampling process. COM and shape constraints are pre-
cisely satisfied by the initial sample process, but in the
subsequent sampling phase they are enforced through
their contribution to the plausibility of the animation,
as detailed in section 3.4.2.

3.3. Enforcing Constraints with an Initial

Solution

With a set of constraints defined, the system finds a set
of trajectories to use as the initial sample for the sub-
sequent refinement process. Our aim with this phase
is to create trajectories that exactly meet all the con-
straints. We would also like the resulting animations
to be plausible, but that is not an over-riding concern
– the sampling phase can fix problems.

We define a window to be an interval between two
sequential constraints. Constraints must be satisfied
only at the start and end of any window (Figure 3),

c© The Eurographics Association 2003.

Anderson et al / Constrained Animation of Flocks

t=1

t=13

t=10
t=7

t=5

t=3

Figure 3: The constrained interval is broken into win-
dows for generating initial trajectories. The windows
in this example are the intervals [1, 5], [5, 7], [7, 10] and
[10, 13]. Every constrained time defines a new window
boundary, unless the constraint is part of a contiguous
sequence of point or COM constraints for a particular
set of agents (such as at t = 3). In this figure, the
different symbols indicate different agents.

except that a new window is not defined for point
or COM constraints that are part of a contiguous set
(our techniques meet these constraints when trajecto-
ries are found within a window). We then roll forward
through the sequence of windows, generate an initial
and final configuration for each window, and join them
with plausible trajectories that are cheap to compute.

3.3.1. Generating Constrained Configurations

The initial flock configuration for the first window
must satisfy all the constraints at that time and be
a reasonable snapshot of the flock’s motion. Likewise,
the end configuration of the first window must also
satisfy all the constraints and be plausible. For subse-
quent windows, the final configuration from the pre-
vious window provides a set of initial conditions that
satisfy the constraints, while a satisfactory end con-
figuration must still be created.

The process of finding a constrained configuration
always begins with a snapshot of simulated motion,
either the final configuration of a short unconstrained
simulation or the outcome of a forward simulation
from the start of a window. To ensure that all the
constraints are satisfied, we then modify this snapshot
according to the following rules:

• For each point constrained agent, the system applies
a translation and rotation to move it to its target
position and align its velocity with that implied by
the constraint sequence. The transformations that
were used are stored.

• If a subset of agents is COM constrained, the group
is rigidly translated and rotated from the snapshot
to make the COM meet the constraint and its veloc-
ity. We are also free to re-assign agents among the
snapshot positions, because that will not change the

COM. If we are finding a configuration for the end
of a window, we sample a matching10 that reduces
the sum of squared distances between the location
of each agent at the start of the window and its po-
sition at the end. This reduces the degree to which
the agents must mix in getting from one constraint
to another, which results in more plausible motion.

• If a subset of agents is shape constrained, we sam-
ple one point inside the shape for each agent. The
samples are initially chosen uniformly at random
within the shape, and then a few relaxation steps
are performed on the point set to push very close
points apart. We then do a re-assignment of agents
to points as described for COM constraints.

• If the agent is unconstrained, the closest constrained
agent in the snapshot is found, and that agent’s
transformation is applied. Alternately, we could
choose a constrained agent at random; which option
is better depends on the users preferences. Choosing
the closest point produces smoother, but sometimes
less interesting, results.

The result is a flock that tends to look plausible but
is not assured to be so. If there is only one con-
strained agent, or a COM constraint, the result is gen-
erally reasonable because it represents a rigidly trans-
formed version of an unconstrained forward simulated
flock. Otherwise, the results depend on the number of
constrained agents and the plausibility of their con-
strained positions, which presumably arise from au-
thoring considerations and are out of the system’s con-
trol.

3.3.2. Finding Initial Trajectories

The initial constraint enforcement process must find a
set of trajectories within each window that meet the
initial and final constraints for that interval. Depend-
ing on the constraints to be met, some or all of the
following operations are performed:

Operation 1: Simulate forward to meet initial

conditions. An unconstrained forward simulation is
always run, starting with the initial conditions for the
window, for the duration of the window.

Operation 2: Transform the forward simu-

lated trajectories to meet point constraints. If
the window is part of a sequence of point constraints
on one or more agents, we fit a Bspline curve through
the sequence and transform the result of Operation
1 such that the constrained agents follow the Bspline
paths. The forward simulated path is time parame-
terized, as are the constrained agents’ Bsplines. At
each timestep the translation required to move each
constrained agent from its forward simulated position
onto its Bspline path position is computed and ap-
plied. Similarly, if the window is part of a sequence

c© The Eurographics Association 2003.

Anderson et al / Constrained Animation of Flocks

of COM constraints, we perform a path translation
to move the COM of the flock onto the interpolated
path. Unconstrained agents (with no point, COM or
shape constraints) receive the translation for the agent
to whom they were closest at the start of the window,
or the COM translation. At the end of this step, all
the agents with contiguous constraints that span the
window are on their required trajectory, and the win-
dow is done if there are no additional constraints at
the end of the window.

Operation 3: Simulate backward to meet end

constraints. End constraints will not be satisfied by
Operation 2 for agents that are shape constrained, or
point or COM constrained only at the end of the win-
dow. The configuration generation technique of Sec-
tion 3.3.1 is used to generate a final configuration for
the window, but agents already in the correct posi-
tion are left unchanged. A backward simulation is run
from the resulting set of end conditions. The back-
ward trajectory is path transformed as in Operation
2 to enforce any contiguous point and COM con-
straints. Finally, the positions of agents from the for-
ward and backward simulations are blended to gen-
erate the final set of trajectories. The blend func-
tion we use is x = (1− u)xforward + uxbackward with
u = −

(

2t3 − 3t2
)

for scaled time t running from 0 to
1 within the window. This blending function17 retains
the velocities from the forward trajectories at the start
of the interval, and the velocities from the backward
simulation at the end of the interval.

Cases occur in which no agent is part of a sequence
of point constraints within the window, and hence
there is no Bspline path to use as a reference path
for path transformations. In this case we construct a
Hermite curve that joins the center of masses for the
initial and final conditions and has tangents aligned
with the agents’ average velocities. This curve, and
the center of mass for the flock throughout the win-
dow are used to compute a translation that moves the
center of mass of the flock along the Hermite curve
joining the initial and final conditions.

After applying these operations in every window,
the system has a set of constraint satisfying trajec-
tories for all the agents throughout the entire con-
strained interval. The trajectories are joined to form
one continuous set. They may not, however, be plau-
sible: our methods for building them, including set-
ting constrained configurations, translating agents and
blending positions may result in collisions, tight loops
or other implausible motions. The sampling phase, de-
scribed next, refines the initial result to generate a
plausible final animation.

3.4. Sampling Plausible Solutions

The trajectory generation process provides initial tra-
jectories for all of the agents through the constrained
interval. A sampling process, akin to Markov chain
Monte Carlo or simulated annealing, is used to re-
fine these paths to produce more plausible results. The
high-level algorithm is:

generate initial trajectories, A0

while not done
propose candidate trajectories, Ac, based on Ai

u← random(0, 1)
if u < Paccept

Ai+1 ← Ac

else

Ai+1 ← Ai

The sampling chain is run for either a fixed num-
ber of iterations or until the plausibility of the ani-
mations stabilizes. Two components are essential to
the operation of the sampling process: the proposal
mechanism that generates a candidate animation, Ac,
based on the current one, Ai; and the acceptance cri-
teria, Paccept, used to determine if the candidate is
accepted.

We use an acceptance criteria motivated by the
Markov chain Monte Carlo (MCMC) algorithm13:

Paccept =
g(Ac)

g(Ai)

where g(A) is an objective function evaluated on the
animation, A. The criteria differs from that of MCMC
in two ways: we do not require that the objective func-
tion g be a valid probability distribution, and we ig-
nore the transition probability between states. The
result is a sampling strategy that balances switch-
ing between different samples and favoring plausible
animations, without getting stuck in local minima or
accepting too many poor results. In the next section
we discuss the methods for proposing new animations,
while in Section 3.4.2 we describe the objective func-
tion g(A).

3.4.1. Proposal Strategies

The system randomly chooses one of three strate-
gies to propose candidate animations. Each has access
to the current animation (the trajectories for every
agent), the constraints, and the windows used to pro-
pose the initial sample.

Propose completely new trajectories: This
strategy re-runs the process in Section 3.3 to generate
entirely new trajectories within a subset of the con-
strained period. With 50% probability this proposal
regenerates all of the trajectories using the procedure

c© The Eurographics Association 2003.

Anderson et al / Constrained Animation of Flocks

in Section 3.3. Otherwise, 1, 2 or 3 contiguous win-
dows are chosen to be replaced, with uniform prob-
ability of generating any subset. When regenerating
within a subset of the windows, additional, temporary
constraints are placed at the ends of the subset to en-
force continuity with neighboring windows (which are
unchanged by the process). This proposal strategy is
useful throughout the refinement process to encourage
good mixing – the creation of significantly different an-
imations – because it tends to propose animations that
are locally different but not so bad as to be rejected.
This strategy is chosen with probability 0.1.

Propose bumps: This strategy adds 1 to 3 ran-
domly positioned and shaped bumps to the current
trajectories. The bumps can be any length up to twice
the length of the trajectory, although the random
choice of bump size is biased toward those that cover
1 to 10 steps. The bumps are allowed to be longer
than the trajectory, in which case the unused portion
is thrown away. In that case, however, the endpoints
of the trajectory will be changed. The center of the
bump is placed at a timestep chosen at random, with
the probability of choosing any point inversely pro-
portional to its plausibility. Particularly poor sections
of animation are therefore more likely to be modified.
A specific agent’s trajectory is chosen uniformly at
random from among the agents, but agents for whom
the bump would break constraints are excluded. This
ensures that the point constraints are maintained.

The bump is added to the trajectory in a multi-
resolution manner in order to have the bump “follow”
the trajectory as it is added. We first define the bump
in 3D in a plane that contains the x-axis, but is oth-
erwise randomly oriented. The bump is parameterized
by the distance along the x-axis, from its start at x = 0
to its end at x = 1. The distance from the axis is given
by d = 16s(x2 − 2x3 + x4), which results in a curve
with zero derivative at the points x = 0 and x = 1, as
shown in Figure 4. The parameter s defines the size
of the bump; it is samples from a normal distribution
with mean 0 and standard deviation 0.05.

In our system the trajectory is sampled at discrete
intervals, and the bump is sampled to give the same
number of samples as the trajectory has over the re-
quired length of the bump. A multi-resolution decom-
position is performed on both the bump and the piece
of trajectory to be modified. The decomposition re-
cursively down-samples a curve by a factor of two,
replacing every second point with its offset from the
midpoint of its neighbors (Figure 4). The offset co-
ordinates, oi, for point i, pi, at level l is computed
as follows (level 0 is the curve consisting only of the

p
i

p
i+n/2l

p
i-n/2l

m

d

t n̂

0.8

1

0

0.2

0.4

0.6

0.2 0.4 0.6 0.8 1

Figure 4: One proposal strategy adds bumps to seg-
ments of an agent’s trajectory. Top left: The bump
is a quartic curve with zero value and derivative at
its ends. We scale the vertical size of the bump by
a normally distributed random amount with mean 0
and standard deviation 0.05. Top right: bumps are
added in a multi-resolution manner. The position of a
point is encoded according to its offset from its neigh-
bors’ midpoint, expressed in a coordinate frame deter-
mined by the neighbors’ locations. See the text for de-
tails. Bottom: The result (dashed) of adding a bump of
height 0.05 to a segment of curve (solid). Our multi-
resolution strategy automatically accounts for the ori-
entation off the curve segment and the scaling of the
bump.

endpoints of the original curve):

m =
pi+n/2l + pi−n/2l

2
d = pi −m

n = pi+n/2l − pi−n/2l

t = r× n̂

s = n̂× t

oi =

(

1

‖n‖ (d · n) ,
1

‖n‖ (d · s) ,
1

‖n‖ (d · t)
)

The midpoint, m, of the neighbors at level l is com-
puted first, and then pi’s offset from it. A coordinate
frame, (n, s, t) is computed using the unit vector along
the line joining pi’s neighbors, n, and a global unit
vector r. The multi-resolution coordinates stored for
pi are the projections of its offset onto this coordinate
frame, divided by the distance between the neighbors.

Our method is a modified version of a standard tech-
nique for multi-resolution decomposition of a curve,

c© The Eurographics Association 2003.

Anderson et al / Constrained Animation of Flocks

(producing results similar to those of Finkelstein and
Salesin12 and similar to the “standard” method men-
tioned in Guskov et. al.16) except that we work with
3D curves and have a scaling factor derived from the
spacing of the samples. The move to 3D necessitated
the use of the global vector r, which orients the refer-
ence frame about the line joining the neighbors. With
2D curves the orientation is implicit. There remains a
potential degeneracy, if the line joining the neighbors
is aligned with r, but we detect this case and use a dif-
ferent r. We have not found this to be a problem. The
scaling of the coefficients by the distance between the
neighbors automatically accounts for varying sample
spacing in world coordinates, and also automatically
scales the bump according to the length of the seg-
ment.

After decomposing both the bump and the segment
of the trajectory, their multi-resolution coefficients are
added. The new segment of trajectory is recomposed
and put in place of the original segment. This pro-
posal strategy is chosen with probability 0.6. It is sig-
nificantly cheaper than the complete regeneration of
trajectories, and is very effective at cleaning up lo-
cal problems with a solution or mutating an already
plausible solution.

Propose velocity changes: This proposal adjusts
the speed with which some agents move along their
trajectory. Qualitatively, the proposal increases the
speed of an agent through one portion of its trajec-
tory, then decreases it in a subsequent section, so that
the agent travels the same overall distance and con-
tinuity of the trajectories is maintained. A procedure
identical to that above is used for selecting trajectory
segments to modify. The system computes the cumu-
lative distance traveled by the agent at each sample
point over the segment of interest, then adds an offset,
o, to each distance given by o = 16s(u2 − 2u3 + u4),
where u varies from 0 to 1 along the segment, and s is
a scaling value chosen from a normal distribution with
mean 0 and standard deviation of 0.025 × r, where r
is the length of the segment to modify. The trajectory
is re-sampled to give points spaced according to the
modified distances. This strategy is chosen with prob-
ability 0.3, and its effects are like those of a bump
addition: it is good for resolving local problems and
mutating plausible solutions.

3.4.2. Evaluating Animations

The evaluation function takes the product over all
timesteps in the constrained regions. Each timestep
has terms for the plausibility of the wander impulses
used, gw, terms for any COM, gc, or shape constraints,
gs, that may be active at that time, and a term that

biases toward a single flock, gf . Overall,

g(A) =
∏

t∈[0,T]

gw(A, t) · gc(A, t) · gs(A, t) · gf (A, t)

where the various component functions are defined in
the following sections. Note that terms for the point
constraints are not required because they are enforced
in the initial trajectory generation step and the pro-
posal mechanism maintains them.

The plausibility of a step in the flocking model is
evaluated based on the wander contribution implied
by the trajectories on that step. In a regular forward
simulation, the wander contribution for step i, wci is
computed based on the previous wander vector and
a randomly sampled wander impulse, wii (Figure 2).
This contribution is included in a weighted sum of all
the behavior contributions to compute the instanta-
neous change in velocity of the agent at that timestep.
The other behaviors depend only on all the agents’ po-
sitions and velocities at the timestep in question.

The sampling of wander impulses in a forward sim-
ulation produces plausible results. If the wander im-
pulses implied by a set of constrained trajectories look
like they were sampled from the same distribution
as those sampled in the forward case, we can say
that the trajectories represent a plausible animation.
When given a set of trajectories and timestep to evalu-
ate, the system computes the total impulse applied at
the timestep (the difference in velocities from before
and after the step). Treating the trajectories as the
outcome of a forward simulation, this impulse is the
weighted average of the wander contribution and the
other behaviors. From the agents’ positions we com-
pute the contribution due to the other behaviors. The
discrepancy between that and the total observed im-
pulse is the wander contribution that would be used
by a forward simulation to generate the trajectories.
If these wanders look like they were sampled correctly,
the animation is plausible.

To evaluate the function gw, we compute the wan-
der contribution from both the current and previous
step, and hence the wander impulse for the current
step wii (see Figure 2). We define gw to be the prob-
ability of seeing the complete set of wiis for an entire
simulation. In the flocking model we use, the wander
impulses are vectors in a uniformly random direction
with a normally distributed length with mean 0 and
standard deviation set by the user, typically to a value
of σw = 0.125. Hence,

gw(A, t) =
∏

i

1

σw

√
2π

e
−‖wii(A,t)‖/2σ2

w

where i ranges over the agents in the system.

The COM constraints are enforced with the follow-

c© The Eurographics Association 2003.

Anderson et al / Constrained Animation of Flocks

Figure 5: Three frames from an example in which an agent (larger and brighter) is constrained to come from
behind to win a race. Constraints are placed at the start and end time of the race. At the start time, the winning
agent is point constrained to be behind the rest of the flock, which is COM constrained. At the end time, the agent
is point constrained in front of the other COM constrained agents.

ing term:

gc(A, t) =
∏

C∈COM(t)

1

σcom

√
2π

e
−‖COM(A,t)−Cx‖/2σ2

com

where C is a constraint requiring the COM to be at
Cx, COM(t) is the set of COM constraints active at
the timestep, COM(A, t) is the COM of the group at
time t, and σcom is a user defined parameter (set to
0.1 for all our examples).

Shape constraints contribute a term that depends
on the sum of squared distances of each agent from its
nearest point in the shape.

gs(A, t) =
∏

S∈SHAPES(t)

e
−cSd(S,A,t)

where S is a shape, SHAPES(t) is the set of shape
constraints active at the timestep, and cS is a user
defined constant, set to 10 in all our examples. Our
implementation currently only supports 2D shapes de-
fined as a set of triangles. This makes it simple to find
distances to the shape. For 3D we could constrain the
agents to fill a volume (with no change to our algo-
rithm) or to form a shape when projected onto the
image plane.

Under our plausibility model, a group of completely
isolated agents are every bit as valid as a single flock,
provided their wander impulses are reasonable. To
keep the flock together, we employ a term that fa-
vors a particular number of flocks, where a flock is a
set of agents with the property that every agent can
see some other agent in the same flock, but all of the
agents in one flock are unable to see any agent in an-
other flock. The term is:

gf (A, t) = e
−cF |F−Fc|

where F is the number of flocks at time t, Fc is the
preferred number as defined by a user, and cF is a con-

stant, set to 1000 for our examples. In all our examples
we requested a single flock.

The system is relatively insensitive to the values of
the constants cS , cF and σcom. Values that range over
an order of magnitude appear to perform equally well.

4. Examples

The simplest example for our system is a single con-
strained agent (Figure 1). The process for proposing
initial samples does well in this case, and the sampling
produces a range of variations. It is difficult to deter-
mine which agent is constrained unless the constraint
is explicitly visualized. Figure 5 is an example of mix-
ing position and COM constraints, in which an agent
is constrained to be behind the flock at the begin-
ning and in front by the end. This example highlights
some of the problems with using rules to achieve con-
straints. The “winning” agent could be started at the
back and given a higher target speed, but the parame-
ters of the speed rule need to be balanced against the
other flocking rules (particularly the alignment rule
that attempts to match velocities within the flock).
The rule balancing process is typically very time con-
suming and would need to be repeated if the con-
straint was changed, whereas our method meets the
goals without any modification to the behaviors. Most
of our examples are in 2D for easier visualization, but
the system works equally well in 3D (Figure 6).

Constraints in the presence of static obstacles pro-
pose particular challenges for our system, because we
completely ignore them in the initial trajectory gen-
eration procedure and correct them in the sampling
phase. Experiments indicated that, when used to gen-
erate initial trajectories, obstacles introduced devia-
tions that were inappropriately shifted to new loca-
tions by the path translation operation. If obstacles
are ignored, the initial trajectories frequently contain

c© The Eurographics Association 2003.

Anderson et al / Constrained Animation of Flocks

Figure 6: Our system also operates in 3D, as illus-
trated by this frame from an animation in which the
flock follows a looping path.

Figure 7: An example in which the flock is forced, via
center of mass constraints, to fly very close to a static
obstacle. The left frame shows the initial paths gener-
ated by the system. The obstacles are ignored because
we found they introduced artifacts in the motion. The
subsequent sampling process removes the penetrations
resulting in a plausible animation (right).

agents that pass through obstacles, and the sampling
process must make more iterations to correct the prob-
lems. The example in Figure 7 demonstrates static
obstacles combined with COM constraints. This se-
quence is 5 seconds long and required 200 sampling
iterations to generate the solution shown. This took
about 10 seconds on a current generation PC.

The examples in Figure 8 demonstrate the effect of
using our system with different flocking parameters,
and hence different measures of plausibility. The flock
on the left uses our standard parameters. The one on
the right places a heavier weight on the cohesion be-
havior, causing the agents to flock much more tightly
and circulate within the flock more rapidly. Results
from identical constraint sets, with two constrained
agents, are also shown. Note the constrained results
resembles the unconstrained flocks. Each constrained

example from Figure 8 took a few minutes to compute,
and the sampling process stabilized around a plausible
animation after about 800 iterations.

Cases containing multiple agents with point con-
straints are more difficult than single constrained cases
because our initial trajectory generation process trans-
lates unconstrained agents according to only one of
the constrained agents. This produces motion that ini-
tially is not very plausible. The sampling process gen-
erally manages to find solutions despite the limitations
of the initial step, as Figure 8 illustrates.

The greatest limitation of our system is the process
for generating initial trajectories. It could be improved
by including more behavioral information into the pro-
cess. The current system only reflects behavioral ef-
fects if they survive the path translation and blending
operations, which they frequently do not. One promis-
ing approach is to set the trajectories of agents one at
a time, using information obtained from the behav-
ior rules to place each agent relative to those already
positioned. Alternatively, additional behavioral rules
could be used in the initial constraint generation pro-
cess and then removed for the sampling phase. This
would also remove the requirement for backward sim-
ulation and path blending.

It is possible for a user to specify constraints that a
flock cannot reasonably meet. Our system will still en-
force them, but the motion may not appear plausible.
The spacing of constraints causes the most difficul-
ties, either because agents may be forced to move too
fast or slow, or because the flock may have insufficient
time to re-arrange itself between constraints. Our in-
terface for setting constraints provides hints for the
spacing of constraints based on speed requirements.
Otherwise we have found the cause of problematic mo-
tion to be visually obvious, and a user could adjust the
constraints if that were a concern.

Our system produces solutions in seconds for small
examples, up to hours for long samples that need to
run for many sampling iterations. The running time of
any one iteration is dominated by the time to simulate
and evaluate the flock, which in turn is dominated by
nearest neighbors computations. In our current imple-
mentation this scales quadratically, and we found that
for the flock sizes we used (up to 100 agents) the use of
spatial data structures did not improve the situation
because most agents can see each other. Otherwise, the
running time scales roughly linearly with the length of
the constrained sequence, but it is hard to estimate up
front the run time required for a particular constraint
set. Our experience indicates that scenarios with mul-
tiple constrained agents and static obstacles are the
most difficult to solve. Multiple instances of our sys-
tem will produce different results, making it a good

c© The Eurographics Association 2003.

Anderson et al / Constrained Animation of Flocks

Figure 8: Our approach retains the overall properties of the original behavior model. The two left images are
of our standard flock, with the leftmost unconstrained and the center-left one required to satisfy simultaneous
point constraints on two agents. On the right are corresponding snapshots of an insect-like flock, in which agents
circulate more rapidly and fly closer together. The far-right flock was required to satisfy the same constraints as
the center-left flock, but notice that it retains the insect-like properties.

Figure 9: An example of shape constraints solved with our system, in which 50 agents in a flock form each arrow
in turn. The initial trajectory generation procedure is very effective for shape constraints. This example was run
for only 1000 sampling iterations (taking two hours).

candidate for cluster computing. Several jobs can be
sent out and the results perused for the best solutions.

5. Conclusion

Our system succeeds at producing constrained flocking
motion for a wide variety of examples. Unlike previ-
ous systems, we enforce hard position constraints, we
specify the times at which constraints must be met,
and we generate solutions that respect the underlying
behavioral model. While it sometimes produces poor
results, one or two additional constraints were suffi-
cient to improve the performance of our system when
needed, and it was always clear how to place them.
Furthermore, the system can produce many candidate
solutions, from which a user can select the most ap-
propriate. Overall we explored a problem of significant
practical importance not comprehensively addressed
previously in the literature.

We would like to make stronger claims that the an-
imations produced by our system are representative
of the underlying model. We could do this if we guar-
anteed that our sampling phase produced animations
distributed identically to those of the unconstrained
case. Markov chain Monte Carlo sampling would en-
able us to make such claims, but our current proposal
strategies preclude this. In particular, the addition of

multi-resolution bumps is not an easy operation to
invert, and hence it is hard to compute the reverse
transition probabilities required for MCMC13. Alter-
nate proposal schemes could be designed, but those
that we considered (adding bumps in world coordi-
nates, for instance) would not produce proposals as
good as our current choices.

While we have demonstrated our system for a flock-
ing model, we are interested in testing its performance
on other behavioral models. In principle, we require a
simulator that implements only a few functions (Sec-
tion 3.1), of which the ability to simulate backward
is probably the most limiting. Of particular interest
are the dynamically accurate models of Brogan and
Hodgins5 or Tu and Terzopoulos25, or behavioral mod-
els based on particle system, such as those used for
Star Wars: Episode 1 24.

Acknowledgments

This work was funded in part by NSF grant CCR-
0204372. We appreciated the comments and sugges-
tions of those who reviewed this paper.

References

1. AI.implant, 2003. http://www.ai-implant.com.

c© The Eurographics Association 2003.

Anderson et al / Constrained Animation of Flocks

2. Ronan Barzel and Alan H. Barr. A Modeling
System Based on Dynamic Constraints. In Com-
puter Graphics (SIGGRAPH 88 Conf. Proc.), vol-
ume 22, pages 179–188, August 1988.

3. Ronan Barzel, John F. Hughes, and Daniel N.
Wood. Plausible motion simulation for computer
graphics animation. In Computer Animation and
Simulation ’96, pages 184–197, 1996. Proceedings
of the Eurographics Workshop in Poitiers, France,
August 31-September 1, 1996.

4. O. Burchan Bayazit, Jyh-Ming Lien, and
Nancy M. Amato. Better flocking behaviors
in complex environments using global roadmaps.
In Proceedings of the Workshop on Algorithmic
Foundations of Robotics (WAFR’02), 2002.

5. David Brogan and Jessica Hodgins. Group be-
haviors for systems with significant dynamics. In
Proceedings of the 1995 IEEE/RSJ International
Conference on Intelligent Robots and Systems,
volume 3, pages 528–534, 1995.

6. Lynne Shapiro Brotman and Arun N. Netravali.
Motion interpolation by optimal control. Com-
puter Graphics (SIGGRAPH 88 Conference Pro-
ceedings), 22(4):309–315, August 1988.

7. Stephen Chenney and D.A. Forsyth. Sampling
plausible solutions to multi-body constraint prob-
lems. In SIGGRAPH 2000 Conference Proceed-
ings, pages 219–228. ACM SIGGRAPH, July
2000.

8. Michael F. Cohen. Interactive spacetime control
for animation. In Computer Graphics: Proceed-
ings of SIGGRAPH 92, volume 26(2), pages 293–
302, 1992.

9. Doug Cooper. Challenges of the homeland pan
in “Spirit”, 2002. SIGGRAPH 2002 Conference
Abstracts and Applications, page 156.

10. Frank Dellaert. Monte Carol EM for Data-
Association and its Applications in Computer Vi-
sion. PhD thesis, Carnegie Mellon University,
2001.

11. Jody Duncan. Ring masters. Cinefex, (89):64–
131, April 2002.

12. Adam Finkelstein and David H. Salesin. Multires-
olution curves. In Computer Graphics: Proceed-
ings of SIGGRAPH 94, pages 261–268, 1994.

13. Walter R Gilks, Sylvia Richardson, and David J
Spiegelhalter. Markov chain Monte Carlo in
Practice. Chapman & Hall, 1996.

14. Michael Gleicher. Motion editing with space-
time constraints. In Proceedings 1997 Symposium

on Interactive 3D Graphics, pages 139–148, April
1997. Providence, RI, April 27-30.

15. Radek Grzeszczuk, Demetri Terzopoulos, and Ge-
offrey Hinton. Neuroanimator: Fast neural net-
work emulation and control of physics-based mod-
els. In Computer Graphics, Proceedings of SIG-
GRAPH 98, pages 9–20. ACM SIGGRAPH, 1998.

16. Igor Guskov, Kiril Vidimče, Wim Sweldens, and
Peter Schrder. Normal meshes. In SIGGRAPH
2000 Conference Proceedings, pages 95–102, 2000.

17. Lucas Kovar, Michael Gleicher, and Frédéric
Pighin. Motion graphs. In Proceedings of the 29th
annual conference on Computer graphics and in-
teractive techniques, pages 473–482, 2002.

18. Zicheng Liu, Steven J. Gortler, and Michael F.
Cohen. Hierarchical spacetime control. In Com-
puter Graphics: Proceedings of SIGGRAPH 94,
pages 35–42, 1994.

19. J. Thomas Ngo and Joe Marks. Spacetime con-
straints revisited. In Computer Graphics: Pro-
ceedings of SIGGRAPH 93, pages 343–350, 1993.

20. Jovan Popović, Steven Seitz, Michael Erdmann,
Zoran Popović, and Andrew Witkin. Interactive
Manipulation of Rigid Body Simulations. In SIG-
GRAPH 2000 Conference Proceedings. ACM SIG-
GRAPH, July 2000. 209–218.

21. Craig W. Reynolds. Flocks, herds, and schools: A
distributed behavior model. In Computer Graph-
ics: SIGGRAPH ’87 Conference Proceedings, vol-
ume 21(4), pages 25–34. ACM SIGGRAPH, 1987.

22. Craig W. Reynolds. Steering behaviors for au-
tonomous characters. In 1999 Game Developers
Conference, pages 763–782, 1999.

23. Diane Tang, J. Thomas Ngo, and Joe Marks. N-
body spacetime constraints. The Journal of Vi-
sualization and Computer Animation, 6:143–154,
1995.

24. Marjolaine Tremblay and Hiromi Ono. Multiple
creatures choreograhy on Star Wars: Episode I
“The Phantom Menace”. SIGGRAPH 99 Ani-
mation Sketch. In Conference Abstracts and Ap-
plications, page 205, August 1999.

25. Xiaoyuan Tu and Demetri Terzopoulos. Artifi-
cial fishes: Physics, locomotion, perception, be-
havior. In Computer Graphics: Proceedings of
SIGGRAPH 94, pages 43–50. ACM SIGGRAPH,
1994.

26. Andrew Witkin and Michael Kass. Spacetime
constraints. In Computer Graphics: Proceedings
of SIGGRAPH 88, pages 159–168, 1988. Atlanta,
Georgia, August 1-5.

c© The Eurographics Association 2003.

