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Abstract
Traditional collision intensive multi-body simulations are difficult
to control due to extreme sensitivity to initial conditions or model
parameters. Furthermore, there may be multiple ways to achieve
any one goal, and it may be difficult to codify a user’s preferences
before they have seen the available solutions. In this paper we ex-
tend simulation models to include plausible sources of uncertainty,
and then use a Markov chain Monte Carlo algorithm to sample mul-
tiple animations that satisfy constraints. A user can choose the an-
imation they prefer, or applications can take direct advantage of
the multiple solutions. Our technique is applicable when a proba-
bility can be attached to each animation, with “good” animations
having high probability, and for such cases we provide a defini-
tion of physical plausibility for animations. We demonstrate our
approach with examples of multi-body rigid-body simulations that
satisfy constraints of various kinds, for each case presenting ani-
mations that are true to a physical model, are significantly different
from each other, and yet still satisfy the constraints.

CR Descriptors: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - Animation; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling - Physically based
modeling; I.6.5 [Simulation and Modeling]: Model Development
- Modeling methodologies G.3 [Probability and Statistics]: Prob-
abilistic algorithms;
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1 INTRODUCTION
Collision intensive multi-body simulations are difficult to constrain
becausethey exhibit extreme sensitivity to initial conditions or other
simulation parameters. Adding uncertainty to a model helps when
looking for animations that satisfy constraints [3], because it adds
physically motivated degrees of freedom in useful places. For ex-
ample, we can control tumbling dice by placing random bumps in
specific places on the table, rather than by adjusting the initial con-
ditions of the throw. The bumps are more effective because a small
change to a bump part-way through the animation has a limited ef-
fect on where the dice land, but a small change in the initial condi-
tions generally has an unpredictable effect. It is difficult to design
efficient control algorithms for the latter case.
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As discussed by Barzel, Hughes and Wood [3], adding random-
ness to a simulation gives additional benefits:

� The real world contains fine scale variation that traditional
simulation models generally ignore. We can use randomness
to model this variation by, for instance, replacing a perfectly
flat surface with one speckled with random bumps (the same
random bumps used for control above). Animations generated
with the new model can more accurately reflect the behavior
of the world. In training environments, this results in the sub-
ject developing skills more compatible with the real world: a
driver trained on simulations of bumpy roads will be better
prepared for real world road surfaces.

� Visually, procedural animations can be more believable when
uncertainty is added. Without uncertainty, a perfectly round
ball dropped vertically onto a perfectly flat table moves
strangely, a situation that may be improved by slightly perturb-
ing the collisions to make the ball deviate from the vertical.

In a world with uncertainty, we generally expect a constrained
problem to have multiple solutions. It is difficult to know before-
hand what solutions are available, which compoundsany difficulties
a user may have in codifying their preferences. Hence, it is perverse
to use a solution strategy that seeks a single answer, rather, we pre-
fer a technique that produces many solutions that reflect the range of
possible outcomes. While for feature animation a user is expected
to choose the one animation they prefer, other applications benefit
directly from multiple solutions:

� Computer game designers can use different animations each
time a game is played, making it less predictable and poten-
tially more entertaining.

� Training environments can present trainees with multiple
physically consistent scenarios that reflect the physics and va-
riety of the real world.

We generate multiple animations that satisfy constraints by ap-
plying a Markov chain Monte Carlo (MCMC) algorithm to sam-
ple from a randomized model. A user supplies the model of the
world, including the sources of uncertainty and the simulator that
will generate an animation in the world. The user also supplies a
function that gives higher values for “good” animations — those
that are likely in the world and satisfy the constraints. Finally, a user
must provide a means of proposing a new animation given an exist-
ing one. The algorithm we describe in this paper generates an arbi-
trarily long sequence of animations in which “good” animations are
likely to appear.

In this paper, along with the algorithm, we describe the sorts of
models we use and how we sample from them, discussing examples
from the domain of collision intensive rigid-body simulation. No
previous algorithm has been shown for the range and complexity of
the multi-body simulations we present.

2 RELATED WORK
The idea of plausible motion simulation, including the exploita-
tion of randomness to satisfy constraints, was introduced by Barzel,
Hughes and Wood [3]. They show solutions to constrained prob-
lems where, for instance, a billiard ball is controlled by randomly
varying the collision normal each time it hits a rail. We extend



their work by introducing the idea of sampling (instead of search-
ing), giving a precise definition of plausibility, and by demonstrat-
ing MCMC’s effectiveness on a wide range of difficult examples.

Motion synthesis algorithms aim to achieve a goal by finding an
optimal set of control parameters and (sometimes) initial conditions.
The goals described in the literature include finding good locomo-
tion parameters [1, 8, 14, 16, 23, 26] and finding trajectories that sat-
isfy constraints [2, 5, 9, 13, 15, 20, 32]. Some techniques [2, 5, 9,
13, 15, 20, 32] exploit explicit gradient information, but fail if the
problem is too large (Popović discusses ways to reduce the prob-
lem size [25]) or the constraints are highly sensitive to, or discon-
tinuous in, the control parameters. Randomized algorithms, such
as simulated annealing [14, 16] (not a panacea [10, 11]), stochas-
tic hill climbing [8], or evolutionary computing [1, 23, 26, 29], do
not require gradients and may be suitable for collision intensive sys-
tems — Tang, Ngo and Marks [29] describe an example. Most of
these methods return a single “best” animation, and hence may ig-
nore other equally good, or even preferable solutions. The evolu-
tionary computing solutions can exhibit variations within a popula-
tion, which Auslander et. al. [1] refer to as different styles, but the
number of examples is limited by the population size.

Multi-body constraint problems are good candidates for a De-
sign Galleries [21] interface, in which a user browses through sam-
ple solutions to locate the one they prefer. Our work addresses the
sampling aspect of a Design Galleries interface for multi-body con-
strained animations, but we do not consider other aspects of the in-
terface.

3 ANIMATION DISTRIBUTIONS
The MCMC algorithm distinguishes itself from motion synthesis
approaches by generating multiple, different, “good” animations
that satisfy a set of constraints, but no “best” animation. To gen-
erate multiple plausible constrained animations, we must provide a
model of the world defining:

� The objects in the world and their properties, including the
sources of uncertainty.

� The simulator for generating animations in the world.
� The constraints to be satisfied by the animations.

For example, in a 2D animation of a ball bouncing on the table, we
might have uncertainty in the normal vectors at the collision points,
a constraint on the resting place of the ball, and a simulator that de-
termines what happens when a 2D ball bounces on a table with arbi-
trary surface normals. We will use this example, from [3], through-
out the next two sections.

A simulator used with our approach need not be physically accu-
rate, or even physically based. Our 2D ball simulator is obviously
non-physical, and the simulator we use in other examples has some
problems with complex frictional behavior (section 5.2.3). In any
case, we assume that if the simulator is given a plausible world as
input it will produce a plausible animation, according to some defi-
nition of plausibility (see section 3.3).

3.1 Incorporating Uncertainty
We define a function, ��������� , representing the probability of any
possible animation � that might arise in the world model. Intu-
itively, �	�
����� should be large for animations that are likely in the
world, and low for unlikely animations. For the 2D ball example,� �
� ������� ����� should be high if all the normal vectors used to generate
the animation were close to vertical, and low if most of them were
far from vertical. Let us further insist that � � ����� be non-negative
and have finite integral over the domain implied by the random vari-
ables in the model, so that we can view ��������� as an unnormalized
probability density function defined on the space of animations.

Expanding on the 2D ball example, let us describe the direction
of the normal vector for each collision � as an independent random

variable, ��� , distributed according to the (bell-shaped) Gaussian dis-
tribution with standard deviation of, say, 10.0 degrees. In that case
we get:

� �
� ������� ��������� ���
�! "
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which is the product of density functions for each collision normal.
Note that we are ignoring normalization constants, an omission we
justify in section 4. Also, we could in principle measure a real table
to infer the true distribution of surface normals, and use that instead.

3.2 Constraints
If we restrict our attention to animations that satisfy constraints, we
are concerned with the distribution function �,�-���/. 0�� , which is the
conditional distribution of � given that it satisfies the constraints 0 .
For the 2D ball example, if we want the ball to land in a particular
place, we could generate samples from ���
� ���1���2���3. 0�� using an in-
verse approach: join the ball’s start point to its end point using a se-
quence of parabolic hops and then infer which normal vectors were
required to generate such a trajectory. However, using this approach
we cannot directly ensure that the animation we generate is likely in
the world, because it is difficult to know which hops to use to get a
set of likely normal vectors.

Unfortunately, it is frequently impractical to sample directly from� � ���/. 0�� , because there is no way to find, without considerable ef-
fort, any reasonable animation in which the constraints are satisfied.
For example, in multi-body simulations a forward simulation ap-
proach doesn’t work because no published algorithm can directly
specify a set of control parameters leading to satisfaction of multi-
body constraints, without doing some form of iterative, expensive
search. The inverse approach also looks intractable: it is not clear
how to set trajectories for all the participants such that, for instance,
objects do not pass through each other.

In such cases (like all the examples in this paper), we expand� � ����� to include a term for the constraints, resulting in a function�4����� . The new intuition is that �,����� will be large for animations
that are likely in the world and satisfy the constraints, and small for
animations that are either implausible in the world or don’t satisfy
the constraints. We will refer to �,����� as the probability of an ani-
mation. Note that now even animations that don’t satisfy the con-
straints have non-zero probability, so if we sample from �4����� we
may get an animation that doesn’t satisfy the constraints, which we
must discard.

For the examples in this paper, we define:

�,�������5�	�������6�879�����
where �	7������ depends only on how well the animation satisfies the
constraints. If we want our 2D ball to land at a point whose distance,:

, from the origin is small, we can define
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which is the Gaussian density function with standard deviation ?4@ ,
which we discuss in section 5.1. This function gives higher val-
ues for distances near zero, and lower values as distances increase.
Hence, for the 2D ball example:
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This paper describes a technique for generating animations such
that those with high probability will appear more frequently than
those with lower probability, but even some low probability events
will occur — as in the real world, unlikely things sometimes hap-
pen. In other words, we will sample according to the distribution
defined by �4����� .



3.3 What does “Plausible” mean?
The restrictions on �4����� are quite weak, so we can describe many
types of uncertainty and a wide variety of constraints. By phrasing
the problem as one involving probabilities, we can leverage a wide
range of mathematical tools for talking about plausible motion, and
make strong statements about the properties of the animations we
generate (see section 4). We can also outline what it means to be
physically plausible:

A model, including its simulator, is plausible if the im-
portant statistics gathered from samples distributed ac-
cording to �4����� are sufficiently close to the real world
statistics we care about.

This is a very general definition of plausibility, becausewe say noth-
ing about which statistics we might care about, or what it means to
be sufficiently close. For example, to validate a pool table model we
could run simulations of virtual balls on a table, and analyze video
of real balls on a real table, then compare statistics such as how long
a ball rolls before coming to rest. For entertainment applications, we
would care less about the quality of the match than if we were trying
to build a training simulator for budding young pool sharks.

Our measure extends the traditional graphics idea of plausibil-
ity — “if it looks right it is right” — by allowing for definitions
of statistical similarity other than a user’s ability to detect a fake.
However, for many applications, particularly involving motion, a
viewer’s ability to distinguish real from artificial remains the pri-
mary concern [17].

4 MCMC FOR ANIMATIONS
We use the Markov chain Monte Carlo (MCMC) method [12, 19] to
sample animations from the distribution defined by �4����� . MCMC
has several advantages for this task:

� MCMC generates a sequence, or chain, of samples,����� �����*�����
	�	
	 , that are distributed according to a given
distribution, in this case �4����� .

� Apart from the initial sample, each sample is derived from the
previous sample, which allows the algorithm to find and move
among animations that satisfy constraints.

� If available, domain specific information can be incorporated
into the algorithm, making it more efficient for special cases.
On the other hand, the algorithm does not rely on any specific
features of a model or simulator, allowing its application in a
variety of situations.

Our MCMC algorithm for generating animations begins with an ini-
tial animation then repeatedly proposes changes, which may be ac-
cepted or rejected. Explicitly:

1 initialize ��� � �
2 simulate ��� � �
3 ��
���
����
4 propose ��� 7 �*�����
5 simulate ����7*�
6 ��� random ������� �
7 �����! #"%$'& ( ����)+*-,/.�0�12*-, &�3 ,/.40)+*-, & 0�12*-, . 3 , & 0
5
8 � �'6 �7� ��7
9 
�8-9
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Line 1 gives initial values to all the random variables in the world
model. On line 4, a new animation, � 7 , is proposed by making a
random change to the previous animation, � � . The details of this
change are application specific. For example, in the 2D ball model
of section 3 it might involve, for each normal, choosing to change it
with probability one half and, if it is to be changed, adding a ran-
dom offset uniformly distributed on �;:�<���< � degrees (for reasons

discussed in section 5.1). The probability of making changes is de-
fined by the transition probability, =��-> . ? � , which is the probability
of proposing animation > if the current animation is ? . For the 2D
ball, the transition probability is:

=��������2�-> . ?��A� ( �@ 5�A7B�C �<�: �;:�<���DFE
where G is the total number of collisions (assumed fixed) and H is
the number of collisions that were changed. The first factor is the
probability of choosing the particular set of normals to change, and
the second factor codes the probability of choosing a particular off-
set for each normal that is changed.

The transition probabilities, along with the probabilities of the an-
imations, are used in computing the acceptance probability, which
is the probability of accepting the proposed candidate (line 7):I �17�72J )LK/M "N$'& C ��� �4��� 7 �;=������*. � 7 ��,�������;=���� 7 . ���6�OD
Often, as in the 2D ball example, the transition probabilities are
symmetric — =��-> . ?%� M = ��? . > � — and will cancel. Note also
that only the ratios of probabilities appear, so we can use functions
that are only proportional to true probability density functions (sec-
tion 3.1).

The proposal mechanism is one of the key factors in how well
the algorithm will perform in a particular application. In practice,
proposals are designed through intuitive reasoning and experimen-
tation, using past experience as a guide. In section 5 we describe the
motivation for our proposal mechanisms.

The MCMC algorithm guarantees that the samples in the chain
will be distributed according to �4����� , as the number of samples
approaches infinity and provided certain technical conditions are
met [12]. Hence we can be certain that the samples our algorithm
generates truly reflect the underlying model, and if this model is
plausible (section 3.3), the collection of samples will be plausible.
It is also the case that the samples in the chain will never satisfy
the constraints if the underlying model says they cannot be satis-
fied. For instance, if a bowling simulator cannot capture complex
frictional effects, animations that bowl the seven-ten split can never
be found (see section 5.2.3).

MCMC has been used in graphics to generate fractal terrain that
satisfies point constraints [28, 31]. The samples generated by an
MCMC algorithm may also be used to estimate expectations, as in
Veach’s Metropolis algorithm for computing global illumination so-
lutions [30]. In this paper we are not concerned with expectations,
so we can use short chains, just long enough to satisfy a user with
several different animations

5 EXAMPLES
We are interested in four things when designing an MCMC algo-
rithm for generating animations:

� Is the motion plausible? We assume that the simulator pro-
duces plausible motion, so we are left to ensure that the dis-
tributions we use for the model are reasonable.

� How long does it take to find a sample that satisfies the con-
straints?

� How rapidly does the chain move among significantly differ-
ent samples, or mix? Chains that mix faster are desirable be-
cause they produce many different animations quickly.

� How many of the samples satisfy the constraints well enough
to be useful?

The following examples discuss issues in building models, defining
constraints and selecting proposal strategies, all of which influence
the behavior of the algorithm.



5.1 A 2D Ball
In the 2D ball example of section 3 a ball bounceson a table, starting
in a fixed location and undergoing, for simplicity, a fixed number of
collisions. For each collision we specify a random normal vector.
The aim is to sample these normal vectors such that the ball comes
to rest close to a particular location. As a specific case, we will drop
the ball from above the origin at a height of �O	 <�� , where � is the
diameter of the ball, use five collisions, and specify that it come to
rest near � M � on the sixth collision.

The simulation model is: the ball moves ballistically between
each collision, when the velocity of the ball is reflected about the
corresponding normal vector and the normal component of velocity
is scaled by �� � . This model is not physically plausible (for instance,
we are ignoring rotation effects), but for this example we value sim-
plicity.

5.1.1 Uncertainty and Constraints
The probability of an animation is described in section 3.1, but prob-
abilities (the values of density functions) can be very large numbers,
so in practice we work with their logarithm. In this case, with � the
horizontal position of the sixth collision:

����� � �4�����*� M : �@ ( � :	�?	@ 5 � : �@ 
��� � ��
 ( � ��L��	 � 5 ��� 0

for some constant 0 , which will cancel out when computing the ac-
ceptance probability.

The value of the constraint standard deviation, ?,@ , has a major ef-
fect on the samples generated by the chain. Say we choose a small
value for ? @ , corresponding to a very tight constraint because only
values of � very close to � give high values for �4����� and all other
landing points have very low probability. From the initial anima-
tion, the chain will move to some high probability animation close
to the constraint. But, once there, almost no new proposals are ac-
cepted (most candidates will be far from the constraint and have
very low probability) and the user sees few different animations —
an undesirable situation.

Alternatively, say we choose a large value for the standard devi-
ation, corresponding to a weak constraint. Then �,����� is relatively
high for a wide range of landing positions. The result is undesirable:
the chain will contain many high probability animations that are far
from the constraints.

Hence we must choose a value for ? @ that is high enough to pro-
mote different samples but low enough to enforce the constraint. In
this example we use a value of ��	'��� , where � is the diameter of
the ball, which, as figure 2 shows, leads to the generation of very
different samples that generally are close to the constraint. In this
case, the algorithm is not very sensitive to the exact value for ? @
(anything within a factor of five works fine) and it is possible to ex-
perimentally evaluate a few values on short chains and choose the
best, which in this case took only a few minutes.

In other applications there is no guarantee that we can achieve
both good constraints and good mixing. In such cases the algorithm
must run for many iterations to generate different samples, which
may take prohibitively long. The tumbling dice example of sec-
tion 5.4 is a borderline example in which we can satisfy constraints
but mixing is poor. In such cases it is possible to run multiple chains
in parallel.

5.1.2 Proposals
The proposal mechanism, which specifies normal vectors for a can-
didate animation, ��7 , given those for the current animation, � � , pro-
vides a means of moving around the space of possible normal vec-
tors:��� ��� M �/����<

� 7 	 G����������� ��!%� ���2	 G������"���# ��!��� random �����4�9�  ��	 <��74	 G������"���# ��!N� ��7
	 G������"���# ��!
�

random �;:�<��;< �
This proposal changes some of the normals by an amount between
minus one half and half their standard deviation of ����	 � degrees.
For good mixing it is important to allow more than one normal to
be changed at once, because the effect of each change on the land-
ing position (and hence the constraint) can then cancel. The alter-
native, changing only one normal, makes it very difficult to change
the first collision normal, because any but the smallest change will
move the ball far from the desired landing position, and hence be
rejected. The size of the offset we add is chosen to allow both small
changes and relatively large changes, but not so large as to shift the
normals too far from their mean in one step, which would reduce
their probabilities and result in rejection of the candidate animation.

5.1.3 An Example Chain

Figure 1: Three sample paths from the 2D ball example, plotting
the trajectory of the center of the ball (although the plot is 3D, the
ball moves only in 2D). The green target is centered on the con-
straint. Each red arrow is located at a collision point and indi-
cates the direction of the normal vector used at that point. Note that
in each example one of the earlier normals pushes the ball toward
the constraint, and later normals refine the final position. One ball
bounces slightly away from the constraint before moving toward it,
which is not implausible.

We ran the MCMC algorithm and generated a chain containing
one thousand samples (many of these are repeats, arising when a
candidate is rejected). Figure 2 plots the horizontal resting posi-
tion of each sample. The first sample was initialized with randomly
chosen normals, and came to rest a long way from the constraint.
But within twenty iterations the chain moved toward a good loca-
tion. The bumpiness of the graph indicates good mixing, because
flat spots would indicate many repetitions of one sample as candi-
dates were rejected. The majority of animations have the ball com-
ing to rest within ��	 �$� of the desired position, indicating that ?4@ is
sufficiently small to enforce the constraint.

Three (randomly chosen) samples from the chain are shown in
figure 1. They do not differ greatly from what one would expect:
the ball tends to take an early bounce toward the constraint and keep
moving in that direction, with later collisions adjusting it’s final po-
sition.

5.2 Bowling
In this scenario the aim is to animate any particular ten-pin bowling
shot (a goal suggested by Tang, Ngo and Marks [29]). The physi-
cal model is implemented by an impulse-based rigid-body simula-
tor [6]. We model the bowling ball, the lane with simplified gutters
and side walls, and the pins. All the models are roughly based on the
rules of bowling, including variations allowed by those rules (see
appendix A.1 for details):

� The ball is simulated as a sphere, with variable radius, density,
initial position, initial velocity and initial angular velocity.



Strike :��

Six-seven Split :��

Spare :��

Figure 3: Frames from three bowling examples. The initial conditions for the ball and the pin locations are random variables. Given an
initial and final pin configuration, the MCMC algorithm samples particular values for the random variables that lead to the desired shot. In
this case, we demanded a strike, a six-seven split and the corresponding spare.

� The lane is fixed with regulation length and width, and in-
cludes rectangular gutters and side walls starting in line with
the front pin.

� Each pin, of fixed shape and mass, has its initial position on
the lane perturbed by a small random amount.

The coefficients of friction and restitution between all the compo-
nents are fixed. The probability ���
����� is proportional to the prod-
uct of the distribution functions for each of the random variables in
the model.

5.2.1 Constraints
The simulation begins with a subset of pins specified by the user,
so we can specify the initial conditions for bowling spares. The
user also sets the constraint by stating which pins should be knocked
down and which should remain standing. We are unable to propose
candidates for the MCMC algorithm that are certain to satisfy the
constraints (section 3.2), so we assign non-zero probability to every
possible outcome, but assign higher probability to those outcomes
that are closer to the target, and the highest probability to outcomes
matching the target. This is achieved with the Gibbs distribution
function: �879�����A� � E 6��for some constant

��� � with H the number of pins that end up
correctly standing or knocked down, and � the number of standing
pins that have not moved far beyond their initial position. Anima-
tions that do not meet the goals will sometimes appear in the chain

(they have non-zero probability), but these would not be shown to
a user. The samples that remain are correctly distributed according
to the conditional probability �4���/. 0�� , the distribution of animations
in which the constraints are fully satisfied. The constraint involves a
term derived from the pins’ final position because some simulations
result in the pins being pushed but not knocked down — behavior
we wish to discourage.

The value of
�

affects the proportion of animations in the chain
that must be discarded for not satisfying the constraints. High values
for

�
give animations satisfying the constraints much higher proba-

bility, making them more likely to appear in the chain. But the chain
mixes better if some “bad” animations appear. Say only perfect an-
imations appear, then getting to a significantly different animation
requires making a big change that also happens to get all the pins
correct, which is unlikely. If some pins are not correct, a big change
only has to get the same number of pins correct, and they can be dif-
ferent pins. A low value for

�
makes it easier to accept an animation

with some incorrect pins, make big changes, and then move toward
a different, fully correct state.

For this example, we used
� M �

�	� 
 , which gives a wide variety
of animations that satisfy the constraints. Animations that improve
the constraints are favored enough to ensure that good animations
come up often, but not so much as to inhibit mixing.

Our use of the Gibbs distribution was motivated by other applica-
tions of the MCMC algorithm, such as counting the number of per-
fect matchings in a graph. It is known [18] that there is an optimal�

that balances the concerns outlined above, but that the algorithm
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Figure 2: The resting position of the first one thousand samples
in a chain for the 2D ball example. The roughness of this graph
indicates good mixing, and most samples are close to the constraint
(the majority within ��	'��� ). The position of the first few samples
are far from the constraint (off the graph), but the chain moves to
samples within twenty iterations.

is relatively insensitive to its exact value. Experience suggests that
many applications may exhibit similar behavior [27]: there exists a
range of values for

�
that give the chain good properties, and one

such value may be found through experiment. Our results are con-
sistent with this (also see section 5.3).

5.2.2 Proposals
Our proposal mechanism for bowling randomly chooses to do one
of several things:

� Sample new values for all the random variables.
� Change the radius, density or initial conditions of the ball.
� Change the initial position of some pins.

The details are given in appendix A.2.
The first proposal strategy, which changes every random variable

in the simulation, serves to make very large changes in the simu-
lation. These are desirable as a means of escaping low probability
regions, which we discuss in more detail in the next example (sec-
tion 5.3). The other transitions are based on ideas similar to those
in section 5.1: we must move around among possible values for the
random variables, and we wish to do so with both large and small
steps, but not so large as to make the new value highly unlikely un-
der the model.

5.2.3 Sample Animations
We tested this model with three sets of constraints:

� Bowl a strike.
� Bowl a ball that leaves a six-seven split.
� Bowl the spare that knocks down the six-seven split.

Frames from example animations appear in figure 3. The strike ex-
ample is the easiest, because strikes are quite likely given our sim-
ulator. Bowling the six-seven spare is not difficult either, because
the various solutions probably form a connected set in state space,
so once a single solution is found, the others can be explored effi-
ciently. Bowling the ball that leaves a six-seven split is the hardest
example, intuitively because it is hard to knock down the pins be-
hind the six pin while leaving it in place.

We also attempted to bowl the seven-ten split (figure 4). This shot
depends on the precise frictional properties of the ball and lane. Our
simulator’s friction model could not capture the required effect (we

Pin 10Ball sliding Friction grips

Pin 7

Figure 4: The seven-ten split, in which the aim is to knock down
both the seven and ten pins in one shot. The technique used by
bowlers relies on the fact that a bowling ball will slide while spin-
ning about an inclined axis, then, at some point, friction will cause
the ball to grip, converting the angular momentum of the spin into
linear momentum across the lane (dashed line). The seven pin must
be struck behind its center of mass, so that it initially moves away
from the ten pin (dotted line), bounces off the wall and moves back
across the lane to hit the ten pin. Our simulator cannot model fric-
tion well enough to simulate this shot (we are not aware of any that
can).

are not aware of any that can), so we could not make the shot. This
demonstrates that the MCMC algorithm will only generate samples
that are plausible accordingto our model (section 4). Our simulation
model says that balls never take really big hooks, so we never see
animations involving big hooks, regardless of the constraints.

5.3 Balls that Spell
In these experiments we drop a stream of balls into a box partitioned
into bins so that, when everything has come to rest, the balls form
letters or symbols (figure 5). Details of the model appear in ap-
pendix B.1. We don’t care which ball ends up in which designated
bin. We use an impulse-based rigid-body simulator, as in the bowl-
ing example.

The uncertainty in this world arises from the shape of the parti-
tions and the location from which each ball is dropped. The top sur-
face of the partitions depends on a set of partition vertices, each of
which is randomly perturbed about a default position. Each ball is
dropped from a random location.

The constraint we impose is that, when all the balls have come to
rest, each ball is in a designated bin. We fix the maximum number
of balls, so if each ball falls into a designated bin there can be no
ball in an undesignated bin. We face a situation in which we cannot
propose animations that are certain to completely satisfy the con-
straints, so, as for the bowling example, we use the Gibbs distribu-
tion for the constraint probability �,7 �����A� � E , where H is the num-
ber of balls in designated bins at the end of the animation.

To facilitate mixing we allow the number of balls in the simula-
tion to vary between zero and the minimum number required to form
the word, by flipping each ball between active and inactive states:
inactive balls do not take part in the simulation. If all the designated
bins are filled, removing a ball frees up a bin for another ball to move
into, making a significant change to the animation. Removing the
ball entirely, rather than just having it go into an undesignated bin,
reduces the amount of interaction between the balls, possibly mak-
ing it easier to make acceptableproposals. It also speeds the simula-
tion when balls that aren’t contributing anything are removed. Our
initial experiments used a fixed number of balls, and the chain failed
to mix well.

The probability of an animation depends on how many balls are
participating, the initial locations of the balls and the offsets of each
partition vertex (see appendix B.1).

5.3.1 Proposals

The proposal algorithm we use performs one of five actions:
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Figure 5: Two examples of the spelling balls model, in this case
spelling “HI” in a seven by five grid. The shape of the boxes is al-
lowed to vary slightly, as are the initial conditions of each ball. Our
algorithm chooses box shapes and ball initial conditions that lead
to the formation of a specific word.

� The change-all strategy: change all the partition vertices and
change all the balls.

� Change a subset of partition vertices.
� Change an active ball.
� Activate some balls (possibly none).
� Deactivate some balls (possibly none).

The change-all strategy appears as a means of escaping from low
probability regions (figure 7). When an animation is found that sat-
isfies the constraints, subsequent animations tend to also satisfy the
constraints, but their probabilities degrade. This occurs because the
reduction in probability for a partition vertex change may be quite
small, and such proposals are likely to be accepted. The downward
trend can continue, moving the chain into a region of low probabil-
ity. Then, a change-all proposal can reset all the partition vertices
to much higher probability values, and even though the constraints
are no longer satisfied, the net change in probability will be positive
and the proposal will be accepted. This change-all effect is good for
mixing, because the next fully correct sample will generally be very
different from the last.

The second and third proposals are designed to move around the
state space by modifying balls or partitions, similar to proposals in
previous examples. The proposals to activate or deactivate some
balls let us change the number of balls in the simulation. The pro-
posal strategy we use makes the probability of adding or deleting
any given ball independent of the maximum number of balls. We
first tried a proposal that chose a single ball and flipped its status, but
if the maximum number of balls in the scenario is large, the proba-
bility of removing a ball goes up as more balls are activated while
the probability of adding a ball goes down, making it difficult to get
all the balls into the simulation.

The considerations in choosing a value for
�

in this example are
identical to those in the bowling example (a balance between good
animations and good mixing), with an additional requirement due to
the change-all effect: the constraint probability should be balanced
against the model probability (in this case the probabilities of the
partition vertices). If the constraint probability is too high, almost no
change in partition vertices can overcome a well satisfied constraint.
Good balance is achieved when a much better set of model values
can overcome a constraint that is satisfied but uses poor model pa-
rameters.

As a specificexample, we chose a bin designation that spells “HI”
on a seven by five grid (figure 5). We used

� M �

 for this word.

A plot of H , the number of designated bins that are filled, for each
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Figure 6: The number of correctly positioned balls for each of
twenty thousand iterations of the “HI” model, with

� M �

 . The

maximum number of correct balls is ten. The chain finds its first
good animation after around six thousand iterations (we have seen
chains that find good animations within one thousand samples).
This graph indicates good mixing because the chain spends only a
short period of time near similar solutions, then makes significant
changes before rapidly moving to a new good solution.
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Figure 7: The value of
����� � �4�����*� at each iteration of the chain

in figure 6. The graph is quite bumpy, indicating good mixing.
The dashed vertical lines correspond to all the iterations where the
number of correct balls drops sharply (figure 6), yet all those it-
erations show a sharp rise in probability. This effect, due to the
change-all proposal strategy, is discussed in the text.

iteration of an example chain is shown in figure 6. The important
feature of this graph is that the chain tends to rapidly reach correct
spellings, stays there for a short period, then drops back to incom-
plete spellings. The twenty thousand iterations shown here took a
few hours to compute on a 200MHz Pentium Pro PC.

The change-all effect is evident in this chain. Figure 7 plots
the probability of the sample for each iteration. Places are marked
where there is a sharp reduction in the number of correct balls, and
these correspond to sharp increases in probability. At each of these
sharp changes, a change-all proposal has been acceptedthat replaces
a poor set of partition vertex offsets with a much more likely set,
even though this breaks the constraint.

We experimented with different values of
�

, both higher and
lower, but they lead to less satisfactory chains. Values of

�
that are



too low result in chains that have trouble finding correct animations,
because the chance of accepting a poor proposal (from the point of
view of the constraints) is too high. Values of

�
that are too high

make it less likely that a change-all proposal will be accepted, and
also make it hard for the chain to abandon poor near-solutions. It
takes only a few thousand iterations to see enough of the chain to
know how lambda should be changed, and the range of acceptable
values is reasonably large (our experiments show that chains with� M �


 � � are not much worse than those for
� M �


 ) so little time
must be spent in tuning parameters.

We also performed a larger experiment, with 30 of the 105 bins
on a fifteen by seven grid to be filled (figure 8). In this example we
used a value of

� M �
� � � 
 after experimenting with other values

of
�

between six and eight. The higher value for
�

is required be-
cause there are more partition vertices and more balls. The greater
number of partition vertices allow the change-all proposal to remain
effective at higher

�
values, so we still see adequate mixing. In fact,

higher
�

values are required to make it harder for a change-all pro-
posal to succeed, so that the chain has enough time between major
changes to converge to good animations.

5.4 Random Tables with Dice
This summarized example demonstrates objects bouncing on a ran-
dom table, coming to rest in constrained configurations. Dice are
used as random number generators in the real world because they
are exceptionally hard to control [3], yet our technique is capable of
finding animations in which dice come to rest near a particular place
with a particular face showing.

The 2D ball example (section 5.1) used a very simple table
model, with two main drawbacks due to the use of independent nor-
mals at each collision:

� An object bouncing in place will appear to have the table
change underneath it as a different normal vector is chosen for
each collision.

� Nearby points on the table are not correlated, as points on a
real, bumpy table would be, which reduces the plausibility of
the animations.

In this example we use a continuous, bumpy surface for the table.
Rather than describe random normals directly, we specify a random
b-spline surface via control points on a grid with fixed spacing but
random vertical offsets. We can also specify random restitution and
friction values at the control points, to be interpolated by the spline,
thus extending the model to include the concept of springy or sticky
regions on the table (such as spilt beer). The b-splines defining the
table shape and properties define random fields over the surface. In
principle, we could measure real tables, model their particular ran-
dom fields, and use those in our simulation.

The simulator used in this example simulates only one object at a
time bouncing on the random b-spline surface. It uses special tech-
niques to manage the large number of control points required for a
table with fine bumps.

In this example, constraints can be defined for any aspect of the
object’s 3D state at any point in time. Initial conditions for the ob-
ject are specified by constraining its state at the start of the simu-
lation ( � M � ). The probability of an animation in this world con-
tains components for the control vertices defining the table’s shape,
friction and restitution, and a component for each constraint on the
object.

An animation generated from this type of scenario is shown in
figure 9. Each of six dice is dropped and told to land in a specific
place showing a specific side up. The dice are treated individually
and do not interact — the table is not the same for each die. It took
an hour or so of processingtime to find a good animation for each die
(a few hours for the complete animation). However, the chain does
not mix well, so it takes many hours to find significantly different
animations.

Figure 9: A composite of six sample animations showing the con-
trol of a single bouncing die. Each die in the image was animated
separately. Each had a different target location and desired side-
up, but started with the same distribution on initial conditions.

Proposals were made by changing one control point at a time, or
one initial condition component at a time, or everything at once, the
choice being made according to user supplied relative probabilities.
Changes were made by adding a random offset to the current value,
resulting in symmetric transition probabilities.

The ability to make changes at any point in the simulation,
through the surface control points, makes it easier to find good ani-
mations in this world. Control points near the first few collisions get
the die somewhere close to the target, and later collisions refine the
location. This is not an explicitly coded strategy, rather it emerges
naturally from the chain. However, a better proposal strategy might
make explicit use of the behavior.

6 FUTURE WORK
The models we use arise naturally in the real world, and we provide
a means of verifying the plausibility of simulations. With further
work it should be possible to experimentally obtain more accurate
models, and test simulation algorithms on such models, to obtain re-
sults like those of Mirtich et. al. [22].

It is an open problem to determine the difficulty of a particular ex-
ample without experimentation. Computation time can be adversely
affected because the simulation itself is slower, or more iterations
are required to find good animations, or both. For example, our
bowling and spelling ball examples take comparable times to com-
pute, the former due to slow simulation and the latter due to diffi-
cult constraints. Simulation time dominates the cost of each itera-
tion, so it is reasonable to spend more time making better proposals
to improve mixing and hence reduce the total number of iterations.
For example, in the bowling simulation we might bias changes in
the ball’s initial conditions according to which pins were knocked
down.

Constraints in our approach are specified as probability density
functions, which allows almost any type of constraint. In particu-
lar, it might be possible to constrain collisions or other events to oc-
cur at specific times (or frames). This would allow physically-based
animations to be choreographed to music, or collisions to occur at
frame boundaries.

Popović et. al. [24] describe an interactive algorithm for manipu-
lating colliding bodies. As they suggest, a system might be designed
to take as input animations generated by our MCMC approach and
allow users to fine tune the outcome as desired using local, interac-
tive operations.
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Figure 8: Balls that spell ACM. The box contains 105 bins, of which 30 are designated to contain balls. We show two animations, one on
each row, generated from a single chain. Each has the bins being filled in a different order, evidence that the chain produces a good mix of
samples.

We have only touched on the possibilities of plausible motion
with constraints, focusing entirely on rigid body dynamics. Our
techniques may also work in other domains that are hard to con-
strain, including group behaviors [4] and deformable objects [8].
Another goal is to develop real time systems in which specific events
are forced to occur in a plausible manner. For example, in a com-
puter game we might like the monster to surprise the player in a
particular way, with a plausibility model that takes into account the
viewer’s knowledge of the monster’s state and how it moves [7].
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[24] Jovan Popović, Steven Seitz, Michael Erdmann, Zoran
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A Bowling Details
A.1 Uncertainty model
Our bowling model is derived from data found online
(http://www.brittanica.com). The sources of uncertainty in
the model are:

Ball radius Distributed uniformly on  � �
� A � � � ��� � , where � � ��� is
specified by the rules of the game (approximately 11cm) and� �
� A M ��	 � � � ��� .

Ball density Distributed uniformly on  � �
� A ��� � ��� � , with� � ��� M ��������� � " ��� and � �
� A M ��	 � � � ��� .

Ball initial position Fixed in line with the end of the lane, at some
point uniformly distributed across the width of the lane, and
at a height distributed according to 	B�;��	'��� � ��� ����	 �$� � ��� � , the
distribution defined by the Gaussian density function with
mean ��	'��� � ��� and standard deviation ��	 �$� � ��� .

Ball initial velocity The component down the lane (measured in"�
 � � ) is distributed according to 	B�
��	 ���
� 	 � � . The compo-
nent across the lane is distributed according to 	B����	 ��� ��	'� � .
The vertical component is set to zero.

Ball initial angular velocity About a vertical axis (measured in����� 
 � � ), distributed according to 	�����	 ���;��	 @ � .
Each pin Fixed shape and mass, offset from its proper location on

the lane in a random direction by a distance distributed accord-
ing to 	B����	 ���+��	 ��� (mm).

With these distributions:

� � ����� � �
�B "4#������  �)� 
����� �(;)� �� ��� � + "

�
�B " *�� � � � 0 " � �< " � �"!(;)� � "$#

�
�B " �&% �(*) " � " 
) � A ' �

�B "4# = &(;) (�(; �+ "

where �)( is the ball’s height above the lane, *�� and *�+ are the ve-
locity components down and across the lane, ,-( is the angular ve-
locity about the vertical axis, and

: � is the distance of pin � from its
center location. The above formula for �,������� is valid if all the uni-
formly distributed variables are within their range, and all the fixed
variables have their correct values, otherwise �,������� M � . We can
ignore the uniformly distributed variables in computing �4������� be-
cause their distribution function is proportional to one.

A.2 Proposals

Our proposal mechanism samples a value � , uniform on  ���
�9� , and
then:

� if �  ��	 ��< , we sample new values for all the random vari-
ables.

� if ��	 ��</. �  ��	'� @ < , we change the radius of the ball by
adding an offset distributed according to 	B����	 ������	 ����� � ��� � . If
the radius lies outside the allowable range, we wrap it back into
the range.

� if ��	'� @ <0. �  ��	 @ , we change the density of the ball by
adding an offset distributed according to 	B����	 ��� ��	 � �1� � ��� � ,
wrapping to keep � inside the allowable range.

� if ��	 @ .#�� ��	 � , we changethe initial position of the ball. We
add a horizontal offset distributed according to 	B����	 ��� ��	 @32 �
(
2

the width of the lane), wrapping if necessary, and add a ver-
tical offset distributed according to 	B����	 ������	 ��<�� � ��� � .

� if ��	 �4. �  ��	65 , we change the initial velocity of the ball.
To its component down the lane, we add an offset distributed
according to 	B����	 ������	 < � . To its component across the lane, we
add an offset distributed according to 	B����	 ���;��	 � <�� .

� if ��	657. �  ��	 � , we change the initial angular velocity by
adding an offset distributed according to 	B����	 ������	 �9� .

� otherwise, for each pin, with probability �� , change its location
by moving it in a random direction by a distance distributed
according to 	B����	 ������	 <�� (mm).

All of these proposals are symmetric, so there is no need to compute
the transition probabilities (they cancel when computing the accep-
tance probability).
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Figure 10: The dimensions and tesselation for the box in the
spelling ball example.

B Spelling Ball Details
B.1 Model details
Each bin has a side length of 20mm, and each partition is 2mm thick
and 12mm high (figure 10). The floor beneath each bin is domed
to help the balls come to rest, and the box in which the bins sit is
36mm deep. Each partition vertex is offset in a random direction by
a distance distributed according to ������� �������
	�� (mm). Each ball is
dropped from rest at a uniformly random location within a rectangle
72mm above the bottom of the box and centered above it. The size
and density of the balls is intended to resemble marbles.

The probability of an animation is:


 ����������������������! #"�$�%&"')( ��*+*
, � �&- 	.

where / is the number of designated bins that are filled, 0 is the set
of partition vertices, 1+2 is the offset distance of vertex 3 (in mm),. is the area of the rectangular region from which the balls may
be dropped and 4 is the set of active balls, which can vary in size
for different animations as balls are activated or deactivated. In this
case we must include a term for the uniformly distributed drop po-
sition of each ball because the number of balls can vary.

B.2 Proposals
Our proposal mechanism uniformly samples a random 5768���9�:	<; ,
and then applies one of four strategies:= if 5?>@��� �BA , we change all the partition vertices, giving them

new randomly chosen offsets, and change all the balls, giving
them a new active status and a new initial position.= if �9�C��AEDF5G>H��� I�J , for each partition vertex, we randomly
decide, with probability 0.02, to change its location by adding
an offset in a random direction with length distributed accord-
ing to ������� ������� ��K�� (mm).= if ��� I�J?DL57>M��� J�N we uniformly randomly select an active
ball to change, and offset its starting position in a random di-
rection for a distance distributed accordingto ������� ���PO�� , whereO is the bin size. We wrap the edges of the region from which
balls may be dropped.= if �9�CJQN#D�5R>S��� NBA , for each enabled ball we uniformly sam-
ple 3T6E���9�:	<; and disable the ball if 3U>S��� V�K .= otherwise, for each disabled ball we uniformly sample 3W6�����:	P; and enable the ball if 3U>X�9�CVQK .

All but the last two proposals are symmetric. If a ball is disabled,
the ratio Y[Z�\+]�^ \!_<`Y[Z�\ _ ^ \+]a`cb . (the area of the rectangle from which the

ball may be dropped). If a ball is enabled, Y[Z�\+]�^ \!_P`Y[Z�\ _ ^ \+]d`ebgfh .


