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Abstract

Controllable and Scalable Simulation for Animation

by

Stephen John Chenney

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor David A. Forsyth, Chair

Simulation is an important means of generating animations. For example, we might

use simulation to animate a virtual city in order to train emergency response personnel. Such an

application requires the responsiveness and realism that simulation offers, and it also requires

the ability to stage specific events in a very large animated environment. Traditional simulation

technology fails on the latter count: it is difficult to direct a given simulation toward a desired

outcome, and existing simulations rarely scale well to large virtual worlds.

This thesis addresses controllable and scalable simulation for the purposes of com-

puter animation. We describe a technique for directing the outcome of simulations by formu-

lating the problem as one of probabilistic sampling. A Markov chain Monte Carlo (MCMC)

algorithm is used to perform the sampling, which allows the generation of multiple animations

from a desired distribution. Furthermore, if the distribution assigns probabilities according to

the plausibility of an animation, then we can be certain that most of the sampled animations will

appear reasonable to a viewer. A range of examples are presented from the domain of collision

intensive rigid-body simulation, the majority of which could not be produced using previous

technology. We also describe a new rigid-body simulation algorithm that was developed for

this work.

Scalable simulation is achieved through simulation culling, a method for focusing

the computational effort on visible parts of a simulation. Aspects of the simulation that are not

in view are not explicitly computed, thus saving large amounts of work. Approximations and

random models are used to ensure that objects that leave the view re-enter when necessary in

a plausible state, even though their full motion was not computed while out of view. A virtual
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fairground and a large virtual city are presented as case studies. These examples raise a number

of open problems, which we discuss in some detail.

This thesis treats control and scale as largely independent problems, yet we show

that both may be viewed as sampling problems. We conclude with a look at how direction and

culling might be integrated to enable large-scale virtual environments for realistic training and

entertainment.

Professor David A. Forsyth
Dissertation Committee Chair
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Chapter 1

Introduction

Animation, the process of generating a sequence of moving images, is central to

many applications of computer graphics. Feature films and television use animation to tell a

story. Training environments, such as those used by pilots, require real-time, highly realistic

animation, intended to create a sense of presence in the virtual world. Entertainment applica-

tions, such as computer games, use animation for both storytelling and presence. Visualization

applications use animation to aid in the understanding of data, be it time varying or not.

As a specific scenario, imagine the task of creating a virtual city, and using it to train

ambulance drivers to perform their job safely and effectively. Such an environment must have

at least the following properties:

• A viewer should see the same quantity and quality of motion in the virtual world that

they would experience in a real city.

• The environment should respond to the user, just as the inhabitants of a real city respond.

• It should be possible to direct specific events, such as a car running a red light, repeatedly

across many training runs, each time consistent with the real behavior of motorists, yet

each time different in some way.

An environment with the above properties would be realistic enough to ensure that a user’s

experiences in the virtual world carry over to the real world, as is desired for a training envi-

ronment. Over multiple sessions, the viewer would also be trained to the general aspects of

their job, rather than any one specific instance (as would be the case if there was only ever one

“red light runner” animation for the environment). The requirements might be less stringent for
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an entertainment environment, because there is no need for the experience to match reality, yet

some realism is required to establish and maintain a viewer’s sense of presence in the virtual

world.

Simulation, the generation of animation from a procedural description, offers several

advantages for animating a virtual city. Simulation is realistic if based on suitable models,

responsive when the motion is generated in real-time, and space efficient because a relatively

compact description of the world can be used to generate animation of arbitrarily long duration.

The computer graphics literature contains techniques for dynamically simulating a

wide range of phenomena, including humans [14, 43], creatures [57, 59, 86], fluids [27, 28,

48, 70, 79, 92], rigid and deformable bodies [4, 62, 85, 97] and recently fractures [71] and

explosions [68]. In principle, anything that can be described by a solvable system of equations

or a set of rules can be simulated. In practice, however, two major technological problems

prevent us from building a virtual city: the inability to direct the outcome of many types of

simulation, and poor scaling properties as large numbers of moving objects are placed in one

environment. The body of this thesis addresses both concerns.

1.1 Simulation

Modeling may be viewed as the task of producing estimates for the properties of a

process. Some tasks, such as climate modeling, make predictions of future behavior, so the

aim is to produce estimates that match the correct, as yet unknown, outcome of the system. For

instance, global climate models attempt to predict the distribution of temperature over time, as

well as other measurements like sea level. For animation tasks, however, we can frequently

obtain the correct values for any quantities by measuring the real-world, and the modeling task

is to produce estimates that are close to the known, true values. in a city traffic model, for

example, we might seek to match the expected density of traffic over different times of the

day. It is not generally the case that such estimates can be computed directly from the model

in an analytic form, so we typically view a simulator as the generator of statistics from which

quantities will be estimated.

The statistical view of simulation admits a means of measuring the quality of a sim-

ulation model:

The quality of a simulation model can be judged by how well the estimates it
produces match important estimates in the real world.
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In this vein, climate models are validated by testing their performance on historic climates, for

which records exist. A city model for entertainment purposes may be of sufficient quality if it

produces something like peak hour behavior, or increasing density around major intersections.

Statistics also provide a means to compare two different simulation models intended

to capture the same behavior. For example, Hodgins et. al. [42] uses statistics gathered from

a user experiment to explore the effect of geometry on the perception of simulation quality,

as does Chenney [16] to validate a model for simulation culling (see chapter 4). Statistical

approaches are preferable for two reasons: they provide a level of abstraction away from indi-

vidual simulation runs toward the overall behavior of a simulator, and they avoid the potentially

impossible task of setting up identical initial conditions and parameters when comparing sim-

ulation to reality.

The following things determine the outcome of a simulation, and we are free to

manipulate both in order to improve the quality of a simulation:

• The model to be simulated. That is, the set of equations to be solved or rules to be

followed. For the city simulation, the model includes rules for how drivers react to

various events, and physically based equations of motion for how cars respond to the

current road conditions.

• The values of any variables in the model, including the initial conditions for any dynamic

variables and other parameters. In the city this includes the initial state of every car and

driver, and also the parameters to the model such as the properties of each road surface.

The designers of simulation models tend to adjust both the model and the parameters to it.

Much of the research on simulation for computer graphics has focussed on developing models

that are fast to compute and then setting parameters for the model to generate realistic results.

For example, in rigid body simulation (chapter 3) the models used for the interaction between

colliding bodies make gross simplifications to the physics of the situation, but provide param-

eters for things like friction and restitution to allow visually acceptable results.

Much of this thesis is concerned with statistical measures of simulator behavior.

Chapter 2 uses probabilistic techniques to generate multi-body constrained animations, while

ensuring that the animations produced are plausible according to the user specified model of

the world. The latter half of this thesis addresses scalable simulation, where the goal is to

generate simulation models that scale to very large environments while remaining statistically

indistinguishable from poorly scaling variants.
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1.2 Directing Simulations

It is frequently necessary to construct a simulation that generates a specific outcome.

For instance, we might like our city simulation to include a car running a red light in front of

the trainee ambulance driver. The red light runner must at all times respect the correct behavior

of the system. Failure to do so might tip off the trainee to the impending event, or even break

the sense of presence.

Generating a specific outcome while respecting the behavior of the system requires

choosing parameters to the model that, as the simulation evolves, lead to the desired outcome.

This may be difficult for several reasons:

• The outcome may be highly sensitive to changes in the parameter values, or chaotic. For

instance, slightly changing the speed of a car can cause it to be stopped by a red light,

which has a significant effect on its subsequent location. Many search or optimization

algorithms perform poorly under such circumstances.

• There may be many different ways to generate the desired outcome, but only one is

necessary. The problem is in sensibly deciding which path to take.

• Derivative information relating the outcome to the parameters may be difficult or impos-

sible to obtain. The outcome may also be discontinuous with respect to the parameters,

as is the case with the location of the car with respect to its speed, due to the effect of red

lights. This makes it difficult to employ any method the explicitly or implicitly depends

on derivative information.

Passive systems (those without explicit control parameters), present additional problems for a

director. The entire outcome of the simulation is fixed once the world model and its parameters

are chosen. Direction is difficult in these cases because there may be few parameters to adjust,

and each parameter potentially influences the entire animation.

Chapter 2 of this thesis is concerned with the direction of one particular class of sim-

ulation: multi-body rigid-body models in which many rigid objects interact through collisions.

These simulations exhibit most of the problematic features described above. They are often

chaotic, the outcome may be discontinuous with respect to the initial conditions, and there

may be few obvious parameters to adjust.

The solution presented here extends simulation models to include plausible sources

of uncertainty, and hence defines a probability density function over the space of possible
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animations. We then use a Markov chain Monte Carlo algorithm to sample multiple animations

that satisfy constraints. A user can choose the animation they prefer, or applications can take

direct advantage of the multiple solutions. The technique is applicable when a probability can

be attached to each animation, with “good” animations having high probability, and for such

cases a definition of physical plausibility is provided.

The approach is demonstrated with examples of multi-body rigid-body simulations

that satisfy constraints of various kinds. The results indicate that it is possible to generate

animations that are true to a physical model, significantly different from each other, and yet still

satisfy the constraints. It is hoped that the technique will provide insight into other problems

with similar characteristics, such as the city red light runner example.

1.3 Scalable Simulation

Simulation for virtual environments requires performing some amount of computa-

tion for every frame in order to update the state of the world. Frequently, the cost of compu-

tation is the limiting factor in deciding how many moving objects will populate the world, and

how realistic their motion will be.

One obvious way around this problem is to make the simulation faster. This benefits

not only interactive applications, but also off-line processes that perform iterative design of

some sort, such as the Markov chain Monte Carlo algorithm used for direction. Chapter 3 of

this thesis describes a new rigid-body simulation algorithm that is faster than most previous

algorithms by a factor up to linear in the number of moving objects. An implementation of this

algorithm was used for many of the examples in chapter 2.

However, regardless of how fast any one simulation is, it is expected that virtual

worlds will require vastly more simulated motion than can all be computed at a reasonable cost.

Scalability has long been a research topic for the rendering aspect of virtual worlds, and sys-

tems such as the Berkeley Soda Hall walkthrough project have been developed to demonstrate

geometric culling [30, 84] and level of detail [29]. Scalable simulation for highly dynamic en-

vironments will require corresponding technology, ideally so that the cost of simulation grows

with the complexity of the motion in view, regardless of the total size of the world. The latter

part of this thesis is devoted to technology for simulation culling, by which motion that is not

visible at any moment is not computed.

The basic premise behind culling is that most of an environment is not visible most
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of the time. In a typical city, for instance, at most a few blocks are visible at any moment,

leaving most of the environment hidden behind buildings or hills. The same is true for most

urban environments, and many natural ones. Given that the aim of a virtual environment is to

present a realistic view of the world to a user, there is no point in performing work for objects

that will never be seen. Geometric culling recognizes this by not attempting to render such

objects. Similarly, simulation culling attempts to avoid performing work for motion that will

never be seen.

Chapter 4 gives an overview of simulation culling. Two key problems must be ad-

dressed in order to cull systems efficiently and effectively: the completeness problem and the

consistency problem. Completeness is concerned with making sure that the viewer sees every-

thing they should, even when systems out of view are not fully computed. Consistency ensures

that when the viewer does see something, it is consistent with their previous experience and

current knowledge of the environment. At a high level, solutions to both problems take into

account what a viewer can and cannot know about the environment by building probabilistic

models of motion in the environment.

If the geometric extent of the objects in a simulation can be tightly bound for all

time, then the completeness problem does not arise, because it is possible to easily determine

which objects in the simulation the viewer should see. In such cases the consistency problem

remains, and chapter 5 describes several possible solutions, each targeting a specific type of

simulation that has been out of view for more than a certain time. With a range of standard

solutions available, and rules for which tool to apply in a given case, a model transformation

tool is described that automatically converts a basic model from a restricted class of systems

into one suitable for culling. Implemented in VRML [90] and Java [2], the tools enable the

rapid creation of cullable models for inclusion into any VRML environment.

Most interesting environments, however, contain objects that roam over relatively

large distances, and the completeness problem must be addressed when culling. Chapter 6

discusses completeness in detail. To explore various aspects of the problem, a city model was

designed and populated with cars that move around the streets. Through the use of probabilistic

models of each car’s motion while out of view, it is possible to concentrate most of the com-

putational effort on those cars that are visible, leading to a more scalable environment. The

work described only scratches the surface of modeling for scalable simulation, and a large set

of future research directions are proposed.

This thesis treats direction and scale as largely independent problems, yet we show
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that at an abstract level they are similar: both are manifestations of sampling problems. This

thesis concludes with a look at how the MCMC direction algorithm might be integrated with

a virtual world that does simulation culling, and the problems that must be addressed to make

such a world possible.
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Chapter 2

Directing Simulations

Collision intensive multi-body simulations are difficult to constrain because they ex-

hibit extreme sensitivity to initial conditions or other simulation parameters. Furthermore,

passive systems lack a large set of control variables, leaving only the model and the initial

conditions under the control of an author. Random parameters to the model are one natural

way of extending the range of animations that can be produced. Adding uncertainty to a model

also helps when looking for animations that satisfy constraints [7], because it adds physically

motivated degrees of freedom in useful places. For example, we can control tumbling dice by

placing random bumps in specific places on the table, rather than by adjusting the initial con-

ditions of the throw. The bumps are more effective because a small change to a bump part-way

through the animation has a limited effect on where the dice land, but a small change in the

initial conditions generally has an unpredictable effect. It is difficult to design efficient control

algorithms for the latter case.

As discussed by Barzel, Hughes and Wood [7], adding randomness to a simulation

gives additional benefits:

• The real world contains fine scale variation that traditional simulation models generally

ignore. We can use randomness to model this variation by, for instance, replacing a

perfectly flat surface with one speckled with random bumps (the same random bumps

used for control above). Animations generated with the new model can more accurately

reflect the behavior of the world. In training environments, this results in the subject

developing skills more compatible with the real world: a driver trained on simulations

of bumpy roads will be better prepared for real world road surfaces.



9

• Visually, procedural animations can be more believable when uncertainty is added. With-

out uncertainty, a perfectly round ball dropped vertically onto a perfectly flat table moves

strangely, a situation that may be improved by slightly perturbing the collisions to make

the ball deviate from the vertical.

In a world with uncertainty, we generally expect a constrained problem to have multi-

ple solutions. It is difficult to know beforehand what solutions are available, which compounds

any difficulties a user may have in codifying their preferences. Hence, it is perverse to use a

solution strategy that seeks a single answer, rather, we prefer a technique that produces many

solutions that reflect the range of possible outcomes. While for feature animation a user is

expected to choose the one animation they prefer, other applications benefit directly from mul-

tiple solutions:

• Computer game designers can use different animations each time a game is played, mak-

ing it less predictable and potentially more entertaining.

• Training environments can present trainees with multiple, physically consistent scenarios

that reflect the physics and variety of the real world.

We generate multiple animations that satisfy constraints by applying a Markov chain

Monte Carlo (MCMC) algorithm to sample from a randomized model. A user supplies the

model of the world, including the sources of uncertainty and the simulator that will generate an

animation in the world. The user also supplies a function that gives higher values for “good”

animations — those that are likely in the world and satisfy the constraints. Finally, a user

must provide a means of proposing a new animation given an existing one. The algorithm we

describe in this chapter generates an arbitrarily long sequence of animations in which “good”

animations are likely to appear.

In the following sections, along with the algorithm, we describe some of the models

we use and how we sample from them, discussing examples from the domain of collision

intensive rigid-body simulation. No previous algorithm has been shown for the range and

complexity of the multi-body simulations we present.

2.1 Related Work

The idea of plausible motion simulation, including the exploitation of randomness to

satisfy constraints, was introduced by Barzel, Hughes and Wood [7]. They show solutions to
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constrained problems where, for instance, a billiard ball is controlled by randomly varying the

collision normal each time it hits a rail. The solutions are found by constructing the set of paths

and then searching within the set using a path tracing approach. This method does not extend to

more complex systems, because the path spaces rapidly become extremely complex. Instead,

we extend their work by introducing the idea of sampling (instead of searching), giving a

precise definition of plausibility, and by demonstrating MCMC’s effectiveness on a wide range

of difficult examples.

Motion synthesis algorithms aim to achieve a goal by finding an optimal set of control

parameters and (sometimes) initial conditions. The goals described in the literature include

finding good locomotion parameters [3, 18, 36, 41, 69, 77] and finding trajectories that satisfy

constraints [6, 11, 20, 33, 37, 52, 94]. Some techniques [6, 11, 20, 33, 37, 52, 94] exploit

explicit gradient information in a constrained optimization framework, but fail if the problem

is too large (Popović discusses ways to reduce the problem size [74]) or the constraints are

highly sensitive to, or discontinuous in, the control parameters. Randomized algorithms, such

as simulated annealing [36, 41], stochastic hill climbing [18], or evolutionary computing [3,

69, 77, 83], do not require gradients and may be suitable for collision intensive systems —

Tang, Ngo and Marks [83] describe an example in which a set of frictionless billiard balls are

constrained to form a pattern at a particular time.

Most existing methods are designed to return a single “best” animation, and hence

may ignore other equally good, or even preferable solutions. The idea of an optimum is par-

ticularly ill suited to graphics because the optimality conditions may be derived from visual

appeal, which is extremely difficult to codify in an objective function. The evolutionary com-

puting solutions can exhibit variations within a population, which Auslander et. al. [3] refer to

as different styles, but the number of examples is limited by the population size.

Multi-body constraint problems are good candidates for a Design Galleries [55] in-

terface, in which a user browses through sample solutions to locate the one they prefer. Our

work addresses the sampling aspect of a Design Galleries interface for multi-body constrained

animations, but we consider other aspects of the interface only as future work.

2.2 Animation Distributions

The MCMC algorithm distinguishes itself from motion synthesis approaches by gen-

erating multiple, different, “good” animations that satisfy a set of constraints, but no “best”
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animation. To generate multiple plausible constrained animations, we must provide a model of

the world defining:

• The objects in the world and their properties, including the sources of uncertainty.

• The simulator for generating animations in the world.

• The constraints to be satisfied by the animations.

For example, in a 2D animation of a ball bouncing on the table, we might have uncertainty

in the normal vectors at the collision points, a constraint on the resting place of the ball, and

a simulator that determines what happens when a 2D ball bounces on a table with arbitrary

surface normals. We will use this example, from [7], throughout the next two sections.

A simulator used with our approach need not be physically accurate, or even phys-

ically based. Our 2D ball simulator is obviously non-physical, and the simulator described in

chapter 3, used in other examples, has some problems with complex frictional behavior (sec-

tion 2.4.2). In any case, we assume that if the simulator is given a plausible world as input it will

produce a plausible animation, according to some definition of plausibility (see section 2.2.3).

2.2.1 Incorporating Uncertainty

We define a function, pw(A), representing the probability of any possible animation

A that might arise in the world model. Intuitively, pw(A) should be large for animations that

are likely in the world, and low for unlikely animations. For the 2D ball example, pw,ball(A)

should be high if all the normal vectors used to generate the animation were close to vertical,

and low if most of them were far from vertical. Let us further insist that pw(A) be non-negative

and have finite integral over the domain implied by the random variables in the model, so that

we can view pw(A) as an unnormalized joint probability density function defined on the space

of animations.

Expanding on the 2D ball example, let us describe the direction of the normal vector

for each collision i as an independent random variable, θi, distributed according to the (bell-

shaped) Gaussian distribution with standard deviation of, say, 10.0 degrees. In that case we

get:

pw,ball(A) = pw,ball(θ1, θ2, . . .) ∝
∏

i

e
− 1

2

(

θi
10.0

)2
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Simulate

Figure 2.1: Sampling from animation distributions conditioned on constraints is likely to be
difficult, because a constraint may be simple in the output space while its image in the space of
random variables may be very complex. For example, in the figure the constraint requires the
output to fall within a circle, yet the random variables that lead to outcomes in that circle come
from disjoint regions with complex structure. This is because the inverse simulation mapping
may be neither smooth nor even continuous. Directly sampling animations that satisfy the
constraints requires sampling points within the complex regions of the random variable state
space, which is difficult to do efficiently.

which is the product of density functions for each collision normal. Note that we are ignoring

normalization constants, an omission we justify in section 2.3. Also, we could in principle

measure a real table to infer the true joint distribution on surface shape, and use that instead.

2.2.2 Constraints

If we restrict our attention to animations that satisfy constraints, we are concerned

with the distribution function pw(A|C), which is the conditional distribution of A given that it

satisfies the constraints C . For the 2D ball example, if we want the ball to land in a particular

place, we could generate samples from pw,ball(A|C) using an inverse approach: join the ball’s

start point to its end point using a sequence of parabolic hops and then infer which normal

vectors were required to generate such a trajectory. However, using this approach we cannot

directly ensure that the animation we generate is likely in the world, because it is difficult to

know which hops to use to get a set of likely normal vectors.

Unfortunately, it is frequently impractical to sample directly from pw(A|C), because

there is no way to find, without considerable effort, any reasonable animation in which the

constraints are satisfied. Doing so would require directly specifying values for all the random
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variables such that the animation using those variables satisfies the constraints. For collision

intensive examples in particular, animations in which the constraints are satisfied are likely to

be spread around the space of random variables in ways that are difficult to describe, and hence

sample from directly (figure 2.1). Sampling randomly in the hope of hitting a good animation is

likely to fail because the good animations may be very sparse in the space. Attempting to invert

the simulation to locate good samples also fails in general, because there may be constraints

at multiple points in the simulation and some models may not be invertible, such as those for

collisions with friction.

In such cases (like all the examples in this chapter), we expand pw(A) to include a

term for the constraints, resulting in a density function p(A). The new intuition is that p(A)

will be large for animations that are likely in the world and satisfy the constraints, and small for

animations that are either implausible in the world or don’t satisfy the constraints. We will refer

to p(A) as the probability of an animation. Note that now even animations that don’t satisfy

the constraints have non-zero probability, so if we sample from p(A) we may get animations

that don’t satisfy the constraints, which we must discard.

For the examples in this chapter, we define:

p(A) ∝ pw(A)pc(A) (2.1)

where pc(A) depends only on how well the animation satisfies the constraints. If we want our

2D ball to land at a point whose distance, d, from the origin is small, we can define

pc,ball(A) ∝ e
− 1

2

(

d
σd

)

2

which is the Gaussian density function with standard deviation σd, suitable values for which

we discuss in section 2.4.1. This function gives higher values for distances near zero, and lower

values as distances increase. Hence, for the 2D ball example:

pball(A) ∝ e
− 1

2

(

d
σd

)2

∏

i

e
− 1

2

(

θi
10.0

)2

The multiplicative form used on equation 2.1 can be viewed in the following way

(figure 2.2). We begin with a distribution on animations implied by pw(A), which gives a

density for every possible world according to how likely it is (higher density means more

likely). We then multiply the density for every animation A by an amount pc(A) according to

the desirability of A in terms of the constraints. This skews the density to favor those worlds
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that generate the desired outcome, or looked at the other way, skews those animations that

satisfy the constraints to favor those that arise from likely worlds.

In the following section (2.3) we describe a technique for generating animations such

that those with high probability will appear more frequently than those with lower probabil-

ity, but even some low probability events will occur — as in the real world, unlikely things

sometimes happen. In other words, we will sample according to the distribution defined by

p(A).

2.2.3 What does “Plausible” mean?

The restrictions on p(A) are quite weak, so we can describe many types of uncer-

tainty and a wide variety of constraints. By phrasing the problem as one involving probabil-

ities, we can leverage a wide range of mathematical tools for talking about plausible motion,

and make strong statements about the properties of the animations we generate (under certain

conditions, see section 2.3). We can also outline what it means to be physically plausible:

A model, including its simulator, is plausible if the important statistics gathered
from samples distributed according to p(A) are sufficiently close to the real world
statistics we care about.

This is a very general definition of plausibility, because we say nothing about which statistics

we might care about, or what it means to be sufficiently close. For example, to validate a pool

table model we could run simulations of virtual balls on a table, and analyze video of real balls

on a real table, then compare statistics such as how long a ball rolls before coming to rest. For

entertainment applications, we would care less about the quality of the match than if we were

trying to build a training simulator for young pool sharks.

Our measure extends the traditional graphics idea of plausibility — “if it looks right

it is right” — by allowing for definitions of statistical similarity other than a user’s ability to

detect a fake. However, for many applications, particularly involving motion, a viewer’s ability

to distinguish real from artificial remains the primary concern [42].

2.3 MCMC for Animations

We use the Markov chain Monte Carlo (MCMC) method [32, 47] to sample ani-

mations from the distribution defined by p(A). MCMC was originally developed to estimate
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Figure 2.2: Construction of an animation distribution for a single ball bounce, with a con-
straint on the landing position, x, at the second bounce. Assume that x is related to the collision
normal inclination, θ, by x = θ

10 , and we would like the ball to land at x = 1. Top left is a
plot of pw(A) for this scenario, using a Gaussian distribution that favors normals near verti-
cal. Top right is a constraint Gaussian distribution expressed in terms of the landing position,
x. Because we have an explicit relationship between x and θ, we can express the constraint
distribution in terms of θ (center right). Combining pw(A) and pc(A) yields the animation
distribution p(A). Note that this distribution peaks at normal orientations closer to zero when
compared to the constraint distribution, reflecting the influence of the world model over the
outcome of the simulation. We could more strongly favor the desired outcome by reducing the
“standard deviation” on the constraint distribution. Also, in most cases it is not possible to ex-
press the constraint probability in terms of the random variables directly. Instead, we simulate
to determine the outcome and evaluate pc(A) and hence p(A).
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values in statistical physics problems, such as the energy in a lattice. More recently it has

been applied to many other research areas [32]. MCMC has several advantages for the task of

sampling from distributions of animations:

• MCMC generates a sequence, or chain, of samples, A0, A1, A2, . . ., that are distributed

according to a given distribution, in this case p(A).

• Apart from the initial sample, each sample is derived from the previous sample, which

allows the algorithm to find and move among animations that satisfy constraints.

• If available, domain specific information can be incorporated into the algorithm, making

it more efficient for special cases. On the other hand, the algorithm does not rely on

any specific features of a model or simulator, allowing its application in a variety of

situations.

Our MCMC algorithm for generating animations begins with an initial animation then repeat-

edly proposes changes, which may be accepted or rejected. Explicitly:

Algorithm 2.1 MCMC algorithm for sampling constrained animations

1 initialize(A0)
2 simulate(A0)
3 repeat
4 propose(Ac, Ai)
5 simulate(Ac)
6 u← random(0, 1)

7 if u < min
(

1, p(Ac)q(Ai|Ac)
p(Ai)q(Ac|Ai)

)

8 Ai+1 ← Ac

9 else
10 Ai+1 ← Ai

Line 1 gives initial values to all the random variables in the world model. On line 4, a new

animation, Ac, is proposed by making a random change to the previous animation, Ai. The

details of this change are application specific. For example, in the 2D ball model of section 2.2

it might involve, for each normal, choosing to change it with probability one half and, if it is

to be changed, adding a random offset uniformly distributed on (−5, 5) degrees (for reasons

discussed in section 2.4.1). The probability of making changes is defined by the transition
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probability, q(X|Y ), which is the probability of proposing animation X if the current anima-

tion is Y . For the 2D ball, the transition probability is:

qball(X|Y ) ∝

(

1

2

)n

·

(

1

5− (−5)

)k

where n is the total number of collisions (assumed fixed) and k is the number of collisions

that were changed. The first factor is the probability of choosing the particular set of normals

to change, and the second factor codes the probability of choosing a particular offset for each

normal that is changed.

The transition probabilities, along with the probabilities of the animations, are used

in computing the acceptance probability, which is the probability of accepting the proposed

candidate (line 7):

Paccept = min

(

1,
p(Ac)q(Ai|Ac)

p(Ai)q(Ac|Ai)

)

From the formula we can see that the algorithm will tend to accept a candidate animation with

higher probability than the current sample, unless the transition probabilities are significantly

out of balance. Often, as in the 2D ball example, the transition probabilities are symmetric

— q(X|Y ) = q(Y |X) — and will cancel. Note also that only the ratios of probabilities

appear, so we can use functions that are only proportional to true probability density functions

(section 2.2.1).

The proposal mechanism is one of the key factors in how well the algorithm will per-

form in a particular application. In practice, proposals are designed through intuitive reasoning

and experimentation, using past experience as a guide. In section 2.4 we describe proposal

mechanisms for several situations.

The MCMC algorithm guarantees that the samples in the chain will be distributed

according to p(A), as the number of samples approaches infinity and provided certain technical

conditions are met [32]. Intuitively, these conditions require that the algorithm have some

probability of reaching every point in the domain that has non-zero probability density, and

that there be no cycles as the algorithm moves among samples. Hence with a little care we can

be certain that the samples our algorithm generates truly reflect the underlying model, and if

this model is plausible (section 2.2.3), the collection of samples will be plausible. It is also the

case that the samples in the chain will never satisfy the constraints if the underlying model says

they cannot be satisfied. For instance, if a bowling simulator cannot capture complex frictional

effects, animations that bowl the seven-ten split can never be found (see section 2.4.2).
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MCMC has been used in graphics to generate fractal terrain that satisfies point con-

straints [82, 89]. The samples generated by an MCMC algorithm may also be used to esti-

mate expectations, as in Veach’s Metropolis algorithm for computing global illumination solu-

tions [87]. For the task of sampling animations we are not concerned with expectations, so we

can use short chains, as long as are necessary to satisfy a user with several different animations

of high probability.

2.4 Examples

We are interested in four things when designing an MCMC algorithm for generating

animations:

• Is the motion plausible? We assume that the simulator produces plausible motion, so we

are left to ensure that the distributions we use for the model are reasonable.

• How long does it take to find a sample that satisfies the constraints?

• How rapidly does the chain move among significantly different samples, or mix? Chains

that mix faster are desirable because they produce many different animations quickly.

• How many of the samples satisfy the constraints well enough to be useful?

The following examples discuss issues in building models, defining constraints and selecting

proposal strategies, all of which influence the behavior of the algorithm.

2.4.1 A 2D Ball

In the 2D ball example of section 2.2 a ball bounces on a table, starting in a fixed

location and undergoing, for simplicity, a fixed number of collisions. For each collision we

specify a random normal vector. The aim is to sample these normal vectors such that the ball

comes to rest close to a particular location. As a specific case, we will drop the ball from above

the origin at a height of 4.5D, where D is the diameter of the ball, use five collisions, and

specify that it come to rest near x = D on the sixth collision.

The simulation model is: the ball moves ballistically between each collision, when

the velocity of the ball is reflected about the corresponding normal vector and the normal

component of velocity is scaled by 1√
2 . This model is not physically plausible (for instance,

we are ignoring rotation effects), but for this example we value simplicity.
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Uncertainty and Constraints

The probability of an animation is described in section 2.2.1, but probabilities (the

values of density functions) can be very large numbers, so in practice we work with their

logarithm. In this case, with x the horizontal position of the sixth collision:

log(p(A)) = −
1

2

(

x−D

σd

)2

−
1

2

∑

1≤i≤5

(

θi

10.0

)2

+ C

for some constant C , which will cancel out when computing the acceptance probability.

The value of the constraint standard deviation, σd, has a major effect on the samples

generated by the chain. Say we choose a small value for σd, corresponding to a very tight

constraint because only values of x very close to D give high values for p(A) and all other

landing points have very low probability. From the initial animation, the chain will move

to some high probability animation close to the constraint. But, once there, almost no new

proposals are accepted (most candidates will be far from the constraint and have very low

probability) and the user sees few different animations — an undesirable situation.

Alternatively, say we choose a large value for the standard deviation, corresponding

to a weak constraint. Then p(A) is relatively high for a wide range of landing positions. The

result is undesirable: the chain will contain many high probability animations that are far from

the constraints.

Hence we must choose a value for σd that is high enough to promote different sam-

ples but low enough to enforce the constraint. In this example we use a value of 0.1D, where D

is the diameter of the ball, which, as figure 2.4 shows, leads to the generation of very different

samples that generally are close to the constraint. In this example, the algorithm is not very

sensitive to the exact value for σd (anything within a factor of five works fine) and it is possible

to experimentally evaluate a few values on short chains and choose the best, which in this case

took only a few minutes.

In other applications there is no guarantee that we can achieve both good constraints

and good mixing. In such cases the algorithm must run for many iterations to generate different

samples, which may take prohibitively long. The tumbling dice example of section 2.4.4 is a

borderline example in which we can satisfy constraints but mixing is poor. In such cases we

can generate more samples by running multiple chains in parallel [54].
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Proposals

The proposal mechanism, which specifies normal vectors for a candidate animation, Ac, given

those for the current animation, Ai, provides a means of moving around the space of possible

normal vectors:

Algorithm 2.2 Proposal algorithm for 2D Balls

for j = 1 to 5
Ac.normal [j]← Ai.normal [j]
if random(0, 1) < 0.5

Ac.normal [j]← Ac.normal [j] + random(−5, 5)

This proposal changes some of the normals by an amount between minus one half and half

their standard deviation of 10.0 degrees. For good mixing it is important to allow more than

one normal to be changed at once, because the effect of each change on the landing position

(and hence the constraint) can then cancel. The alternative, changing only one normal, makes

it very difficult to change the first collision normal, because any but the smallest change will

move the ball far from the desired landing position, and hence be rejected. The size of the

offset we add is chosen to allow both small changes and relatively large changes, but not so

large as to shift the normals too far from their mean in one step, which would reduce their

probabilities and result in rejection of the candidate animation.

An Example Chain

We ran the MCMC algorithm and generated a chain containing one thousand samples

(many of these are repeats, arising when a candidate is rejected). Figure 2.4 plots the horizontal

resting position of each sample. The first sample was initialized with randomly chosen normals,

and came to rest a long way from the constraint. But within twenty iterations the chain moved

toward a good location. The bumpiness of the graph indicates good mixing, because flat spots

would indicate many repetitions of one sample as candidates were rejected. The majority of

animations have the ball coming to rest within 0.1D of the desired position, indicating that σd

is sufficiently small to enforce the constraint.

Three (randomly chosen) samples from the chain are shown in figure 2.3. They do

not differ greatly from what one would expect: the ball tends to take an early bounce toward the

constraint and keep moving in that direction, with later collisions adjusting it’s final position.
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Figure 2.3: Three sample paths from the 2D ball example, plotting the trajectory of the center
of the ball (although the plot is 3D, the ball moves only in 2D). The green target is centered on
the constraint. Each red arrow is located at a collision point and indicates the direction of the
normal vector used at that point. Note that in each example one of the earlier normals pushes
the ball toward the constraint, and later normals refine the final position. One ball bounces
slightly away from the constraint before moving toward it, which is not implausible.
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Figure 2.4: The resting position of the first one thousand samples in a chain for the 2D ball
example. The roughness of this graph indicates good mixing, and most samples are close to
the constraint (the majority within 0.1D). The position of the first few samples are far from the
constraint (off the graph), but the chain moves to samples within twenty iterations.
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Strike −→

Six-seven Split −→

Spare −→

Figure 2.5: Frames from three bowling examples. The initial conditions for the ball and the
pin locations are random variables. Given an initial and final pin configuration, the MCMC
algorithm samples particular values for the random variables that lead to the desired shot. In
this case, we demanded a strike, a six-seven split and the corresponding spare.

2.4.2 Bowling

In this scenario the aim is to animate any particular ten-pin bowling shot (a goal

suggested by Tang, Ngo and Marks [83]). The physical model is implemented by an impulse-

based rigid-body simulator, described in detail in chapter 3 of this thesis. We model the bowling

ball, the lane with simplified gutters and side walls, and the pins. All the models are roughly

based on the rules of bowling, including variations allowed by those rules (details are given in

appendix A.1.1):
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• The ball is simulated as a sphere, with variable radius, density, initial position, initial

velocity and initial angular velocity.

• The lane is fixed with regulation length and width, and includes rectangular gutters and

side walls starting in line with the front pin.

• Each pin, of fixed shape and mass, has its initial position on the lane perturbed by a small

random amount.

The coefficients of friction and restitution between all the components are fixed. The proba-

bility pw(A) is proportional to the product of the distribution functions for each of the random

variables in the model.

Constraints

The simulation begins with a subset of pins specified by the user, so we can specify

the initial conditions for bowling spares. The user also sets the constraint by stating which

pins should be knocked down and which should remain standing. We are unable to propose

candidates for the MCMC algorithm that are certain to satisfy the constraints (section 2.2.2),

so we assign non-zero probability to every possible outcome, but assign higher probability to

those outcomes that are closer to the target, and the highest probability to outcomes matching

the target. This is achieved with the Gibbs distribution function:

pc(A) ∝ λk+m

for some constant λ > 1 with k the number of pins that end up correctly standing or knocked

down, and m the number of standing pins that have not moved far beyond their initial position.

Animations that do not meet the goals will sometimes appear in the chain (they have non-zero

probability), but these would not be shown to a user. The samples that remain are correctly

distributed according to the conditional probability p(A|C), the distribution of animations in

which the constraints are fully satisfied. The constraint involves a term derived from the pins’

final position because some simulations result in the pins being pushed but not knocked down

— behavior we wish to discourage.

The value of λ affects the proportion of animations in the chain that must be dis-

carded for not satisfying the constraints. High values for λ give animations satisfying the

constraints much higher probability, making them more likely to appear in the chain. But the
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chain mixes better if some “bad” animations appear. Say only perfect animations appear, then

getting to a significantly different animation requires making a big change that also happens to

get all the pins correct, which is unlikely. If some pins are not correct, a big change only has to

get the same number of pins correct, and they can be different pins. A low value for λ makes

it easier to accept an animation with some incorrect pins, make big changes, and then move

toward a different, fully correct state.

For this example, we used λ = e2.5, which gives a wide variety of animations that

satisfy the constraints. Animations that improve the constraints are favored enough to ensure

that good animations come up often, but not so much as to inhibit mixing.

Our use of the Gibbs distribution was motivated by other applications of the MCMC

algorithm, such as counting the number of perfect matchings in a graph. It is known [46]

that there is an optimal λ that balances the concerns outlined above, but that the algorithm is

relatively insensitive to its exact value. Experience suggests that many applications may exhibit

similar behavior [78]: there exists a range of values for λ that give the chain good properties,

and one such value may be found through experiment. Our results are consistent with this (also

see section 2.4.3).

Proposals

Our proposal mechanism for bowling randomly chooses to do one of several things:

• Sample new values for all the random variables.

• Change the radius, density or initial conditions of the ball.

• Change the initial position of some pins.

The details are given in appendix A.1.2

The first proposal strategy, which changes every random variable in the simulation,

serves to make very large changes in the simulation. These are desirable as a means of escaping

low probability regions, which we discuss in more detail in the next example (section 2.4.3).

The other transitions are based on ideas similar to those in section 2.4.1: we must move around

among possible values for the random variables, and we wish to do so with both large and

small steps, but not so large as to make the new value highly unlikely under the model.
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Pin 10Ball sliding Friction grips

Pin 7

Figure 2.6: The seven-ten split, in which the aim is to knock down both the seven and ten pins
in one shot. The technique used by bowlers relies on the fact that a bowling ball will slide
while spinning about an inclined axis, then, at some point, friction will cause the ball to grip,
converting the angular momentum of the spin into linear momentum across the lane (dashed
line). The seven pin must be struck behind its center of mass, so that it initially moves away
from the ten pin (dotted line), bounces off the wall and moves back across the lane to hit the
ten pin. Our simulator cannot model friction well enough to simulate this shot. In particular,
an efficient, plausible model is required that takes into account both the normal force and the
relative tangential velocity at the point of contact.

Sample Animations

We tested this model with three sets of constraints:

• Bowl a strike.

• Bowl a ball that leaves a six-seven split.

• Bowl the spare that knocks down the six-seven split.

Frames from example animations appear in figure 2.5. The strike example is the easiest, be-

cause strikes are quite likely given our simulator. Bowling the six-seven spare is not difficult

either, because the various solutions probably form a connected set in state space, so once a

single solution is found, the others can be explored efficiently. Bowling the ball that leaves

a six-seven split is the hardest example, intuitively because it is hard to knock down the pins

behind the six pin while leaving it in place.

We also attempted to bowl the seven-ten split (figure 2.6). This shot depends on

the precise frictional properties of the ball and lane. Our simulator’s friction model could not

capture the required effect, so we could not make the shot. This demonstrates that the MCMC

algorithm only generates samples that are plausible according to the model (section 2.3). Our

simulation model says that balls never take big hooks, so we never see animations involving big
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Example 1 −→

Example 2 −→

Figure 2.7: Two examples of the spelling balls model, in this case spelling “HI” in a seven by
five grid. The shape of the boxes is allowed to vary slightly, as are the initial conditions of each
ball. Our algorithm chooses box shapes and ball initial conditions that lead to the formation
of a specific word.

hooks, regardless of the constraints. The shot could probably accomplished with the existing

simulation model by allowing the coefficient of friction to vary over the lane. A lane would be

required to be mostly slippery but have a sticky spot near where the ball must hook.

2.4.3 Balls that Spell

In these experiments we drop a stream of balls into a box partitioned into bins so that,

when everything has come to rest, the balls form letters or symbols (figure 2.7). We don’t care

which ball ends up in which designated bin. We use an impulse-based rigid-body simulator, as

in the bowling example.

The uncertainty in this world arises from the shape of the partitions and the location

from which each ball is dropped. The top surface of the partitions depends on a set of partition

vertices, each of which is randomly perturbed about a default position. Each ball is dropped

from a random location. Details of the geometric layout and probability models are given in

appendix A.2.1.

The constraint we impose is that, when all the balls have come to rest, each ball is in
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a designated bin. We fix the maximum number of balls, so if each ball falls into a designated

bin there can be no ball in an undesignated bin. We face a situation in which we cannot propose

animations that are certain to completely satisfy the constraints, so, as for the bowling example,

we use the Gibbs distribution for the constraint probability pc(A) ∝ λk, where k is the number

of balls in designated bins at the end of the animation.

To facilitate mixing we allow the number of balls in the simulation to vary between

zero and the minimum number required to form the word, by flipping each ball between active

and inactive states: inactive balls do not take part in the simulation. If all the designated bins are

filled, removing a ball frees up a bin for another ball to move into, making a significant change

to the animation. Removing the ball entirely, rather than just having it go into an undesignated

bin, reduces the amount of interaction between the balls, possibly making it easier to make

acceptable proposals. It also speeds the simulation when balls that aren’t contributing anything

are removed. Our initial experiments used a fixed number of balls, and the chain failed to mix

well.

The probability of an animation depends on how many balls are participating, the

initial locations of the balls and the offsets of each partition vertex. See appendix A.2.1 for

details. The use of un-normalized probability density functions with the variable numbers of

balls in this example means that we can no longer guarantee that the MCMC algorithm samples

according to the correct distribution over the variable number of balls. It does however, still

sample from the correct marginal distribution of animations with the full number of correct

balls, which is the distribution we are actually concerned with.

Proposals

The proposal algorithm we use performs one of five actions:

• The change-all strategy: change all the partition vertices and change all the balls.

• Change a subset of partition vertices.

• Change an active ball.

• Activate some balls (possibly none).

• Deactivate some balls (possibly none).

Details appear in appendix A.2.2.
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The change-all strategy appears as a means of escaping from low probability regions

(figure 2.9). When an animation is found that satisfies the constraints, subsequent animations

tend to also satisfy the constraints, but their probabilities degrade. This occurs because the

reduction in probability for a partition vertex change may be quite small, and such proposals

are likely to be accepted. The downward trend can continue, moving the chain into a region of

low probability. Then, a change-all proposal can reset all the partition vertices to much higher

probability values, and even though the constraints are no longer satisfied, the net change in

probability will be positive and the proposal will be accepted. This change-all effect is good

for mixing, because the next fully correct sample will generally be very different from the last.

The second and third proposals are designed to move around the state space by mod-

ifying balls or partitions, similar to proposals in previous examples. The proposals to activate

or deactivate some balls let us change the number of balls in the simulation. The proposal

strategy we use makes the probability of adding or deleting any given ball independent of the

maximum number of balls. We first tried a proposal that chose a single ball and flipped its

status, but if the maximum number of balls in the scenario is large, the probability of removing

a ball goes up as more balls are activated while the probability of adding a ball goes down,

making it difficult to get all the balls into the simulation.

The considerations in choosing a value for λ in this example are identical to those in

the bowling example (a balance between good animations and good mixing), with an additional

requirement due to the change-all effect: the constraint probability should be balanced against

the model probability (in this case the probabilities of the partition vertices). If the constraint

probability is too high, almost no change in partition vertices can overcome a well satisfied

constraint. Good balance is achieved when a much better set of model values can overcome a

constraint that is satisfied but uses poor model parameters.

As a specific example, we chose a bin designation that spells “HI” on a seven by five

grid (figure 2.7). We used λ = e5 for this word. A plot of k, the number of designated bins that

are filled, for each iteration of an example chain is shown in figure 2.8. The important feature

of this graph is that the chain tends to rapidly reach correct spellings, stays there for a short

period, then drops back to incomplete spellings. The twenty thousand iterations shown here

took a few hours to compute on a 200MHz Pentium Pro PC.

The change-all effect is evident in this chain. Figure 2.9 plots the probability of the

sample for each iteration. Places are marked where there is a sharp reduction in the number

of correct balls, and these correspond to sharp increases in probability. At each of these sharp
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Figure 2.8: The number of correctly positioned balls for each of twenty thousand iterations of
the “HI” model, with λ = e5. The maximum number of correct balls is ten. The chain finds
its first good animation after around six thousand iterations (we have seen chains that find
good animations within one thousand samples). This graph indicates good mixing because the
chain spends only a short period of time near similar solutions, then makes significant changes
before rapidly moving to a new good solution.
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Figure 2.9: The value of log(p(A)) at each iteration of the chain in figure 2.8. The graph is
quite bumpy, indicating good mixing. The dashed vertical lines correspond to all the iterations
where the number of correct balls drops sharply (figure 2.8), yet all those iterations show a
sharp rise in probability. This effect, due to the change-all proposal strategy, is discussed in
the text.
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Figure 2.10: The number of correctly positioned balls for each of twenty thousand iterations
of the “HI” model, with λ = e4. Compared to the chain with λ = e5 in figure 2.8, this chain
produces fewer samples with the desired ten correct balls. This is due to the weaker constraint,
allowing the more frequent acceptance of samples with reasonable partition vertices but poor
ball positions. However, even in this sub-optimal example, performance is not very bad.
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Figure 2.11: The number of correctly positioned balls for each of twenty thousand iterations
of the “HI” model, with λ = e6. This chain shows a tendency to get stuck on samples that have
many correct balls, resulting in poor mixing when compared to the chain in figure 2.8. Note
that the tighter constraint does no guarantee more correct samples. This chain gets stuck for a
long period with an almost perfect solution, unable to escape to try something different.

changes, a change-all proposal has been accepted that replaces a poor set of partition vertex

offsets with a much more likely set, even though this breaks the constraint.

We experimented with different values of λ, both higher and lower, but they lead to

less satisfactory chains. Values of λ that are too low result in chains that have trouble finding

correct animations, because the chance of accepting a poor proposal (from the point of view of
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Example 1 −→

Example 2 −→

Figure 2.12: Balls that spell ACM. The box contains 105 bins, of which 30 are designated to
contain balls. We show two animations, one on each row, generated from a single chain. Each
has the bins being filled in a different order, evidence that the chain produces a good mix of
samples.

the constraints) is too high. Values of λ that are too high make it less likely that a change-all

proposal will be accepted, and also make it hard for the chain to abandon poor near-solutions.

It takes only a few thousand iterations to see enough of the chain to know how lambda should

be changed, and the range of acceptable values is reasonably large so little time is spent in

tuning parameters. Our experiments show that chains with λ = e5±1 are not much worse than

those for λ = e5 (figures 2.10 and 2.11).

We also performed a larger experiment, with 30 of the 105 bins on a fifteen by seven

grid to be filled (figure 2.12). In this example we used a value of λ = e7.25 after experimenting

with other values of λ between six and eight. The higher value for λ is required because there

are more partition vertices and more balls. The greater number of partition vertices allow the

change-all proposal to remain effective at higher λ values, so we still see adequate mixing. In

fact, higher λ values are required to make it harder for a change-all proposal to succeed, so that

the chain has enough time between major changes to converge to good animations.
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Figure 2.13: A composite of six sample animations showing the control of a single bouncing
die. Each die in the image was animated separately. Each had a different target location and
desired side-up, but started with the same distribution on initial conditions.

2.4.4 Random Tables with Dice

This summarized example demonstrates objects bouncing on a random table, coming

to rest in constrained configurations. Dice are used as random number generators in the real

world because they are exceptionally hard to control, yet our technique is capable of finding

animations in which dice come to rest near a particular place with a particular face showing.

The 2D ball example (section 2.4.1) used a very simple table model, with two main

drawbacks due to the use of independent normals at each collision:

• An object bouncing in place will appear to have the table change underneath it as a

different normal vector is chosen for each collision.

• Nearby points on the table are not correlated, as points on a real, bumpy table would be,

which reduces the plausibility of the animations.

In this example we use a continuous, bumpy surface for the table. Rather than de-

scribe random normals directly, we specify a random b-spline surface via control points on a
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grid with fixed spacing but random vertical offsets. We can also specify random restitution

and friction values at the control points, to be interpolated by the spline, thus extending the

model to include the concept of springy or sticky regions on the table (such as spilt beer). The

b-splines defining the table shape and properties define random fields over the surface. In prin-

ciple, we could measure real tables, model their particular random fields, and use those in our

simulation.

The simulator used in this example simulates only one object at a time bouncing on

the random b-spline surface. It uses special techniques to manage the large number of control

points required for a table with fine bumps.

In this example, constraints can be defined for any aspect of the object’s 3D state

at any point in time. Initial conditions for the object are specified by constraining its state at

the start of the simulation (t = 0). The probability of an animation in this world contains

components for the control vertices defining the table’s shape, friction and restitution, and a

component for each constraint on the object.

An animation generated from this type of scenario is shown in figure 2.13. Each of

six dice is dropped and told to land in a specific place showing a specific side up. The dice

are treated individually and do not interact — the table is not the same for each die. It took

an hour or so of processing time to find a good animation for each die (a few hours for the

complete animation). However, the chain does not mix well, so it takes many hours to find

significantly different animations. Better mixing might be achieved with annealing [31] or

tempering [66, 67] approaches, both of which use a sequence of intermediate distributions to

move from a tractable distribution to the distribution of interest. The idea is that mixing in the

tractable distribution will carry over to the less tractable distribution of interest.

Proposals in the dice example were made by changing one control point at a time,

or one initial condition component at a time, or everything at once, the choice being made

according to user supplied relative probabilities. Changes were made by adding a random

offset to the current value, resulting in symmetric transition probabilities.

The ability to make changes at any point in the simulation, through the surface con-

trol points, makes it easier to find good animations in this world. Control points near the first

few collisions get the die somewhere close to the target, and later collisions refine the location.

This is not an explicitly coded strategy, rather it emerges naturally from the chain. However, a

better proposal strategy might make explicit use of the behavior.
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2.5 Future Work

The models we use arise naturally in the real world, and we provide a means of veri-

fying the plausibility of simulations. With further work it should be possible to experimentally

obtain more accurate models, and test simulation algorithms on such models, to obtain results

like those of Mirtich et. al. [63].

It is an open problem to determine the difficulty of a particular example without

experimentation. Computation time can be adversely affected because the simulation itself is

slower, or more iterations are required to find good animations, or both. For example, our

bowling and spelling ball examples take comparable times to compute, the former due to slow

simulation and the latter due to difficult constraints. Simulation time dominates the cost of each

iteration, so it is reasonable to spend more time making better proposals to improve mixing and

hence reduce the total number of iterations. For example, in the bowling simulation we might

bias changes in the ball’s initial conditions according to which pins were knocked down.

Constraints in our approach are specified as probability density functions, which al-

lows almost any type of constraint. In particular, it might be possible to constrain collisions or

other events to occur at specific times (or frames). This would allow physically-based anima-

tions to be choreographed to music, or collisions to occur at frame boundaries.

Popović et. al˙ [73] describe an interactive system for manipulating small numbers

of colliding objects. They note that a sampling approach such as the one described here could

be used as a preprocessing step within a larger system. Following the generation of a range of

initial trajectories using an MCMC approach, users might then be able to interactively improve

particular sub-parts of the simulation. This approach would require the interactive solution of

fixed two point boundary problems, because the endpoints of the manipulated section must

retain continuity within the larger animation. An alternative is a hierarchical constrained sam-

pling approach, where a sub-part of the animation is refined within the whole.

The modeling for the examples in this chapter was all done by hand, particularly the

specification of the various random variable distributions. User interfaces could be designed to

assist in this task. The interfaces would require techniques for visualizing probability densities

defined over multi-dimensional spaces (a volume visualization task). There are also interest-

ing issues in designing randomized geometry, particularly related to ensuring that topological

relationships are maintained when, for instance, vertices are allowed to move randomly.

The MCMC algorithm produces many animations for any given goal, and we would
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like interfaces that allow a user to browse through the results. A Design Galleries [55] type of

approach seems the most applicable. Techniques must be developed to index the solutions in

a reasonable way. In particular, it should be the case that animations that are visually similar

should be grouped together, yet it is not clear how to identify similarly given either a description

of how the objects move over time (which is what the simulator produces) or the actual rendered

frames of the animation. It may be that the MCMC algorithm itself can provide insight into the

problem, by looking at particular transitions in the chain. The spelling balls example supports

this idea, because identifying places where the number of correct balls catastrophically drops

(figure 2.8) may also indicate the beginning of visually distinct sets of animations.

We have only touched on the possibilities of plausible motion with constraints, fo-

cusing entirely on rigid body dynamics. Our techniques may also work in other domains that

are hard to constrain, including group behaviors [10] and deformable objects [18]. In the con-

clusion to this thesis we discuss real-time control within the context of a continuously running

virtual environment, which requires solutions to a new set of problems.
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Chapter 3

Asynchronous, Adaptive, Rigid-Body

Simulation

The MCMC algorithm for rigid-body animations requires the outcome of each can-

didate to be determined in order to evaluate its probability. Hence, fast simulation is vital to

achieve good results in a reasonable time. This chapter describes the new rigid-body simulation

algorithm used for many of the experiments in the preceding chapter.

All users of rigid-body simulator desire speed: animators prefer immediate feedback;

designers wish to test many possibilities in a short period; and the authors of virtual environ-

ments require real-time performance for complex scenes. The algorithm described here is

faster than traditional methods for rigid-body simulation and scales better with the number of

simulated objects.

Simulation requires an underlying physical model, and we will describe our algo-

rithm assuming the impulse-based model [39, 62]: bodies move with ballistic trajectories until

they collide with another object, at which time an instantaneous collision impulse is applied.

Only two objects are considered to be colliding at any moment, and transient constraints such

as rolling are enforced by large numbers of high-frequency collisions. While this model leaves

much to be desired, it is the best existing technique for situations with many transient, short-

lived constraints.

The overall trajectory of a single object in an impulse-based rigid-body simulation

consists of a sequence of ballistic trajectories separated by collisions. The physical model

defines two things: the ballistic equations of motion for the objects and the equations for re-
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solving a collision between two objects. Given this, the outcome of a simulation is determined

by the physical properties of the objects in the simulation (geometry, mass, moments etc.) and

their initial conditions. The primary purpose of a simulator is to find the correct collision se-

quence for the simulation, and hence compute the outcome. The design goal of our simulator

is to minimize the amount of work done to identify each collision.

Simulators are frequently required to perform a large number of related simulations,

such as the sample chain in a MCMC algorithm, or multiple simulations to numerically es-

timate some derivative. In such cases, it is highly desirable to exploit the results of previous

simulations in computing a new simulation. For example, the parameters to the new simulation

may differ only slightly from those of the previous one (as is the case with MCMC), and hence

large portions of the simulation may be unchanged from one iteration to the next. Consider-

able speedups may be possible if these unchanged regions can be identified and re-used in the

next iteration. While not an explicit design goal for the algorithm described here, the issue is

discussed at the end of the chapter.

3.1 Existing Algorithms

Existing rigid-body simulation algorithms differ in their physical models, but all

share a common need to identify a sequence of collisions. The majority of published algorithms

have the following generic structure:

Algorithm 3.1 Generic rigid-body simulation algorithm

genericSimulate(objects : O)
while simulating

for all o ∈ O
step(o)

C ← potentialCollisions(O)
for all c ∈ C

if colliding(c)
processCollision(c)

Detailed descriptions of variations on this approach have appeared in [39, 40, 45, 35,

60] and the algorithm is implicitly assumed for many collision detection papers [19, 64, 88, 91,

93]. There are three basic optimizations described in the literature:
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• Dynamically choose the time-step by attempting to predict when the next collision might

occur [40, 45, 62].

• Identify potential collisions without checking every pair of objects. Several methods

exist: Cohen et. al. use sorted lists of bounding volumes [19]; Mirtich uses spatial hash-

ing of bounding volumes [60]; and several authors have used octrees or similar struc-

tures [88, 91, 93].

• Improve the speed of collision detection (see [51] for a survey).

The framework above imposes one significant constraint: all the objects are updated

synchronously, and all the data structures to identify potential collisions must also be updated.

Much of this work is wasted, because sufficient information exists from previous steps to know

that many objects cannot collide — there is no need to compute their state again. Some schemes

modify the global time-step [40, 45, 60], using predictions based on the current simulation state

(such as velocities and object separations), but they do not modify the integration time-step for

individual pairs. Erickson et. al.[26] also describe a predictive method, but only for a single

pair of objects.

Kim et. al. [50] describe an event-driven algorithm for the simulation of ballistic

spheres. In their asynchronous algorithm, collision times for all potential collisions are placed

in an event queue. As the head of the queue is processed, only the two spheres involved in the

collision are updated. To avoid unnecessary predictions, spheres are associated with cells in a

uniform spatial subdivision, and only spheres that share a cell must be checked for collisions.

To maintain the spatial data structure, additional events are used to track when spheres enter or

leave a cell.

In order to be efficient, the number of boundary crossing events must be kept low,

and the number of spheres in each cell must be controlled. Kim et. al. use techniques from

molecular gas theory to choose a subdivision size based on the size of the objects and their

expected density. However, in practical simulations the density and velocities of objects may

vary significantly over time or space, a situation for which the gas theory model is poorly

suited. A subdivision poorly tuned to the instantaneous distribution of objects will lead to

large number of unnecessary events, and a loss of efficiency as the algorithm fails to adapt.

Some physical models, and hence algorithms, allow multiple interacting objects at

the same moment in time [4, 5]. They still conform to the above framework, but with the
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definition of a collision generalized to any change in the topology of object interactions (who

interacts with who and in what way). Our algorithm may be modified to handle such models.

This chapter describes an asynchronous event-driven algorithm that

adapts to local changes in object behavior, both spatially and temporally. We begin

with an overview, then describe the algorithm in detail and give experimental results demon-

strating its performance. We conclude with some possible extensions and future research

directions.

3.2 Adaptive, Asynchronous Simulation

Our algorithm is event-driven: it maintains a queue of interesting future events,

sorted according to when they occur, and repeatedly pops the head of the queue and processes

it by changing object state and adding or deleting events. The algorithm is efficient because

we use a prediction scheme to schedule events only when something might happen, and the

processing for each event changes only those objects affected by the event, rather than all the

objects in the simulation.

As noted in [50], sweep algorithms in computational geometry behave in an identical

way: maintain data structures and schedule events when they change [23].

3.2.1 Prediction Scheme

The aim of a prediction scheme is to identify future times at which objects might col-

lide. The basic component is a procedure, predict(o1, o2), that returns a conservative1 estimate

of the time (possibly infinite) at which two objects will collide on their current trajectories. We

describe our version of the predict(o1, o2) procedure below, but for the moment assume it

exists.

Note that a prediction remains valid until something happens to change the expected

state of the predicted objects, regardless of when the prediction was made and regardless of

which other objects are changed. In other words, predictions need not be updated until one of

the objects involved in the prediction undergoes a collision.

It is clearly wasteful to make and maintain predictions for all O(n2) object pairs in

the simulation, so a method is required to rapidly decide which pairs cannot collide any time
1A conservative estimate is one that is certain to be earlier than or equal to the actual collision time
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Events:
Green bound expires at t = 1.0s

Blue-Red collide at t = 2.0s

Blue bound expires at t = 3.0s

Red bound expires at t = 4.0s

Red-Green collide at t =∞

Figure 3.1: A momentary snapshot of an example 2D simulation involving three balls. Each
ball is shown in a different color with its temporal bounding volume shown in the same color.
Arrows indicate the direction of travel. On the right are the events currently in the queue for
this simulation. Note that there is an event for the expiration time of each bounding volume and
a collision event for each pair of objects with overlapping bounds. We would like to choose
bound sizes such that each bound expires infrequently yet few bounds intersect, as that will
result in the fastest algorithm (with the fewest events to process).

soon. Following [60], we define the temporal bounding volume for an object and an interval

to be an axis-aligned box that is guaranteed to completely contain the object for the duration

of the interval, assuming nothing happens to change the trajectory of the object. We say that

the bound covers the interval, it expires at the end of the interval and that it is invalidated if the

object is involved in a collision (which changes the object’s trajectory).

Various data structures exist to store axis-aligned boxes and identify which boxes in-

tersect [19, 60, 88, 91]. We use one of them [19], described below, to identify intersecting pairs

of temporal bounding volumes. We make predictions for the objects whose bounds intersect,

and do nothing for those that don’t (figure 3.1).

Observe that at any moment it is permissible for the bounds of different objects to

cover different intervals, provided that each bound is valid at that moment. For example, if

the bound for one object covers the interval Ia = [ta1, ta2] and the bound for another covers

Ib = [tb1, tb2] we will correctly identify a potential collision at time t if t ∈ (Ia∩Ib), regardless

of the actual endpoints of the intervals. This frees us to adapt the bound size for different

objects according to how we expect them to behave: objects with sparse interactions can have

large bounds, and objects with dense interactions can have smaller bounds.

To ensure that the bound for a given object remains valid, we schedule an event

each time the bound expires. When the event reaches the head of the queue, the bound is

updated to cover a new interval. We select the new interval according to the time since the
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Figure 3.2: A 2d temporal bounding volume, of the form described by Mirtich [60]. The ob-
ject’s bounding sphere, and its location at the beginning, end and possibly apex of the parabolic
trajectory are used to define the box.

object’s most recent event: the length of the new interval is twice the elapsed time from the

previous event. With this heuristic, objects experiencing frequent collisions will have relatively

small bounds that cover small intervals, whereas objects undergoing no collisions will see their

bounds grow exponentially until a collision is predicted. It is in this way that the algorithm

adapts to changing object behavior.

Bounds are also recomputed when an object experiences a collision. The new bound

interval is calculated using the same heuristic.

We now describe the algorithm in detail, starting with assumed procedures, describ-

ing our data structures, then discussing the processing of events.

3.2.2 Basic Procedures

We assume the existence of several basic procedures that operate on one or two

objects:

integrate(o, t): Given an object and a time, integrate the equations of motion for the object

to find it’s state at that time. We use a variable step-length Runge-Kutta method described

in [75].

generateBound(o, t1, t2): Given an object and the endpoints of an interval (computed

with the heuristic in section 3.2.1 above), generate an axis aligned bounding volume that

is guaranteed to contain the object throughout the interval. We use the method described
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in [60] for ballistic objects, which bounds the motion of a bounding sphere centered at

the center of mass for the object (figure 3.2).

predict(o1, o2): Given two objects, make a conservative prediction of their collision time,

and insert an event into the queue for that time. Our prediction algorithm uses one of two

estimates: if the objects’ bounding spheres do not intersect at the time the prediction is

made, we predict the objects will collide when their bounding spheres collide2 , otherwise

we use the predictor in [60], which uses bounds on maximum angular velocity and hence

maximum normal velocity. We use a two stage predictor because the prediction based on

the maximum normal velocity is extremely pessimistic when the objects are a significant

distance apart.

closestPoints(o1, o2): Given two objects, find their closest points, which can be used

to determine the distance separating them and the normal of a separating plane. The

distance and normal information is used in the prediction phase, in addition to provid-

ing data for collision resolution. We have a strong preference for closest feature al-

gorithms, because they allow for more robust separating plane computations as objects

approach very closely. We use a modified version of the VClip algorithm [61]. The

colliding(o1, o2) predicate finds the closest points and tests the distance between them

to see if they are colliding.

resolveCollision(o1, o2): Given two objects and their closest points, modify their state

to reflect the occurrence of a collision. We use Euler’s method, as presented in [39], but

other methods may be used [5, 15, 60].

3.2.3 Data Structures

The algorithm maintains data structures for each object’s state, for scheduling events,

and for tracking intersecting temporal bounding volumes. Each object stores its physical prop-

erties (geometry, coefficient of friction etc.), its dynamic state (position, orientation, velocity

etc.), a temporal bounding volume, and pointers to various events for the object. Events are

stored in a priority queue that supports event insertion, min-entry deletion and arbitrary dele-

tion. A change-key operation is also useful. Events themselves store their time (the priority

search key) and information about the objects involved.
2The bounding spheres are distinct from the temporal bounding volumes. They are defined by the object’s center
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Figure 3.3: The data structures used to detect bounding volume intersections, presented here
for the 2D example of figure 3.1. The minimum and maximum extents in each dimension of all
the bounding volumes are stored in sorted lists. Any overlaps in a single dimension are stored
in a hash table for that dimension. Single dimension overlaps occur whenever either extent of
one bound appears in the sorted list between the extents of another bound. In this example,
one such overlap is between the blue and red bounds in the x dimension, because the minimum
extent for the red bound lies between the extents of the blue bound. Overlaps that appear in all
dimensions, in this case the blue-red and red-green overlaps, are stored in another hash table.
Not shown are various pointers between bounds, hash table entries and objects.
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The data structures for storing temporal bounding volumes are designed to support

a linear sort dimension reduction approach to finding intersecting boxes [19]. We maintain

three sorted lists, one for each dimension (figure 3.3). Each list contains both the minimum

and maximum extents in that dimension of every bounding volume, with pointers back to the

bound object. In addition, we maintain four hash tables, one for each linear dimension and 3d

space. Each hash table stores the intersections in that dimension, or 3d intersections. Finally,

each object keeps a list of the other objects whose bounds its bound intersects in 3d. Together,

we refer to these data structures as the intersection data structures.

The intersection data structures must be updated each time a temporal bounding

volume changes. We describe the update procedure below, in the context of event processing.

3.2.4 Event Processing

Two types of events are required for the basic algorithm:

• An update event is scheduled for the time that an object’s temporal bounding volume

expires. A new bound is computed and the intersection data structures are updated.

• A collision event is scheduled for times when two objects might collide. An invariant is

maintained that whenever the bounds for two objects overlap, and they are predicted to

collide in finite time, there is an event in the queue for the predicted time.

As stated above, events are stored in a priority queue. The outer loop of the algorithm

simply deletes the minimum-time event in the queue and processes it as follows.

Update event processing

An update event (figure 3.4) indicates that a temporal bounding volume has expired

for some object, and hence a new bound must be computed, which is done using the gener-

ateBound procedure with a new interval of length twice that of the time since the last event

for the object (as described in section 3.2.1).

Given the new bound, the intersection data structures must be updated, as depicted in

figure 3.5. We begin by re-sorting the lists of extents in each dimension. Only one bound has

changed, so we can re-sort by starting with the bound’s old location in the list and searching

of mass and the point on the object furthest from the center.
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?

Events before:
Green bound expires at t = 1.0s

Blue-Red collide at t = 2.0s

Blue bound expires at t = 3.0s

Red bound expires at t = 4.0s

Red-Green collide at t =∞

Events after:
Blue-Red collide at t = 2.0s

Blue bound expires at t = 3.0s

Red bound expires at t = 4.0s

Green bound expires at t = 5.0s

Figure 3.4: Processing for an update event. In this 2D case, the green object’s bound has
expired. A new bound is generated, which means that the green bound no longer intersects
that of the red object. The intersection data structures must updated to reflect the change
(figure 3.5). The event queue also changes to reflect the new bound’s expiration time.
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Figure 3.5: Updating the bounding volume intersection data structures. The green bound has
just changed. For each dimension, the list of extents is resorted by shifting the changed extents
(the green ones) within the list. Each swap is tested to see whether it changes the overlap status
in that dimension. Swaps of minimum extents past maximums, or vice versa, lead to changes in
overlaps, but swaps between minimum and minimum or maximum and maximum do not. The
changes in status are reflecting in the hash tables, and for each change in a given dimension
the other dimensions are checked to see if the global intersection status should be changed. In
this case, the removal of the red-green overlap in the x dimension means that the bounds no
longer overlap in all dimensions and the global intersection should be removed. Note that in
the y dimension, all the swaps are between minimum and minimum or maximum and maximum
extents, so there is no change in overlap status in that dimension.
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forward or back to find its new location. As we search, we build lists of potential changes

in intersection status, as indicated by changes in the sort order. After re-sorting the linear

lists, we examine the changes in one-dimensional intersections that occurred and map these

onto changes in three-dimensional intersections. Each potential change can be incorporated in

constant time by looking for intersections in the various hash tables. If a new three-dimensional

intersection arises, we make a prediction for the collision time for the relevant objects and

insert an event into the queue if required. The entire process takes time linear in the number of

position changes that occur in the one-dimensional lists. Note in particular that intersections

that are unchanged by the new bound are not considered. This is desirable, because nothing

about any object’s state has changed to invalidate a prediction.

The update event processing is summarized as follows:

Algorithm 3.2 Update event processing

processUpdate(simulation :S, object : o, time : t)
integrate(o, t)
t new← 2 ∗ (t− o.t last)
generateBound(S, o, t, t new)
updateIntersections(S, o)
o.t last = t

Collision event processing

A collision event indicates that two objects might be colliding (with an exact predic-

tion scheme we would know the objects are colliding, such as in [50]). The first task is to check

whether or not the collision is actually occurring, which requires integrating the two objects to

the event time and performing a collision test. If the objects are not colliding, we simply make

a new prediction for these two objects and insert it back into the event queue. Nothing more

needs to be done, because nothing about the objects’ expected behavior has changed, nor have

their bounding volumes changed.

When the objects are colliding (figure 3.6), the collision is resolved, which changes

the trajectories of the objects involved, so bounding volumes and existing predictions must

be updated for both objects. A new bound is computed and the intersection data structures

are updated as described above, except that predictions for newly generated intersections are

delayed, because they will be made by the next step in the procedure. Some care must be taken
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when updating the data structures for the first object, because the second is not in its correct

sorted position. As a final step, we consider all of the objects whose bounds intersect that of a

colliding object, and make new predictions for the pairs. The cost of this phase is linear in the

number of intersections for the objects.

In pseudocode:

Algorithm 3.3 Collision event processing

processCollision(simulation :S, object : o1, object : o2, time : t)
integrate(o1, t)
integrate(o2, t)
if colliding(o1, o2) then

resolveCollision(o1, o2)
t new← 2 ∗ (t− o1.t last)
generateBound(o1, t, t new)
updateIntersections(o1, false)
t new← 2 ∗ (t− o2.t last)
generateBound(o2, t, t new)
updateIntersections(o2, false)
for all o s.t. o.bound ∩ o1.bound

predict(o1, o, t)
for all o s.t. o.bound ∩ o2.bound

predict(o2, o, t)
o1.t last = t
o2.t last = t

else
predict(o1, o2, t)

Additional Events

Additional events are required to introduce new objects into the simulation, and to

obtain trajectory information from the simulation. A start event is scheduled for every object

for the time at which the object should enter the simulation. Start events are processed by in-

serting the extents of the object’s bound into the intersection data structures, then immediately

calling processUpdate with the object, giving it a last event time in the recent past.

It is relatively easy to extract trajectory information at arbitrary points in time if the

collision sequence is known. The simulator can dump such information as part of the collision

event processing, but the amount of information generated may be unwieldy. An alternative
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Figure 3.6: Processing for a collision event. In this 2D case, the red object is colliding with the
blue object. The collision is resolved, which changes the velocity of the two colliding objects.
The change in velocity means that new bounds must be computed for the blue and red objects,
and the bounding volume intersection data structures must be updated. Note that the green
object is unaffected by the collision, so its state is not changed in any way. The event queue
changes to reflect the new bound expiration times and the new predicted collision time for the
red and blue objects.
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is to sample the simulation state at various times, using special sampling events. Our current

implementation can insert events at a constant rate to gather data for rendering. Other schemes

could adapt the sampling rate depending on, for instance, how fast objects are moving, or even

whether or not the objects are in view at any given time.

If desired, other events could be inserted for instantaneous control actions or user

interactions.

3.2.5 Analysis

Describing the complexity of a simulation, and hence of algorithms that compute

it, remains an open problem. Clearly there are several components to the inherent cost of

a simulation: the geometry of the objects determines the worst case complexity of collision

tests; how the objects move with respect to each other influences the cost of collision detec-

tion; the shape of the objects and their configuration influences prediction schemes; the global

configuration determines the cost of broad phase collision detection; and so on. Recent work

by Erickson et. al. [26] has provided the beginnings of a theoretical basis, by examining the

complexity of collision detection as a function of the algebraic complexity of the objects’ tra-

jectories, yet this says nothing about the effects of the global configuration, nor is it clear

that their algorithm, while open to analysis, is faster than other techniques in practice. There

are also difficulties in analyzing how various modules (such as prediction schemes and colli-

sion detection schemes) interact. For instance, a higher predicted collision frequency probably

makes individual collision tests faster.

Instead, we pursue a qualitative analysis, looking at the expected computational sav-

ings of our approach when compared to existing algorithms that seek to achieve the same

thing: locate all the collisions in the simulation. We identify one event processing step in our

algorithm with one global step in traditional algorithms, referring to both simply as events.

Collision prediction technology can be applied equally well in most algorithms, so we can as-

sume that the total number of pairwise collision events in a given simulation is likely to be

similar across most algorithms. Our algorithm processes additional update events to maintain

the temporal bounds, but our heuristic for computing expiration times tends to keep the total

number of updates low with respect to the number of collisions. Update-like events may be

required in existing algorithms, when there are no intersections between the bounding volumes

and the algorithm must take an arbitrary step. Overall, we assume that our algorithm processes
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only a small percentage more events than traditional approaches.

The priority queue operations required to maintain the event heap theoretically cost

O(log n) per event, but in practice the constants are so small compared to the cost of other com-

putations that a single closest point computation is more expensive for any practical number of

objects. We will ignore the priority queue cost.

We break the other costs of processing each event into four components:

Integration of rigid-body motion is an unavoidable cost regardless of the algorithm used:

every object must be integrated for the duration of the simulation. Variable step-length

integrators are designed to be most efficient when called for large total steps (even if

they internally break the step down). Previous approaches call the integrator for every

object at every event with the small global event interval, whereas our algorithm calls the

integrator for fewer objects with their own longer event interval. Apart from the reduced

overhead of integrator calls, some savings are possible due to the bigger steps, so we can

expect a small reduction in the total integration cost.

Collision resolution is an unavoidable cost in both simulations, and if all algorithms process

the same collisions, the cost is identical.

Closest Points computation costs are proportional to the number of predictions made (which

includes the number of collision tests conducted, because there is one prediction corre-

sponding to every test.) The cost is related to the number of bounding volume intersec-

tions that occur, as well as many other factors including the trajectories of the objects

in the simulation. Our algorithm appears to make more predictions because the bound-

ing volumes tend to be larger, but the effect is balanced by the fact that each prediction

provides some information, which can reduce the number of future predictions. Experi-

mental evidence suggests that the overall effect on computation time is small compared

to other factors.

Bounding volumes change in existing algorithms for every object at every event, unlike our

algorithm which changes at most two objects’ bounds at any step. This is the most

significant advantage of our algorithm. If the number of intersection changes in each di-

mension is a constant, we can perform this step in constant time, unlike other approaches

which must always perform O(n) operations. We do expect the number of intersection
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changes for each event to be small in many situations, and it cannot be worse than O(n),

so we must obtain some speedup.

There is a common event that our algorithm is guaranteed to process in constant

time. When a conservative prediction is incorrect (the objects are not colliding), our algorithm

performs a constant amount of work: two integrations, one collision check, one prediction and

one event insertion (which we assume to have negligible cost compared to the other operations).

Existing algorithms perform O(n) operations for this case, because they integrate and update

bounding volumes for every object. We achieve significant speedups by making this common

case fast.

In summary, if the number of bounding volume intersections for a given object is

roughly constant, we can potentially process each event in constant time (assuming the cost

of integration is roughly constant for each event). Existing techniques must perform at least

O(n) computations, so the potential exists for an O(n) speedup with our algorithm. The exact

conditions under which this is achievable are difficult to fully enumerate, but simulations in

which objects are relatively sparse and uniformly distributed in space are certainly one case.

Importantly, our algorithm cannot perform worse than existing techniques, even in bad cases.

3.3 Experiments

We conducted two experiments to compare our algorithm with traditional ap-

proaches. One examined a scenario in which polyhedral approximations to a sphere move

in a box, without energy loss or the influence of gravity. This is a common example in the lit-

erature [19, 50]. As a second example we simulated a stream of objects (sand) falling through

a funnel (hourglass). We consider this to be more typical of real-world applications, because

objects experience different conditions at different points in their trajectory, and the example

demonstrates clustering as objects come to rest on the floor. This example is coincidentally

similar to those in [93] and [88].

The traditional algorithm used was:
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Algorithm 3.4 Traditional simulation algorithm used for experiments

traditionalSim(objects : O)
repeat

e← queueDeleteMin()
for all o ∈ O

integrate(o, e.t)
processEvent(e)
t next← queueMinTime()
for all o ∈ O

generateBound(o, e.t, t next)
updateIntersections()

Procedures integrate(o, e.t) and generateBound(o, e.t, t) are as described above.

When this algorithm sees a collision event (the only type it sees), it checks for collision, and

then either resolves the collision or makes a new prediction for the pair involved. updateIn-

tersections() in this algorithm must do a complete re-sort of the extent lists in each dimen-

sion [19], and always makes predictions when new intersections are found. We also use event

hysteresis: events are not deleted from the queue when an intersection ceases to exist, which

improves the performance of the algorithm. Note that we do not update all predictions at every

step, only those that may have potentially changed. We used the same sub-algorithms (closest

points, prediction etc) in this traditional algorithm as in the implementation of our approach.

In comparing two algorithms for rigid body simulation, it is important to consider

the general instability of simulation. In this particular instance, the algorithms use different

bounding volumes, and hence will not make predictions at the same time. The inexact pre-

dictions produce small changes in collision time and state, and the outcome of the collision —

changes that propagate until the simulation can become quite different. This is particularly true

if there is nothing in the simulation that tends to force a certain outcome, as is the case in our

examples. The instability of simulation algorithms has a significant impact on verification of

their quality and how they should be used, but for the purposes of comparison we minimized

the effects of instability by, for each data point, running multiple simulations with different

initial conditions and averaging the results.
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Figure 3.7: A snapshot of a simulation of polyhedra in a box. One wall of the box is not
rendered to allow a view inside, and the polyhedra are shaded to look like the spheres they
approximate. There are 64 objects in this simulation. Note the uniformity of the spatial distri-
bution of objects.

3.3.1 Boxed polyhedra

This experiment simulated a variable number of identical polyhedra, each approxi-

mating a sphere, moving inside a box (figure 3.7). Gravity was turned off, and there was zero

friction and no energy loss at each collision. The box was slightly larger than ten object di-

ameters in each dimension. Each object was given a random initial position, orientation and

velocity, and zero initial angular velocity. Each run simulated 1000 seconds of virtual time, and

we tracked the number of events processed by each algorithm, and the total execution time. We

conducted five runs for each data-point, each with a different pseudorandom seed. The average

results are presented in table 3.1 and the speedups obtained by our algorithm are plotted in

figure 3.8.

The results confirm our analysis in section 3.2.5. Our algorithm processes more

events than the synchronous approach, due to update events. However, the processing time
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Synchronous Asynchronous
n #events t/event (ms) t (s) #events t/event (ms) t (s)
1 48192 0.084246 4.0600 45743 0.053079 2.428
2 119905 0.10013 12.006 119594 0.053598 6.410
3 163444 0.11469 18.746 165851 0.054832 9.094
4 236492 0.13033 30.822 233329 0.056461 13.174
6 378542 0.16059 60.792 388171 0.058206 22.594
8 508000 0.18938 96.204 509753 0.060057 30.614

11 741250 0.23281 172.57 773658 0.062345 48.234
16 1204244 0.30545 367.84 1241069 0.065629 81.450
23 1867831 0.40918 764.28 1974795 0.068919 136.10
32 3124585 0.54400 1699.8 3256984 0.072726 236.87
45 5162582 0.73846 3812.4 5411264 0.076436 413.62
64 8999377 1.0242 9217.3 9664098 0.078830 761.82

Table 3.1: Results for the simulation of polyhedra moving inside a box, without gravity or
loss of energy in collisions. The number of events, time per event, and total simulation time for
our asynchronous algorithm are compared to data for a traditional synchronous algorithm for
a range of n, the number of moving objects in the simulation. Our algorithm processes more
events due to update events, but the cost of each event is lower, resulting in an overall speedup
approximately linear in n. Times were obtained on a 200MHz Pentium Pro.
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Figure 3.8: The speedups obtained by the algorithm described in this chapter over a tra-
ditional approach (algorithm 3.4) for the simulation of spherical polyhedra in a box. Our
algorithm demonstrates a speedup approximately linear in the number of moving objects. We
stopped gathering data at 64 objects due to the prohibitive run-times for the synchronous al-
gorithm.
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Figure 3.9: A snapshot of a simulation of grains falling through a funnel. One wall of the box
and funnel is not rendered to allow a view inside. There are 100 objects in this simulation. The
objects undergo sparse interactions at the top of the funnel, but very dense interactions at the
base, as they come to rest in clumps. There is major clustering in the corners of the box at the
bottom, which results in the extents of the bounding volumes for each object lying very close
together in each spatial dimension. This leads to poor performance of the bounding volume
intersection algorithm that was used in the simulator implementation.
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for each event is significantly lower, resulting in speedups that are nearly linear in the number

of objects in the simulation. There is some increase in processing time per event as the num-

ber of objects increases, due to the increased density of the simulation which generates more

bounding volume intersections. Furthermore, for near spherical objects the prediction scheme

we use works relatively poorly (the normal velocity component is very pessimistic), so the

algorithms process a large number of missed predictions, favoring our approach.

3.3.2 Sand through the hourglass

In this example, grains of sand (cubes with perturbed corners) are dropped through a

funnel, coming to rest on a slightly peaked surface below the funnel (figure 3.9). This scenario

exhibits highly variable collision frequencies as objects fall through the funnel with relatively

few collisions, and then come to rest with a very high collision frequency. It also exhibits

clustering in all spatial dimensions as the objects come to rest on the almost flat surface.

The grains were dropped at a constant rate from uniformly random positions and

orientations at a fixed height above the funnel, starting with zero velocity. Each data-point is

the average of ten simulations with different initial conditions.

Both simulators used in this experiment tracked the velocity of the objects over time

and decided that the object was at rest if its velocity remained near zero over the course of

many collisions. Resting objects were treated as stationary until another object hit them, at

which point they could again begin moving. Detecting stability significantly improves the

speed of simulations, for both asynchronous and synchronous algorithms, although at the cost

of additional implementation complexity. It is a simple example of detecting changes in an

object’s behavior and shifting simulation modes (from dynamic to fixed object) to deal with it.

Experimental results are summarized in table 3.2 and figure 3.10. Of particular note

is the leveling off in speedup as the number of objects reaches some threshold. This is due to

several things:

• The clustering of objects makes each intersection data structure update a potentially

linear operation. Better data structures could solve this problem.

• The temporal bounding volumes for our algorithm will be larger than those for the syn-

chronous algorithm, which generates more intersections without providing additional

useful information.
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Synchronous Asynchronous
n #events t/event (ms) t (s) #events t/event (ms) t (s)
10 117009 0.22715 26.579 147358 0.055090 8.118
20 316778 0.36251 114.83 351714 0.059932 21.079
30 496172 0.47717 236.76 584747 0.063898 37.364
40 756671 0.56904 430.58 872613 0.069489 60.637
50 1010548 0.64935 656.20 1107481 0.075613 83.740
60 1383517 0.72677 1005.5 1578943 0.084519 133.45
70 1697377 0.78985 1340.7 1961114 0.088551 173.66
80 2149780 0.87392 1878.7 2497338 0.10317 257.64
90 2630125 0.93414 2456.9 3126652 0.10712 334.94

100 3156533 1.0239 3231.9 3614242 0.11155 403.15

Table 3.2: Results for the simulation of sand falling through a funnel to come to rest below.
The number of events, time per event, and total simulation time for our algorithm are compared
to data for a traditional algorithm for a range of n, the number of moving objects in the
simulation. This example processes slightly more update events then the polyhedra in a box
example, which is expected considering its heterogeneous nature. Furthermore, processing
time per event for the asynchronous algorithm grows faster in this example, due to additional
time to process the intersection data structures, and fewer cheap missed prediction events.
Times were obtained on a 200MHz Pentium Pro.

• The prediction scheme works well in this case, so there are fewer very cheap missed

predictions.

In summary, our algorithm shows a linear speedup until the point where objects begin to clus-

ter significantly, after which it is a constant order of magnitude faster. The reduction in per-

formance is a direct result of simulation conditions that make it difficult to track potential

collisions efficiently — no published impulse-based algorithm handles such cases well.

3.4 Discussion

The experimental results indicate that our algorithm is significantly faster than ex-

isting techniques, and for at least one example, this speedup scales as the number of objects

increases. However, the results also show that, in cluttered environments with good predic-

tion, our algorithm provides only a constant speedup for some range of data. Improving our

algorithm requires addressing the causes of this reduced speedup.

The intersection data structures we use, based on linear sorts, take time proportional

to ∆k, the number of changes in one-dimensional intersection status. These could be replaced
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Figure 3.10: The speedups obtained by the algorithm described in this chapter over a tradi-
tional approach (algorithm 3.4) for the simulation of sand in a funnel. For lower numbers of
objects, our algorithm demonstrates an increasing speedup as the number of objects increases,
but this speedup becomes constant as the number increases beyond 50. The lower speedups
for more objects is due primarily to increased clustering as the objects come to rest, and hence
poorer performance of the intersection data structures. Better data structures could improve
the algorithms performance in such cases, but simulating cluttered objects that are essentially
at rest is a case best handled by constrained-contact algorithms.
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by a hierarchical data structure that always took max(log n, k) time [91], where k is the number

of intersections reported. Alternatively, the spatial hashing scheme described in [60] would

always take time proportional to k in our situation.

The heuristic for choosing the expiration time of temporal bounding volumes looks

only at the time since the last event for the object. Alternatives could be explored, particularly

those that consider the number of intersections generated by the new bound (based on a guess

from the last bound). Ultimately, the number of intersections for a given bound is a property

of the simulation itself, which may be impossible to reduce in cluttered environments.

The algorithm, as stated, assumes a conservative prediction scheme. Lifting this

restriction may result in interpenetration, requiring that the simulation be backed-up, or un-

wound, to a time before the offending collision. This can be implemented by storing a small

amount of recent state to unwind to, or even by selectively unwinding only those parts of the

simulation that could have been invalidated. The recent event history, in combination with the

intersection data structures, provides sufficient information to perform selective unwinding,

although the implementation details are complex. The most difficult aspects of an unwinding

strategy are deciding how much previous state to maintain and the design of efficient data-

structures.

Note that most prediction schemes, even if not conservative, can be designed to be

right most of the time, so we expect to be wrong relatively infrequently and hence it doesn’t

matter if the cost of an incorrect prediction is quite high. This is particularly the case when

interactive user’s lead to incorrect predictions: the user’s events are likely to be very rare

compared to simulator events.

The event sequence and temporal bounding volumes also provide information for

re-using data from one simulation in another simulation — a potentially large saving given that

simulations are commonly performed in large numbers with only small changes between each

run.

In a prototype system, we break the simulation into discrete blocks of time. For each

block, which covers a distinct interval of time, we record the maximum spatial extent of every

object over the time interval, and the state of each object at the start of the interval. When

the next simulation is run, objects are marked as changed or unchanged. Changed objects

are simulated as normal, but each unchanged object is only considered when its bounding

volume is intersected by a changed object, at which point the previously unchanged object is

considered changed and the simulation is backed up to the start of the last recorded time block.
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Other objects may need to be simulated to get the correct behavior for the previously unchanged

object, but with some care we can guarantee that the simulation that results is correct.

Experimental results for re-using simulation data suggest that the scenario being sim-

ulated has a significant effect on how much data is re-usable. The most important property is

mixing: how quickly changes at one point propagate throughout the system. If changes propa-

gate widely, then there tend to be few opportunities for re-use, because most of the simulation

will be different between successive runs. If changes tend to remain local, then re-use is easier

to exploit, because little changes between runs. We are currently working to improve our re-use

algorithm to ensure that it does as well as mixing allows. Tentative results with a simulator that

does re-use for the spelling balls simulations of chapter 2 show speedups by a factor of two

over a simulator that does not re-use any data. Most of the speedup results from cases where

the change from one run to another is to a ball that enters the simulation late, so most of the

earlier frames of the simulation can be re-used.

Finally, we note the compatibility of this algorithm with that of Sudarsky and Gots-

man [81] for occlusion culling in dynamic scenes. Their technique requires temporal bounding

volumes with “expiration times”, as provided by our algorithm. In an interactive rendering set-

ting, our algorithm could avoid computing frame-by-frame state information for objects out of

view, which would provide a simple means of reducing the computational cost of out of view

motion, but not as efficient as the techniques described in the following chapters.

There are many important avenues for future work in the area of basic simulation

models, including models for collision resolution and models that combine the best aspects of

different paradigms to achieve superior performance — referred to a hybrid simulation.

As discussed briefly in chapter 2, collision friction models are not adequate for cap-

turing some physical phenomenon, such as the seven-ten split in bowling. Restitution models

are also inaccurate when compared to experimental data [12]. It may not be possible to define

any model that captures the world in an completely accurate way, because the real world be-

havior may be sensitive to dust or oil that is difficult to model analytically. A more achievable

goal may be to look for stability in the results of a simulation, in the sense that the outcome

predicted by the simulation should be robust to variations in the parameters or the model itself.

In this way, even though the parameters to the model are likely to be imprecise, at least the

outcome may still be at least approximately correct.

Hybrid simulation is the term given to simulators that use different simulation modes

depending on the behavior of the objects. For example, a hybrid simulator would simulate the
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sand through the funnel as an impulse system while the sand was falling, but a multi-point

contact force system [5] when the grains come to rest. The difficult part of hybrid simulation

is detecting when to change modes, but the payoff is large. In particular, it lets the underlying

complexity of the simulation drive the algorithm, rather than the restrictions imposed by an

inappropriate (and often inaccurate) model.
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Chapter 4

Simulation Culling

The animation task for a simulator in virtual environments is to generate any time-

varying state in the environment. More precisely, the simulator must compute the mapping

Si = M(Si−1) to evaluate the state, Si, at frame i, given a mapping function which encodes the

simulation model, M , and the world state on the previous frame, Si−1. Assuming a minimum

acceptable frame rate for rendering the environment, the new state must be computed within

the time allotted for the simulation for that frame.

In most environments, most of the world is not visible most of the time. While for

virtual environments this may be by design, the real world clearly has the same property from

most viewpoints, although on a larger scale. Visibility culling schemes [1, 22, 25, 53, 65, 72,

84, 96] exploit this fact to render efficiently, and simulation culling, described in the following

chapters, exploits it to achieve scalable simulation.

Simulation culling provides scalable simulation by computing only what is necessary

for the current view, and ignoring non-visible motion. With culling, it should be possible to

make the total environment arbitrarily large, provided only a small amount is visible at any

given time. For instance, we should be able to model an entire virtual city, but only pay to

simulate the few blocks we can see at any moment. We will refer to a simulation model for

the entire world without culling as the complete model, and a model that performs simulation

culling as the culling model.

The primary concern when culling is that the simulation should still appear satisfac-

tory to the viewer, or meet certain quality criteria defined by the user. The nature of the quality

criteria will depend on the particular application. For instance, the quality of a training simu-

lation might be defined by comparing a culling model to the real world: culling is successful
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Figure 4.1: A hypothetical racetrack simulation to demonstrate the problems that arise from
culling. If the viewer can only see the shaded region, we wish to simulate only the filled
cars, ignoring as much as possible the outlined cars that are out of view. This introduces two
problems: how do we know when cars that have left the view should re-enter it again having
passed around the track; and when a car does re-enter the view, how do we know what state
it should be in, given that we haven’t been solving its equations of motion for the time out of
view.

only when a viewer can’t tell it apart from reality for the cases of interest. In a computer game

application, the criteria might be much weaker: culling is successful if a viewer does not detect

any obvious mistakes, such as a monster behaving strangely as it leaves and re-enters the view.

Computer games already perform some culling, such as, for instance, not starting a monster’s

simulation until it is visible for the first time. Players learn the way the game behaves and

expect no more.

Within the constraints imposed by the quality criteria, a culling strategy is perfect

if it does work only for motion that influences the view. We define the efficiency, η, of a

culling model as the ratio of the amount of work done for motion in view to the total amount

of simulation work. The aim of a culling strategy is to be as efficient as possible. The perfect

algorithm has efficiency one, with lower efficiency implying more work done for motion that

is never explicitly seen. Actual culling models will in most cases have efficiencies below one,

because they must perform some work to meet the quality criteria.

4.1 Problems Arising from Culling

Say we wish to simulate a virtual car race on an oval track. For the purposes of

discussion, assume the viewer can only see one turn (figure 4.1), and that we wish the viewer

to believe that the race is realistic, given what they can see of it. We aim to build an efficient
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culling strategy for this scenario.

To ensure realism, we might impose the following quality criteria:

1. Each car should take a reasonable time to do each lap, given the presence of the other

cars which may cause it to go slower or faster.

2. Whenever a car is in view, it should have a speed and orientation typical of a real racecar.

Cars should not (in general) be touching each other.

If these criteria are met, we might reasonably assume that the viewer is experiencing the right

thing.

At a high level, for each frame of our virtual race track animation the simulation

module must perform two tasks:

• Visible cars must be identified, a task we refer to as the completeness problem. Iden-

tifying visible cars requires a way to determine where each car is while doing the least

amount of work, because if a car is not visible we don’t want to waste time determining

its location. In particular, in order to satisfy criteria 1 above for the racetrack, we must

ensure that when a car leaves the view it re-enters after an appropriate time, to ensure

the lap time is reasonable. The completeness problem may be defined another way: it is

necessary to ensure that everything that should happen in the world does happen, at an

appropriate moment and with the least amount of effort.

• Reasonable state must be generated for those cars that are visible. This is the consistency

problem, because we must ensure that this state is consistent with the quality criteria and

a viewer’s past experience of the world. The consistency problem is simple when the

car was in view on the last frame – just update its position from there. But the problem

is difficult to solve for cars that were previously out of view. The state of those cars

should be determined by solving a continuous set of equations for the time out of view,

but that would introduce unacceptable lag. We must use a faster method, but one that

still produces reasonable state given what the viewer knows of the car’s history, such as

how fast it was going when it left the view.

In practice, the extent to which the completeness and consistency problems manifest

themselves is highly dependent on the simulation being culled and the quality criteria for the

application. If a simulation is intended to give a very accurate impression of the behavior of a
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system, most culling may be unacceptable. If a simulation is intended to produce visually con-

vincing renderings, then these problems are significantly easier to solve — particularly if the

viewer is not actively seeking errors in the simulation, as might be the case for computer games

or other entertainment applications. Films, for instance, frequently contain inconsistencies yet

the experience remains acceptable to most viewers.

4.2 Related Work

Sudarsky and Gotsman [80] have demonstrated algorithms for incorporating dy-

namic

models into a BSP tree visibility scheme. They assume that the state of each object can

be expressed as a closed form function of time. They do not explicitly discuss the problem

of simulation culling, but in effect they address the completeness problem by bounding the

maximal extent of an object for some period of time (much as we will do), and solve the

consistency problem by evaluating the object’s equations of motion directly. The restriction to

closed-form equations of motion excludes most interesting simulations. The work described

here lifts that restriction: it is not necessary to have closed form solutions for the objects’

future motion.

Setas et. al. [76] demonstrated a forest environment in which simulation level-of-

detail techniques were used to reduce the cost of simulating systems that were distant from

the viewer or out of view. While not culling, they did achieve significant speedups while

maintaining a visually satisfactory world. Carlson and Hodgins [13] also applied level-of-detail

techniques, in their case to hopping robots playing a game. Three different models were used

for the robots: dynamic, kinematic and point mass. Significant speedups were achieved, and

the authors describe some validation experiments that demonstrate the quality of the resulting

simulation. While not presented as a level-of-detail strategy, the NeuroAnimator approach by

Grzeszczuk et. al. [37] can be used to reduce the cost of systems that are distant or out of view.

However, they provide little evidence of the quality of the resulting motion, particularly over

extended periods of time.

The synthetic motion capture approach of Yu and Terzopoulos [95] is an explicit

level-of-detail scheme in which the true motion of systems out of view is approximated by data

captured from the correct simulation. While resulting in some computation savings, not all of

the motion is approximated, so there appear to be additional savings available. Furthermore,
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the authors note that the approximations can significantly affect the quality of the simulation.

In particular, the approximate simulation exhibits significantly different behaviors when com-

pared to the real one, which is unacceptable for many situations.

The work described in the following chapters improves upon existing work in two

ways:

• It achieves higher efficiencies by performing less, in some cases zero, work for out-of-

view motion.

• It looks more carefully at quality criteria, and motivates the choice of particular models

by the quality criteria they meet.

4.3 Quality Assurance Through Probabilistic Comparisons

Let us return to the definition of the simulation task: to compute the dynamic state of

the world at each frame, given the previous frame. When culling, we wish to restrict our atten-

tion to those components of the full state that are visible to the viewer on a given frame. The

aim of modeling for culling is to generate state for the visible components while performing as

little work as possible, subject to the need to satisfy any quality criteria.

We choose to view simulation as a statistical exercise, where the aim of a simu-

lation model is to compute samples of how the world might behave given some parameters

(such as the initial conditions for the world). If the world is completely deterministic, there

is only one acceptable sample for a given set of parameters. On the other hand, many envi-

ronments contain random components, such as virtual creature models [9], models of natural

phenomenon [76], or other random effects (chapter 2). In those environments each particular

choice for the random variables represents a different sample world, and we can talk of a distri-

bution over worlds, and compute expectations and other statistic according to that distribution

(chapter 2 discusses this idea in some detail in the context of direction).

In the context of culling, we assume that the complete model (involving all the ob-

jects in the world all the time) defines how the ideal world should behave. We can capture

expectations for the behavior of the model in the form of reference distributions based on the

output of the complete model. For instance, in the race track simulation our expectations of

reasonable behavior might be based on the distribution of lap times when all the cars are being

fully simulated.
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Quality criteria can be viewed as statements about the desired similarity between the

complete model reference distribution and the culling model’s output distribution. We might

only require similarity in some aspects of the distribution (for instance, we might care about

relative lap times but not absolute lap times for the race track). We might allow the distributions

to differ in their tails, which means that the likelihood of rare events would be different. For

example, we might be willing to accept fewer crashes in a culled race track simulation (and

hence no infinite lap times), but more willing to accept higher variance in lap times, making

very slow or fast laps more likely when culling.

It is reasonable then to view computing some of the visible components of the state

as a sampling problem, particularly those components that have not been seen in recent frames.

The complete model along with states the viewer has previously seen together imply the ref-

erence distribution. A culling model is free to sample states in any way, provided that the

resulting sample distribution on the visible components is sufficiently close to the reference

distribution, where sufficiently close is defined by the quality criteria. Note in particular that

with culling, we assume that the quality criteria are only applied to subsets of the simulation

that are visible to the viewer. Hence, we only care about the similarity of the appropriate

marginal distributions on visible states.

The completeness and consistency problems may now be re-defined:

Completeness is the task of determining which marginal distribution to sample from. We

are only concerned with motion a viewer can see, so we only care about the marginal

distribution on visible state. Yet we must ensure we get the right marginal, to make sure

the viewer sees everything they should.

Consistency is the task of sampling from the appropriate marginal. If the sample distribution

is similar to the reference distribution according to the quality criteria, then we can be

sure of presenting a valid state to the viewer.

4.3.1 Approaches to the Culling Problems

The above analysis suggests that direction and some aspects of culling are related

problems: both require sampling from a distribution implied by a physical model and con-

straints on that model. In the case of culling, the constraints are on the state of previously

invisible objects, and arise due to things the viewer has experienced in the past. For direction,

the constraints are outcomes we would like to ensure.
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However, it is not necessarily the case that the same technology should be applied

to both problems. For direction, the conditioning is frequently on events that must happen in

the future, so we must solve an inverse type of problem: determine which values to use at

the start in order to make the right things happen at the end. On the other hand, for culling

we are always solving a forward problem: given what has already happened, rapidly sample

reasonable values from the distribution of final state.

Two approaches to sampling for culling will be discussed in the following chapters:

• We can model the target distribution on previously unseen state directly, and sample

from that model. This approach is useful if the distribution can be modelled and we

can sample from the model in real time. It focuses on the effects of the simulation as a

whole, rather than attempting to track the evolution of individual components.

• We can avoid modeling the distribution explicitly, and instead model the expected evo-

lution of each state variable over time. It is assumed that evaluating each individual

variable results in samples that are reasonably distributed, without explicitly solving a

sampling problem.

Chapter 5 describes technology for addressing the consistency problem, including

tools that for some cases automatically generate simulation models suitable for culling. The

work presented there assumes that the global spatial extent of objects in the simulation can be

bound over all time, and hence the completeness problem does not arise. Chapter 6 removes

that restriction, discussing an algorithm to solve the completeness problem. We present an

implementation of a virtual city in which cars not in view are culled, and examine the effec-

tiveness of the completeness algorithm before concluding with a range of open issues.
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Chapter 5

Consistency when Culling

The consistency problem arises in isolation when culling objects that have limited

range, because, while it is easy to determine roughly where such objects should be in the world,

it remains difficult to know what state they should be in when they re-enter the view after being

culled. Previous work [17] described hand-coded models that used various approximations

and statistical models to solve the consistency problem. This chapter is primarily focussed on

automated tools to perform the same task. We restrict our attention to simulations that can be

broken into independent systems each with a low-degree state space. In addition, we describe a

modeler for authoring dynamical systems and run-time algorithms for incorporating them into

an environment.

To solve the consistency problem, it is necessary to generate simulation state for an

object when it re-enters the view in such a way that the new state is plausible given what has

occurred previously in the world. For entertainment applications, the state may be considered

plausible if it does not offend the viewer’s expectations as to what should happen in the world.

For a training environment, there may be the additional requirement that the viewer be pre-

sented with a state that could reasonably exist in the real world, given what is known to have

occurred so far.

As discussed in chapter 4, we view the simulation model and past events as implying

a distribution on the state of objects that were not visible on the last frame. For a deterministic

world, and complete, accurate knowledge of past state, all the probability density for each fu-

ture state is isolated in a single set of state values, presumably determinable only by simulating

the equations of motion. Fortunately, however, a viewer can never have perfect knowledge of

the past, nor perfect knowledge of the model. Similarly, even training simulations may have
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some scope for approximating the real behavior of the system, given that the model being

simulated is probably already an approximation to reality.

To see how imperfect knowledge can be used to arrive at quality criteria for culling,

consider a probability distribution defined over some part of the simulation state that has left

the view, and how this distribution evolves over time. Our quality criteria will be satisfied if

we can sample according to the distribution corresponding to the moment the object re-enters

the view. With imperfect knowledge, the distribution initially has all the density concentrated

around the particular state the viewer saw, but not isolated at a point. The spread arises from the

viewer’s imperfect knowledge of the world, due to, for instance, the difficulties of determining

the exact velocity of a moving object.

As the system evolves out of view, the density will be shifted around the state space

according to the equations of motion for the simulation. We might also expect the density

to be smeared over the space, depending on how chaotic the motion is [38], and how much

randomness is present in the model itself. We can use the smeared distribution to define our

quality criteria: provided that the state we present to the viewer has reasonable probability

according to the appropriate density at the time it re-enters the view, the viewer will find the

state plausible, and our culling strategy will be acceptable.

5.1 Qualitative Analysis of Conditioning

We qualitatively identify three ways to generate samples from the distribution of

reasonable states for objects re-entering the view, characterized by how long the object has

been invisible. This discussion is predicated on independence between the visible and invisible

parts of the simulation, so we can consider culled systems in isolation, where a system is a set

of related state variables, unrelated to any other state variables. In particular, the only thing

that can influence the state of a system when it re-enters the view is its own last known state,

rather than anything the viewer may see while it is out of view.

5.1.1 Short periods out of view

Over short periods of time, knowledge of past events has a significant influence on

what is considered plausible state. Consider the case of a falling rock, where the viewer sees

the rock go over the edge (figure 5.1). While the rock is in flight, but before it hits the ground,
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Figure 5.1: An example of short term prediction: A falling rock may be accurately predicted
until it hits the ground.

System
out of
view

t

Figure 5.2: Dynamic state may be buffered ahead of the rendering, as indicated by the shaded
regions. When the object is in view, the buffer is filled faster than the renderer consumes values
- three times faster in this case. When the system is not in view, no new values are computed,
but the old values become redundant as time passes. If the object re-enters the view before the
buffer is empty, as is the case here, then there is no lag. State may also be interpolated between
values in the buffer to make the frame rate independent of the simulation time steps.

a viewer can readily extrapolate the expected state of the rock, because they have good experi-

ence of how falling objects behave, and too little time has passed for uncertainty to propagate.

To summarize, uncertainty doesn’t grow very much over short periods of time for smooth dy-

namics.

To ensure consistency in this situation the most accurate simulation model must be

used, saving no computation. To avoid lag, the simulation may be run ahead of the rendering

and state values buffered (figure 5.2). When an object goes out of view, filling stops, but if the

object re-enters the view soon after, a value is ready in the buffer without incurring lag.

While using buffers to reduce lag while culling is a novel idea, it is not atypical to
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Figure 5.3: An example of medium term prediction: Once the falling rock hits the ground, its
position and orientation are uncertain. However, a viewer does know for certain that the rock
is on the ground at the bottom of the hill.

buffer the values of state variables between a simulator and a renderer. The practice arose

because the rate of generation of state by a simulator may differ significantly from the rate of

consumption by a renderer, and a buffer can smooth the flow. User interaction complicates the

issue slightly by requiring buffer flushes when the user’s actions invalidate state. Buffers also

allow a slightly more relaxed definition of real-time performance. The tight definition is that

a system is real time if the new state, Si = M(Si−1), can be computed for each frame in the

time available for that frame, while the loose definition allowed by buffers is that a simulation

is real time if the required state variable is always ready in the buffer when required to render a

frame. In other words, the simulation can compute some frames at a slower pace than real-time,

provided it can compute others faster.

5.1.2 Medium periods out of view

Over the medium term, the range of plausible state is in a transient zone. While the

range of plausible states tends to increase, leading to some values being essentially free, there

may still be significant constraints. Following the rock example (figure 5.3), once the rock hits

the ground a viewer can no longer say accurately where it is, nor how it is oriented. More

complex motion may have several intermediate, medium term regimes, reflecting different

expected behaviors.

Looking at the rock example within a probabilistic framework, the likely positions

for the rock fall within a small set before the rock hits the ground. After several impacts,

the likely positions are spread over the ground plane, but are very localized in the vertical

dimension. However, it is difficult to explicitly state what the distribution should be, because

it depends on where the rock fell from, how it bounces, and the nature of the ground. Any of
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Figure 5.4: A traffic light is an example of long term prediction. If the light has been out
of view for more than a few minutes, a viewer cannot say exactly which state is plausible.
However, a viewer does expect the light to be red or green more often than it is yellow.

these things may change from fall to fall, so the distribution would have to be parameterized in

some way that was simple to estimate and sample from.

Instead of capturing the distribution, approximations can be used to provide a state

for the system. The motivation for approximations is that they may be relatively easy to con-

struct and evaluate, and they are applicable as long as the state computed from them is reason-

able (has high probability) given the viewer’s knowledge and the model. The approximation

must generate a new state for the system given the old state and the time out of view. The errors

in the approximation should reflect the range of plausible states available. As long as the error

is within this range, the viewer will consider the outcome plausible. Many methods exist for

approximation; neural networks are used here.

While not discussed further here, in some situations it could be preferable to build

the distribution explicitly and sample from it. One such case may be systems described by

Markov processes, where the distribution after some number of frames is defined by matrix

multiplication.

5.1.3 Long periods out of view

In the long term, for many simulations previous knowledge can only weakly condi-

tion the range of plausible states. Yet some states are still more plausible than others. Traffic

lights provide a good demonstration (figure 5.4). A viewer’s expectations reflect the general

behavior of a traffic light, which is to be red more often than green, with yellow least likely. To
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exploit this, a new state can be sampled from the simulation’s stationary distribution, which will

capture reasonable long term behavior for the system, independent of any previous knowledge.

We can use standard density estimation techniques from various sources to model stationary

distributions [8, 56].

The use of a stationary distribution reflects the fact that, for many simulations, a

small region of uncertainty in a viewer’s knowledge of state may grow over time to match

the stationary distribution. We base some of our techniques for analyzing systems on that

observation. It is possible to explicitly use the distribution in this case because the distribution

is invariant over time, so can be computed and stored as a pre-processing phase.

5.2 Simulation Models for Culling

The tools described in this chapter take as input a basic description of the simulation

and produce an alternate description suitable for culling. The input description is assumed

to be the most accurate required for simulation: the complete model. We will call the output

description the culling model. The tools work for dynamical systems that are free from exter-

nal influence, and have a state space of low dimension. They are only useful if the accurate

model is expensive to evaluate over long time intervals. This is the case with, for instance,

systems of differential equations evaluated by numerical integration, or systems described by

state machine transitions.

The tools were implemented in Java [2] and VRML [90]. The accurate model con-

sists of a Java class file which implements a function for evaluating the system at some given

time when given an initial state and time. The function should be able to generate state in real

time (it will be used when the system is in view) but need not be significantly faster. In spec-

ifying the accurate model, the user also defines other information helpful in analysis, such as

initial conditions (which may be fixed or random), the dimension of the system, and a number

of other parameters.

Systems are classified according to whether they are periodic or not. A system is

periodic if its state, St, at time t is identical to that at time t + T , where T is the period of the

system. If St = St+T , then St = St+nT for any integer n. If no such T exists, then the system

is not periodic.
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Figure 5.5: The roller coaster model. To cull this model, we build approximations to each
car’s position and velocity as a function of the fraction of a period completed. When the ride
has been out of view for more than a short period of time, the approximations are evaluated
instead of solving the equations of motion for the time out of view.

5.2.1 Periodic Systems

As an illustrative example of a periodic system, consider a roller coaster model. The

car runs on a track described by a uniform cubic b-spline (figure 5.5), under the influence of

gravity but without friction. The “upright” direction of the car is also described with a b-

spline. Two state variables describe its motion: the parametric position on the track, u, and the

derivative of u with respect to time, u̇.

Consider what behavior a viewer might expect from a system like the roller coaster.

Over very short periods, on the order of a couple of seconds, the smooth nature of the motion

makes accurate prediction easy: a viewer can simply extrapolate the last seen position and

velocity. But if the roller coaster has been out of view for longer, the viewer must rely on what

they know about roller coasters in general, such as how fast the cars move at a given position

on the track. Predictions of this type will generally be uncertain: as long as the car appears to

be doing about the right thing, the viewer will think everything is reasonable. Our task is to

find functions that are quick to evaluate and whose output is close enough to the true dynamics

to remain plausible.

The behavior of a periodic system can be completely described by its state function
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over the course of one period: St = φ(t), t ∈ [0, T ). If we build a closed-form approximation,

Ŝt = φ̂(t), t ∈ [0, T ), then we can approximate the state of the system at any time, t ′, simply

by evaluating Ŝt′ = φ̂(t′ mod T ). Provided the error in φ̂ with respect to φ is not large, a

viewer will not detect the approximation error.

Approximation of periodic systems involves four steps:

• Determine the period.

• Bound the range of each state variable over one period, to aid in approximating.

• Learn a neural network approximation, φ̂(t).

• Generate code for the culling model.

Determining the period of a dynamical system, if one exists, is a common operation

in numerical analysis. Fourier analysis may be used, or an approach that searches for return

values: places where the function takes on values it has taken before. Our tools use the latter

approach.

Given the period, it is possible to determine φ̂, the approximation function, which

we represent as a neural network [8]. Neural networks have the advantage of near constant

evaluation time for a given network, and are able to approximate well the wide variety of

functions the tools may encounter. Specifically, a standard feed-forward neural network is

used with two hidden layers and a fixed number of nodes. The network has one input node,

corresponding to the time we wish to evaluate at, t ∈ [0, T ), and as many output nodes as there

are state variables for the system. We use networks with ten hidden nodes per layer, which is a

trade-off between the quality of the approximation and the time taken to evaluate the network.

Other network topologies and training schemes could also be used.

The neural network will perform best if the function it is trying to represent has each

component in the range (0, 1). In order to re-scale the state variables for a dynamical system

to this range, the minimum and maximum possible values for each component must be found.

This is done by taking each variable, one at a time, and searching for global minimum and

maximum values of that variable over the interval [0, T ).

To train the network, N samples of φ(t) are generated for random times within the

period. We then repeatedly apply a standard back-propagation [8] with momentum algorithm

on these samples. Each sample is used N − 1 times, after which we replace it with a new
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Figure 5.6: The exact functions for the parametric position of a roller coaster car on its track,
u(t), and its derivative, u̇(t), and the neural network approximation to them, plotted for one
complete period (12.13 seconds). The neural network was trained for around 30 minutes to
achieve this result. The network approximates u with great accuracy, but does less well with the
local maxima and minima of u̇. This is not of concern in this example, because the underlying
dynamical system can correct any error based on energy constraints. Currently, our tools use
one network with multiple output nodes to approximate all the state variables for one system.
A separate network could be used for each state variable, which would improve the error at
the expense of additional code and evaluation time.
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sample. We do this to reduce the number of dynamical system evaluations, since they are

generally slower than a neural network training iteration. The learning process is terminated

when the error falls below a user defined threshold, or a maximum number of iterations is

reached. A plot of u and u̇ as a function of time for the roller coaster model, and the neural

network approximation learned, is shown in figure 5.6.

The final step is code generation, in which a new Java class is created to evaluate

the state of a periodic system efficiently regardless of the time between evaluations. This new

system can choose to either use the complete model or the approximation. It applies the former

if the interval between a viewer last seeing the system and the current time is less than 10%

of the period, otherwise it applies the latter. The threshold for using the approximation is

somewhat arbitrary is this case. It could be specified by the user, or determined based on the

error in the neural network as a function of time.

Many approximation strategies other than neural networks are possible. In particular,

if the period of the system is short, state variables corresponding to a fixed set of times could

be stored, and new state generated simply by interpolation. However, in the general case, the

neural network approximations we use are smoother and more compact.

Many simulations, such as the roller coaster, have energy constraints which may be

violated by the neural network approximation. In such cases it may be possible to set some

parameters based on the energy constraint. For the roller coaster the speed could be explicitly

set once the position was known, based on the total energy of the system.

5.2.2 Non-Periodic Systems

The Tilt-A-Whirl is an example of a non-periodic system (figure 5.7). It is an amuse-

ment park ride that exhibits highly complex motion despite a simple dynamics description. The

ride has seven cars, each attached to a platform on which it is free to rotate. The platforms are

driven around a circular hilly track. As the platforms move around the track they tilt so as to

remain tangential to the surface, which results in complex motions for each car.

Each car is independent, evolving according to the same equations of motion but out

of phase to reflect their respective positions on the track. The state variables for each car are

elapsed time, t, the position of the car on the platform, φ and its first time derivative, φ̇. The

fixed parameters to the system, common to all cars, are: r1, the radius of the track; r2, the

distance from the center of the platform to the car’s center of mass; α1, α0, the size of the



80

Figure 5.7: A Tilt-A-Whirl amusement park ride. This ride is very difficult to predict over
anything but short periods of time. Two stages of approximation are used: neural networks if
the ride has been out of view for a relatively short period, and a statistical approximation if it
has been out of view longer.
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hills; θ̇, the platform’s initial angular position and velocity around the track; and ρ, a damping

constant. Each car its own parameter, θ0, specifying the initial position of its platform around

the track.

The governing equation of motion for each car, derived from Lagrange’s equation

and making use of small angle approximations (following [49]) is:

r2
2φ̈ + ρφ̇− gr2(α sinφ− β cos φ) + r1r2θ̇

2 sinφ = 0

θ = θ0 + θ̇t

α = α0 − α1 cos 3θ

β = 3α1 sin 3θ

Consider a Tilt-A-Whirl that moves out of the view, and then re-enters. If it is hidden

for only a short period of time, a viewer can simply extrapolate from the state they saw when

it left the view, and hence quite accurately predict the new state. In this case we must use the

most accurate model to update the Tilt-A-Whirl’s state. However, as the Tilt-A-Whirl is out of

view for longer periods, a viewer has increasingly weaker expectations for the new state, and

the system can make larger errors in generating the new state without contradicting the viewer.

In other words, approximations to the true system may be used, and the approximation error

can grow as the time interval out of view grows.

After a Tilt-A-Whirl has been out of view for a long time, a viewer can no longer

make use of information from the previous sighting to predict new state. However, a viewer can

use their general knowledge of how a Tilt-A-Whirl behaves. To satisfy the viewer’s prediction,

we must choose a state that is typical for the Tilt-A-Whirl. To represent such typical states, we

use a probability distribution over the state space of the Tilt-A-Whirl: states more often seen

by a viewer will have a higher probability than states seen infrequently. To generate new state,

we simply sample according to the distribution, which is essentially the stationary distribution

for the system.

While the preceding discussion is phrased in terms of a Tilt-A-Whirl’s behavior,

the observations made are typical for any non-periodic system. Various system dependent

parameters will change, based on how easy or hard it is to predict the specific system, but the

system can be analyzed to find values for these parameters. Our tools do exactly that.

Analysis begins with a complete model, as for a periodic system, and proceeds

through the following steps:
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1. Find the range of the system: the bounds of its state variables in state space. This allows

us to build cell structures over the space and to scale values if required.

2. Build the stationary distribution that will be sampled to generate new state when a

system has been out of view for a long time.

3. Determine tlong, the time an object must be out of view before we can sample a new

state from the distribution.

4. Build approximations for generating new state when a system has been out of view for

a medium period of time.

5. Determine tmedium, the time a system must be out of view before we use approximations

instead of the complete model.

6. Generate code incorporating the distribution for sampling, the approximations, and con-

trol logic for determining which method to use for a given time out of view.

Finding the Range

The range of the system is important because it restricts the region of state space we

must concern ourselves with, allowing discrete cell structures to be built on state space. To

bound an individual variable, we search forward through time for local minima or maxima for

each variable, updating the global minimum and maximum as we go. We stop looking for new

local minima and maxima when the global values cease to change significantly. This method

is not foolproof — the simulation will not visit regions of state space that are reachable from

a different starting point. However, we can be arbitrarily certain of how good the bounds are

by tracing a larger number of trajectories from appropriately distributed starting values. We

find in practice that small errors in the bounds do not harm the analysis. Also, some variables

may be bounded by the user in the input description, particularly angular variables (which lie

in (−π, π] radians).

Building the Stationary Distribution

The stationary distribution is the distribution indicating how much time a long run-

ning system spends in any region of the state space. To model the distribution, the reachable

regions of state space are divided into constant (user specified) size cells, and a probability,
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Figure 5.8: The stationary distribution for the Tilt-A-Whirl system. The left image shows a
high resolution image of the distribution, which assigns a probability density to every point
(φ, φ̇) in the state space, for the particular position on the track corresponding to θ = 0. If
we require state at a different θ, we sample one from this distribution and integrate to the
required point. Darker points correspond to higher density, indicating that the system’s state is
more likely to take on that value. The right image shows the discrete cell approximation to the
distribution. The discrete approximation still captures the overall character of the distribution,
but with far smaller data storage requirements.

Pi, is attached to each cell i. The result is a discrete distribution on cells, where Pi is the

probability that, at a random point in time, the system is within that cell. We assume that the

distribution on points within a single cell is uniform.

To build the distribution, we begin with a large number of paths at random and in-

tegrate for fixed time-steps, maintaining a counter for each cell measuring how many times a

path is in that cell at the end of a time-step. Then,

Pi =
counti

∑

i counti

According to the statistical law of large numbers, the Pi will converge to fixed values as the

system is integrated for longer periods of time (assuming a stationary distribution exists). We

monitor how much the distribution changes between time-steps, and stop when the change

becomes small as measured by the L1 norm.

The discrete cell approximation to the exact stationary distribution performs well in

practice, even with quite large cell sizes. Figure 5.8 shows the stationary distribution for the

Tilt-A-Whirl, in which the discrete distribution succeeds in capturing the swirling nature of the

exact distribution, but with only a small storage cost.
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Determining tlong

The sampling threshold, tlong, is the period of time that must elapse before a new

state may be sampled from the stationary distribution, rather than computed based on some

initial conditions. It is equivalent to the time taken for a small region of viewer uncertainty

to evolve into the stationary distribution. To see why this is the case, consider what a viewer

knows when the object leaves the view. There is some error in this knowledge, which means

that the system could be moving on one of several different paths. As time moves on, these

paths diverge, until finally the distribution of possible paths looks like any other distribution

of paths for the system - the stationary distribution. Because the two distributions are now

the same, sampling from one is the same as sampling from the other, and a viewer cannot

detect that we sampled from the stationary rather than the exact distribution defined by their

knowledge.

To determine tlong, we sample a large number of starting values from within a small

region of state space, then integrate these paths for fixed time-steps (figure 5.9). At the end

of each step, we check the difference between the distribution of the paths and the stationary

distribution. If these are nearly the same, the total integration time is a candidate for t long. This

procedure is then repeated for other starting regions, until enough of the state space has been

sampled from. The actual value used is the maximum tlong found for any region. Our methods

directly examine the propagation of uncertainty, but other approaches may be applicable:

• Analytical methods based on differential analysis [38].

• Discretization methods that replace the continuous state space with a discrete one and

the continuous differential equations with a discrete mapping between cells, and then

apply the theory of Markov processes [44].

Building Approximations

The approximation functions built in this step will be used to generate new state

quickly, with some error allowed. After some short period of time, they must be cheaper to

evaluate than the most accurate routine supplied by the user, and we want the cost of evaluating

them to grow more slowly than the time period over which they are evaluating. Neural networks

are used, similar to those for approximating periodic functions.

In this step we generate several neural networks, each of which evaluates over its
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Figure 5.9: The convergence of one cell to the stationary distribution, for the Tilt-A-Whirl
model. Starting top left and moving clockwise, the plots show the distribution of 5000 paths
after 3.07 seconds, 6.15 seconds, 9.23 seconds and 12.31 seconds. The distribution in the
lower left is sufficiently close to the stationary distribution to stop testing for this cell. Other
cells take up to 24.6 seconds to converge.
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own fixed time interval, ∆ti. As input, each network takes the state of the system at time

t, so there are as many input nodes as state variables. On output, each produces the state at

time t + ∆ti. One network evaluates a function over a period of half the sampling threshold,

tlong/2. The next function evaluates over half this time, the next over half of that and so on,

stopping at a network that evaluates over either a user defined minimum step or the period

of any forcing functions, whichever is greater. By chaining neural networks together, we can

evaluate to within a small distance of any time interval, which we will reach exactly using the

complete model.

Our structure of networks has the following advantages:

• We expect the cost of evaluating networks to grow at a slower rate than the time interval

for which they evaluate, resulting in computational savings over the cost of evaluating

one network over many steps.

• We can build the network’s dependence on time into the network itself, rather than mak-

ing it an input parameter. This significantly simplifies the network, and allows lower

errors for the same size net.

• We can tolerate larger errors in networks that evaluate over longer times, without sacri-

ficing accuracy in networks that will evaluate over short periods.

• We can learn networks concurrently, with significant improvements in training time and

efficiency.

The samples the neural networks are trained on are distributed according to the sta-

tionary system (due to the method we use to generate them). This will result in the networks

having lower error rates in regions of high probability, and higher rates in regions of lower

probability (figure 5.10). This is acceptable, because the error will tend to be inversely pro-

portional to the likelihood of a viewer seeing the error. We terminate learning if the error falls

below a user defined threshold value. We grow the network by adding five new nodes per layer

each time its learning rate slows. We also force termination after a fixed number of cycles if

the network has not reduced its error to an acceptable level.

Grzeszczuk et.al. [37] replace the equations of motion for a system with a neural

network mapping function between successive states, with the aim of reducing the cost of

frame to frame evaluations. They demonstrate the approach on more complex systems than
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Figure 5.10: An example of the Tilt-A-Whirl equations of motion approximated by a neural
network. Intensity indicates function value: lighter is higher valued. The network shown is
attempting to learn the change in orientation and change in velocity of a Tilt-A-Whirl car
over a 6.15 second interval. The left column plots the change in orientation as a function of
initial conditions, and the right column plots the change in velocity. The top row shows the
true function, the middle images show the function learned by the network, and the bottom row
shows the difference image, masked by the stationary distribution shown in figure 5.8. Note that
we are not concerned with errors that are masked out by the stationary distribution, because
these errors will never be seen by a viewer. Such regions include the top left and bottom left
corners of each frame.
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those handled by our system, providing additional evidence that neural networks are a useful

technique for capturing dynamics.

We could use other approximating functions, such as radial basis functions, wavelets

or splines, which have the advantage of elegant subdivision schemes, but lack the generality

and ease of fitting offered by neural networks. For optimum approximation, the best method

would be chosen based on how each performed on the target function.

Determining tmedium

To determine how long before the approximation may be used instead of the true

evaluation routine, we may simply find the point at which it becomes more efficient to ap-

proximate, provided the approximation error is sufficiently low. The neural network learning

procedure ensures that the error in the approximation function for the shortest evaluation time

network is within a viewer’s ability to predict, and we assume that neural networks are al-

ways cheaper to evaluate than the complete system, so we simply set tmedium to the smallest

evaluation time of the networks we have learned.

Code Generation

The code generated for non-periodic functions allows efficient evaluation of new

dynamic state over any time interval and within a viewer’s ability to detect errors. The compo-

nents of the new model are:

• A representation of the stationary distribution and code to sample from it.

• Code to evaluate the various neural networks, and a wrapper function that determines

the set of evaluations required to step forward a given amount in time.

• Control logic that examines the difference between the desired evaluation time and the

last time the system was seen by the viewer. If the difference is greater than tlong it

samples new values. Otherwise, if the difference is greater than tmedium, it uses a neural

network approximation. Otherwise, it uses the complete model to generate state.
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5.3 The Runtime Layer

The tools for generating approximations for culling produce a description of the dy-

namical system that can efficiently evaluate the state at any given time regardless of the period

between evaluations. The aim of a runtime layer is to provide an easy to use interface between

code to evaluate the dynamics and the rendering system. In the specific implementation de-

scribed here, the dynamics are evaluated by a Java class, and the renderer is a VRML browser.

A runtime environment is generated for each dynamic object, consisting of a VRML file and a

Java class file. Together, they must perform the following tasks:

• Store the geometry of the animated objects.

• Link the state variables of a dynamical system to transformations of the objects.

• When the renderer indicates a new frame1, the runtime system must obtain dynamic state

values for that frame.

• Track the visibility of the system, and turn off evaluation of dynamic state (cull this

system) if not in view.

To manage dynamic state, the runtime environment maintains buffers of state vari-

ables evaluated at fixed time intervals. Intermediate values required for rendering are interpo-

lated between buffered states. We use linear interpolation, although higher order schemes are

possible. Buffering state is advantageous because it provides constant frame rate interface to

the renderer, while allowing the underlying dynamic system to compute values at any rate and

time-step. It also makes it possible to have useful values ready in the buffer if the object leaves

the view, and then re-enters very soon after.

When the runtime system receives a request for new state, there are two possibilities,

depending on whether the value is already buffered. If the value requested does not appear in

the buffer, the dynamical system is evaluated twice, once for each of the values bracketing the

requested time. If the values are already in the buffer, the system is still evaluated in order to

fill future slots in the buffer. In practice, the system is repeatedly evaluated to fill the buffer

until it signals that enough work has been done for one frame.
1In VRML, this is achieved through TimeSensor events, which we assume a browser sends at least once per

frame
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For the systems described in this chapter, a static bound can be computed that is

certain to contain the object over all time. The restriction is imposed so that we need not solve

the completeness problem when culling, and is lifted in the next chapter. The task of tracking

visibility then reverts to the problem of determining whether a bounding volume is visible, a

task that may be addressed in many ways.

For the VRML implementation, we use VisibilitySensors defined by the VRML lan-

guage. These sensors send events each time a bounding volume enters or leaves the user’s view.

In turn, these events cause the Java class to mark individual dynamical systems that control the

object as visible or invisible. Invisible objects will not be evaluated for new state. The VRML

specification does not allow a user to explicitly activate or deactivate Java scripts, so we use

an automatically generated script to ensure that events are not sent to culled scripts. The exact

method by which visibility is determined depends on the VRML browser implementation.

Each runtime environment is unique to its model. To create the runtime, the user

provides a file describing the geometry to be animated and associating dynamic variables with

transformations. The file format used is simple enough to generate by hand, but the easiest

method is through a modeler, described in the next section. A program then completes a

template to create the runtime files.

5.4 Attaching Dynamics to Geometry

The rigid-body modeler allows a user to load geometric objects, display them, and

build transformation hierarchies consisting of objects, rotations, translations and bounding

boxes. The values used for the transformations may be animated, thus creating dynamic mod-

els. As output, the modeling program produces the runtime layer as described above, or it can

save an intermediate file format. The interface is shown in figure 5.11.

In describing systems for the modeling process, we distinguish between output vari-

ables and state variables. State variables are the set of values required to describe the system

completely at any time, whereas output variables correspond directly to geometric transforma-

tions. The output variables are derived from the state variables through a user defined function.

For example, the roller coaster model has two state variables: the parametric position on the

track and the parametric velocity along the track. The output variables are the actual position

in world space and the various rotations to align the car with the track, derived by evaluating

the track spline at the position indicated by the state variables.
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Figure 5.11: The interface for our dynamic transformation modeler consists of three regions.
In the top panel the current geometric arrangement of the system is displayed, including its
bounding volume. The transformation hierarchy for the system is displayed in the lower left
panel. A simple drag-and-drop interface is used to edit the hierarchy. The available nodes,
shown on the far left are (top to bottom): group, rotation, translation, VRML object and bound-
ing volume. By clicking on a node in the tree, a user can edit the fields of that node in the lower
right panel, entering a constant, or a variable to animate the field. The user is shown here
editing a rotation node, specifying a variable as the angle through which to rotate.
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Each field of geometric transformation is specified either as a constant value, or as an

element of a field variable. Each field variable is an array corresponding to the output variables

for a dynamical system, which, in a VRML/Java implementation, the user specifies as a Java

class name when defining the field variable. The class for field variables must implement an

interface that defines functions for evaluating the state at a given time, and for setting the values

of output variables. The approximation tools described above produce such classes, but users

are also free to define them directly — the format is simple and compact. Hand authoring is

desirable for systems expressed as closed-form functions of time, which do not benefit from

the approximations described above yet are still important for modeling dynamics.

Within the modeler, a user can preview the effect of the dynamical system on the

model. Such a preview provides a small, isolated environment in which to test dynamical

systems, with reasonably strong error detection and debugging technology.

The bounding boxes in the hierarchy are used to tell the system which dynamics may

be culled. Each bound has associated with it a set of variables whose visual effect is contained

within the bound. If the bound is not visible the dynamics for those variables will be culled.

The modeler can automatically determine this bound, by running the system within the modeler

and examining the maximum extents of geometry over time.

We emphasize again that the dynamics are largely independent of the geometry they

are attached to. There is some dependence if the simulation is to be physically plausible,

such as lengths of geometric objects appearing as parameters in the dynamical system, but

as parameters they are readily made available to a user, and don’t change the structure of the

underlying equations. This allows re-use of parameterized dynamics with different geometries,

and vice-versa. More importantly, it makes possible a library of dynamical systems, each with

efficient cullable code, which could be used by authors in the same way 3D geometry libraries

are used today.

5.5 Speedup Results

To measure the performance improvement while culling dynamics, we studied the

time spent computing the dynamics for each rendered frame of a simulation. The models used

in our tests are shown in table 5.1. We began with one instance of each in the world, except

for the Pendulum, of which their were two variations. We then added additional objects up to

a maximum of 35 (five of each example). In each test, the average frame time was measured
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Name Octopus DiveBomber Pendulum Ship
#variables 10 5 3 1

#dimensions 2 2 2 2
period none none none 3.07s

tmedium 15.0s 8.0s 1.92s N/A
tlong 30.0s 16.0s 23.1s N/A

#networks 1 1 4 1
time 11h53m 10h47m 6h46m N/A

Table 5.1: The fairground rides modelled with our tools and used in the experiments, along
with various statistics. #variables is the total number of animated variables in the system.
#dimensions is the dimension of the dynamical system that is optimized. It is not the same as
vars because each ride consists of several independent systems, some variables are modeled
as closed-form functions of time, and the rate of change of some variables may add additional
dimensions. If the system is periodic, the period is given. tmedium and tlong are the thresholds
for approximation and sampling respectively, and nets is the number of networks trained. Time
is the total time taken for the optimization process. Note that a longer tmedium, which corre-
sponds to a longer forcing function period, implies longer running times, because we integrate
in steps of one period.

for a viewpoint animated such that the center of view moved in a circle around the world while

the view direction oscillated through a 90◦ angle. Rides were added so that the density of rides

in the world was approximately constant. With culling turned on, the simulation for a ride

was computed only if the ride was visible, and we used the models generated by our software

to ensure fast, consistent evaluation. With culling off, the dynamics for all the models were

computed for every frame using the complete model for the system. The geometric rendering

was not affected by the culling – we assume the browser was culling geometry against the view

volume.

Table 5.2 presents the timing values recorded in the experiments. The results demon-

strate that the average time per frame is roughly linear with respect to the average number of

systems in view, because we only perform computation for objects in view, and the browser

performs geometric culling against the view volume. Figure 5.12 plots the speedups obtained

by culling over a world that does no culling. The speedups obtained are around 2.6, and remain
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Total Cull On Cull Off # In View % in View
7 0.048s 0.126s 1.42 20%

14 0.090s 0.249s 2.94 21%
21 0.142s 0.394s 4.75 23%
28 0.208 0.550s 7.27 26%
35 0.280 0.727 9.12 26%

Table 5.2: Average time per frame with and without culling, and the average number of models
in view, for increasing numbers of models. The time per frame with culling on grows approx-
imately linearly with the number of models in view, and the frame-rate speedup is roughly
constant (figure 5.12), as expected with our set up.
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Figure 5.12: The speedups achieved for the fairground rides with a culling strategy compared
to the complete simulation, plotted as a function of the total number of models in the world.
We expect to see a constant speedup in the constant volume, increasing density environments
with which we experimented. The variation is probably due to extraneous factors including
frame rate dependent differences and variations in the set of visible objects over time between
different environments. Note that the vertical axis does not start at zero.
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roughly constant as the number of systems increases. We expect this result, as the percentage

of systems in view remains approximately constant. We did not achieve the 4× speedup one

might expect (only around 1/4 of the systems were in view at any time). This is due in part

to the fact that our underlying system must perform some computation to check whether each

system is in view, as well as the overhead of Java scripts.

5.6 Discussion

One significant extension to our approximation software is to add the capacity to

handle state machines and hierarchies of systems. The optimization approach is similar, and

the range of systems that can be modeled would be greatly increased. For example, the Tilt-A-

Whirl ride would be able to stop to let off and collect passengers, rather than run indefinitely.

For novice users, an authoring tool would ideally hide any equations of motion for

the system from the author. Such a tool would approach modeling from the point of view of

geometric constraints and common forces (such as gravity or motors). The modeler would

then infer the dynamics and generate the complete model required by our current system. With

this architecture the optimization process is carried out as a subsystem of the modeler, and the

dynamics need never be explicitly stated by the user.

The work described in this chapter makes two significant assumptions about the sim-

ulation of interest:

• The entire simulation can be broken into independent systems each of low dimension.

For instance, the entire fun park is broken into individual rides. The independence as-

sumption implies that the behavior of a system cannot be influenced by what a viewer

sees while it is out of view, and we need only consider the previous seen state of the

system when generating models for culling.

• It is possible to bound the global extent of each sub-system for all time. The Tilt-A-

Whirl’s motion, for example, is confined to within the region covered by its base. This

restriction meant that we did not have to address the completeness problem.

The next chapter describes a world in which these assumptions no longer hold, but in which a

successful culling strategy is still possible.
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Chapter 6

Completeness

The completeness problem is that of identifying all the potentially visible objects

for a given frame, which in turn ensures that the viewer sees everything they should see. As

discussed in chapter 4, one example arises on a virtual race track where the viewer can only

see one turn. If a racer is seen crossing the line, and subsequently goes out of view, after some

period of time the viewer expects to see the car re-enter the view from the other side, having

gone around the track. To address the completeness problem we require a way to make sure

the car re-enters the view, after the right time, but without doing a significant amount of work

while it is out of view. Completeness is not just concerned with objects the viewer has seen

before: in a virtual city the viewer expects to see cars entering the view from side streets, even

if they have never seen those cars before.

As a specific case study we concentrate on a series of large scale environments popu-

lated by cars that move through the maze-like streets of old cities (designed before grid layouts

became popular). Such cities were chosen as an example because:

• Visibility is relatively easy to determine for the cluttered streets of a city. The cities we

use lack the regular, long line-of-sight plan that modern cities exhibit, which means that

on any given frame we expect a relatively small but highly variable number of roads to

be potentially visible.

• The cars in the city are examples of wide ranging dynamic objects with significant group

interactions. The culling algorithm must capture the expected interactions between cars

while they are out of view.

• The city models may be automatically generated, making it easy to generate multiple
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cities of different sizes but with similar statistical properties, such as the expected number

of roads visible from a given location. We use a variety of city sizes in our experiments.

Figure 6.1: A screen snapshot showing the intersection of several streets in a city simulation.
Each car, labeled with a unique identifier, stops when it reaches the intersection and waits its
turn before passing through.

An screen snapshot for an example simulation is shown in figure 6.1. Complete

details of the model are given in appendix B. In summary, the important features of the city

are:

• The road network is a directed graph, with nodes in the graph representing intersections

and edges representing lanes along which cars may drive.
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• Cars perform random walk on the graph, traveling along each lane below a maximum

speed and making random choices as to their next lane each time an intersection is

reached.

• Cars avoid collisions by two means:

– Cars slow down to maintain a safe braking distance behind cars in front.

– Cars wait in turn to pass through each intersection, with the invariant that only one

car is in any intersection at any time.

The collision avoidance mechanisms introduce invariants into the model that a culling

strategy should attempt to maintain, and it leads to uncertainty in the time taken by a

given car to traverse a lane.

• Visibility is relatively easy to compute in the city, and we can efficiently track car visi-

bility over time.

For any general large environment, the objects in the world may be qualitatively

divided into three sets, depending on how recently they have been seen by the viewer, and how

memorable or predictable each object is. We are interested in how difficult it is to determine

whether or not these objects are visible on the next frame:

• Visible objects for this frame. The cost of determining the location of these objects for

the next frame is small – their equations of motion must be solved for one frame interval,

and even if an object leaves the visible region on this frame and its state is not required,

we have only done one extra frame’s worth of work. In the city model, these cars are

identified by the visibility system using standard technology.

• Previously seen objects that weren’t visible on this frame. These objects may be visible

on the next frame, but it is unnecessary to compute the location of them all, because

most of them are unlikely to be visible, and the work will be wasted. Instead, the aim

is to infrequently update the potential locations of these objects, and use data structures

that can report the potentially visible objects for the next frame without examining all

the objects. In the city model, we include all the non-visible cars in this category.

• Never before seen objects that may be visible on the next frame. The experiments de-

scribed in this chapter address such objects only for the first frame, when every object is
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assigned an initial position and we assume that the viewer is aware of all those positions.

Section 6.3 discusses ways to more efficiently manage these objects.

This chapter describes an algorithm that efficiently determines which objects are

within the visible set for each frame, and we discuss some specific experiments with the city

environment. The chapter concludes with a discussion of the benefits and inadequacies of the

current algorithm, and discusses how it may be improved.

6.1 A Completeness Algorithm

As suggested above, the difficult aspect of a completeness algorithm is knowing

when a previously seen object should re-enter the view. The solution presented here exploits

spatio-temporal bounds, in principle similar to those described in chapter 3. In both cases, the

bounds provide a means of excluding objects from consideration over some period of time.

The simulation maintains the set of objects potentially visible to the viewer, the visi-

ble set. Objects in the visible set are updated on each frame using the simulation equations of

motion, restricted to objects in the set (objects outside the set are assumed not to exist). If on

any frame a visible object leaves the visible region it is removed from the visible set. In the city

model, the equations of motion for the visible cars relate their position, speed and orientation

to the path they are currently traveling and their accelerations (section B.2).

Every object not in the visible set bounds the possible extent of its motion for some

future time interval, after which the bound expires. If, on any frame, the viewer sees one of

the possible locations for the object (sees its bound), the object is forced to decide whether or

not it is actually in a visible location. If it is, it enters the visible set and has its state updated

using some consistent method (once we know there the object is, it is a consistency problem

to decide its state). The system also maintains a priority queue of expiration times for bounds,

and on each frame any expired bounds are recomputed.

In the city model, bounds are computed by performing a breadth first search to locate

roads the car might reach within a given time. When a certain number of roads have been found,

the search terminates. The roads found form the bound, and the earliest time that the car can

leave the bound is it’s expiration time (see section B.3.2 for details).

If the bound for a non-visible car is seen by the viewer, the car determines its actual

location using a sampling approach. In a preprocessing step, the distribution of travel times for
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each road is determined. When choosing a location, each car begins at its last known position,

and performs a random walk using sampled travel times as the time taken to traverse each road

in the walk. When the total travel time used in the walk reaches the current time, the car’s

location is known. Rejection sampling is used to ensure that the invariants of the simulation

are not violated. There are some additional details which are discussed in section B.3.3 of

appendix B.

The sampling technique used in the culling city model attempts to capture the in-

fluence of out of view car-to-car interactions without explicitly modeling them. In the full

simulation, the actual time taken for a car to reach any point depends on how frequently it is

slowed by other cars, and how much time it spends waiting at intersections. By independently

sampling the location of each car, we are not tracking these interaction explicitly. However,

the distributions from which we sample travel times to model the expected waiting time due to

the interactions, so the viewer ultimately experiences correct travel times over many sightings

of the car.

Define O as the set of all objects, V as the set of visible objects, and o as an object.

Define minkey(Q) to return the key of minimum entry in the priority queue of expiration

times, Q, and min(Q) to delete from the queue and return the object whose bound expires

at that time. Finally, assume that S is the visible region of space. Overall, the following

operations are performed for every frame:
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Algorithm 6.1 An algorithm for completeness: per frame operations

simulateFrame(carset : O, carset : V, queue : Q, region : S)
update(V )
for all o ∈ V

if ¬visible(o)
V ← V \ o
newBound(o,Q)

while minkey(Q) < tframe

o ← min(Q)
newBound(o,Q)

for all o ∈ visibleBounds(O\V, S)
delete(o,Q)
setPosition(o)
if visible(o)

setState(o)
V ← V ∪ {o}

else
newBound(o,Q)

The simulation is initialized as follows:

Algorithm 6.2 An algorithm for completeness: initialization

cullingInitialize(carset : O, queue : Q)
V = ∅
for all o ∈ O

sampleLocation(o)
newBound(o,Q)

In addition to unordered set and priority queue implementations, the above code

requires several application dependent components to perform the following functions:

update(V ): Update the state of the visible objects using the complete model, assuming that

non-visible objects do not exist.

visible(o): Return true if an object may be visible, given its position. See sections B.1.1

and B.2.1 for details in the city model.

newBound(o,Q): Bound an object’s future locations, given its last known position, com-

pute when that bound expires, and insert the object into the queue of expiration times
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keyed on its expiration time. For the city model, see section B.3.2.

visibleBounds(O\V,S): Find the set of objects with visible bounds (section B.3.1).

setPosition(o): Find the actual location of an object, given its last known position (section

B.3.3).

setState(o): Set the state of an object after some period out of view (solve the consistency

problem). See section B.3.4 for the city model.

sampleLocation(o): Sample an initial position for an object (section B.3.5).

Section B.3 of appendix B describes each component in detail for the city model.

6.2 Experiments on the City

To investigate the efficiency of the city models we ran two sets of experiments, one

involving a constant city size and increasing numbers of cars, and another with a constant

density of cars in variable sized cities. We begin with a look at estimating the efficiency of a

culling model.

6.2.1 Analyzing Culling Efficiency

We define the efficiency, η, of a culling algorithm as the ratio of the amount of work

done for state in view, Cv , to the total amount of work done for the simulation Ct. The ideal

culling algorithm has an efficiency of one, because it only does work for systems in view. We

can determine the efficiency of the city models for a given city size and number of cars as

follows:

η =
Cv

Ct
(6.1)

=
αnv

αnv + β (nt − nv)
(6.2)

where α and β are constants reflecting the complexity of simulating a single car while it is in

and out of view respectively, nt is the total number of cars and nv is the number of cars in view.

The speedup, s, obtained by a culling algorithm with cost Cculling over a complete simulation
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with cost Ccomplete is defined as:

s =
Ccomplete

Cculling

(6.3)

=
αnt

αnv + β (nt − nv)
(6.4)

and hence
αnt

s
= αnv + β (nt − nv) (6.5)

Combining equations 6.2 and 6.5, the efficiency when culling is:

η =
nv

nt
s (6.6)

The efficiency of the complete algorithm is:

ηcomplete =
Cv

Ct

=
αnv

αnt

=
nv

nt

6.2.2 Common City, Variable Density

The city used for this experiment contains 199 roads and 1764 paths. Its layout is

pictured in figure 6.2. We built simulation models for this city containing from 50 to 200 cars

in 25 car increments. To gather data, a fixed viewer trajectory was recorded for fifteen minutes

of simulation time, and then played back at a constant ten frames per second for each model.

The efficiency of our algorithm for a common city and increasing density of cars is

shown in figure 6.3. The graph is based on data in table 6.1.

The efficiency varies from 86% to 96%, rising as the density of cars increases. For

the largest city then, 96% of the work is done for cars the viewer potentially can see, and only

4% goes to cars that aren’t seen. The rise in efficiency as the density of cars increases is due to

the fact that accurate simulation of denser traffic is more expensive compared to light traffic,

while the tracking of cars out of view is unaffected by the density. So as the density increases

the culling algorithm spends proportionally more time working on the cars in view, leading to

higher efficiencies.

Note that for the particular computer used here, an HP J9000, the non-culling sim-

ulation cannot simulate more than 150 cars in real time (even without spending any time on
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Figure 6.2: The common city model used for the experiments with a variable number of cars.
The viewer is located at the apex of the viewing frustum (the transparent triangle), and the red
cells are potentially visible from that location. The other roads are shaded according to how
many cars include each road in their bounds, weighted by the size of each car’s bound. Bright
green roads may have many cars on them, while cyan cells probably have no cars.

nt nv tcomplete (s) tcull (s) s η

50 1.88 0.037 0.0016 22.94 0.86
75 3.17 0.055 0.0026 21.09 0.89

100 4.42 0.073 0.0036 20.50 0.91
125 5.87 0.090 0.0046 19.53 0.92
150 5.96 0.108 0.0048 22.82 0.91
175 7.40 0.126 0.0058 21.68 0.92
200 8.75 0.144 0.0066 21.87 0.96

Table 6.1: Data for culling in a common city with a variable number of cars. nt is the total
number of cars in the city, while nv is the number of cars in the visible set, averaged over all
the frames. tcomplete and tcull are the times spent performing dynamics calculations per frame,
for non-culling and culling respectively, averaged over all the frames. Note that the simulation
was running at ten frames per second, so 0.1 seconds per frame is the real-time limit. s is
the speedup achieved by culling, and η is the efficiency of the culling algorithm, calculated
using formula 6.6. These results were obtained on a HP J9000 with an Evans and Sutherland
Freedom graphics engine.
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Figure 6.3: The efficiencies of both the culling and non-culling simulations for a common
city (figure 6.2) and variable number of cars. The efficiency of the culling algorithm rises as
the number of cars, and hence density, increases. This is because the full simulation of denser
traffic is more expensive, so the culling algorithm performs more work fully simulating the cars
in view, while the workload for cars out of view is unaffected. Hence the efficiency rises. The
non-culling version sees roughly constant efficiency, which is expected because the ratio of
cars in view to cars out of view stays constant. In the 200 car city, 96% of all the work done
by the culling version is for potentially visible cars. Only 4% of the work is toward potentially
visible cars in the non-culling model.
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nt nv tcomplete (s) tcull (s) s η

150 6.13 0.109 0.00506 21.46 0.88
300 6.00 0.217* 0.00540 40.17 0.80
600 6.09 0.434* 0.00639 67.94 0.69

1200 6.31 0.868* 0.00890 97.46 0.51
2400 5.96 1.736* 0.01223 141.92 0.35

∗: extrapolated

Table 6.2: Data for culling with a constant density of cars in various city sizes. nt is the
total number of cars in the city, while nv is the number of cars in the visible set, averaged over
all the frames. tcomplete is the estimated simulation time per frame for a complete simulation
running at ten frames per second. The data for nt = 150 was obtained experimentally in the
constant city size experiments. It would take prohibitively long to run complete simulations
for the other cities, so we extrapolated the cost assuming a constant cost per car. tcull is the
time spent performing dynamics calculations per frame for the culling simulation. Note that
the culling simulation is real-time at ten frames per second up to around 2000 cars in the city.
s is the estimated speedup achieved by culling, and η is the efficiency of the culling algorithm.

rendering), while the culling algorithm poses no difficulty even with 200 cars. In other words,

none of the cities in the following example can be simulated on the computer in question in

real time without culling. It is unlikely that any current desktop machine can simulate cities

with thousands of cars, as we achieve with culling.

6.2.3 Constant Density, Variable Cities

In this experiment we examine simulations containing from 150 to 2400 cars, in cities

sized to keep the density of cars roughly constant. All the cities used are shown in figure 6.4.

The smallest is that used above, with 199 roads, while the largest contains 3820 roads and

29200 paths.

The efficiency of culling in these cities is plotted in figure 6.5, and the data is tabu-

lated in table 6.2.

Note that it would take prohibitively long to simulate a complete version of these

models. So we estimate the cost of the complete cities by assuming the per-car cost of the

simulation is the same as that for the 150 car simulation (for which we have complete data),

and multiply by the total number of cars in the other cities to estimate the cost of the complete

simulations.

The culling simulation’s efficiency falls as the number of cars and size of the city

increases. This is to be expected, because while the number of cars in view stays roughly
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Figure 6.4: The five city maps used for the constant density experiments. Each city has
an area twice that of the previous, and we double the number of cars in each experiment to
maintain a constant density. The smallest city is the same as that used for the constant city size
experiments. The color semantics are the same as those of figure 6.2.
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Figure 6.5: The efficiency of our culling algorithm for various city sizes with a constant car
density. The cities are shown in figure 6.4. The efficiency falls as the city size grows larger,
because the number of cars in view stays roughly the same, but the number out of view grows.
Hence the simulation does the same amount of work for cars in view, but does more work to
track the greater number of cars out of the view. Different models are required to achieve
greater scalability. In particular, it must be possible to do no work at all for most of the objects
not in view.
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constant, and hence requires the same amount of work to simulate, the number of cars out of

view grows, requiring more time to be spent tracking out of view cars. Despite the reduced

efficiency, we can simulate ten times as many cars in real time with culling than we could

without. The next section discusses how high efficiency might be achieved for larger models,

allowing the number of moving objects to increase arbitrarily.

6.3 Discussion

The city model described in this chapter and appendix B offers significant speedups

over the complete simulation and does reasonably well in capturing most of the behaviors

exhibited by cars in the city. Empirical observations suggest that, among other things, car

densities and travel times are comparable to those in the complete model, and only infrequently

does it become apparent that the model is performing culling. Such lapses in quality are just

one of many areas of potential improvement that we discuss here. The following section looks

at improvements in efficiency, both at run-time and preprocessing, and potential improvements

in quality. Finally, we briefly discuss how culling may extend to different simulation models,

such as less random, more planned motion.

6.3.1 Optimal Bounds

The bounding algorithm for the city model uses breadth first search and a fixed max-

imum size for the bound, chosen largely arbitrarily for our experiments. We would prefer

to analytically or experimentally determine an optimal bound size based on properties of the

model. We might also consider entirely different motion bounding strategies.

A bounding volume strategy affects the efficiency of the culling simulation in three

potentially conflicting ways:

• The size of the bound influences how likely it is that the viewer will see the bound, and

hence how likely it is that a moving object will be updated. Smaller bounds are better in

this respect, because they lead to fewer updates due to visibility and greater efficiency.

• The lifetime of the bound influences the number of updates. Long bound lifetimes (and

hence larger bounds) are preferable, because they need to be updated due to expiration

less frequently.
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• The cost of determining the location of an object within its bound, and the cost of com-

puting the bound itself determine how expensive it is to update the object when it is

potentially visible. Cheaper bounds are better.

Any technique to optimize the generation of bounding volumes must balance the tradeoffs

between the above concerns.

Analytic optimization requires some model for each of the above effects. The most

difficult thing to capture appears to be the likelihood of a viewer seeing a bound, because it

depends on the viewer’s motion, the relationship between bounds and visibility, and inter-frame

coherence. An analytic approach would also require models for the cost of computing bounds

and the expected lifetime of the bounds, which appear to be easier to develop. Hence, while

possible, a good analytic model seems difficult to obtain.

Experimental optimization appears a more promising approach at this point. The

simulation may be run with different bounding strategies and the best selected. The individual

experiments may not be particularly expensive, because they use the culling model and do not

necessarily require new preprocessing steps for each candidate approach.

6.3.2 Probabilistic Bounds

The bounds used for the city model are conservative — the car is certain never to

get out of the bound before the expiration time. However, conservative bounds are not strictly

necessary for culling. Non-conservative bounds may be appropriate if, for instance, only half

of the conservative bound contains 99% of the probable locations for the car. It is more efficient

to use only half the bound, because it may be faster to compute and a viewer may be less likely

to see it. But if we do so, there is a 1% chance that a car position we sample when the bound

does become visible will turn out to be somewhere we said it could not be. We must reject

this sample, because it may cause the viewer to see a car appearing in the middle of nowhere.

While rejecting the sample introduces an error (cars will never appear in 1% of the places the

really could be in), we know the error only occurs 1% of the time, so may be acceptable.

This is a clear tradeoff between simulation efficiency and quality. We see better ef-

ficiency with non-conservative bounds, but they lead to differences between the culling and

complete models. Ideally, we would like to quantify such tradeoffs and use them in some way.

For instance, we might be able to provide the best quality simulation given a fixed computa-

tional budget.
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6.3.3 Reducing Storage Requirements

Each path in the current model has associated with it various approximations and

distributions for culling. This is a very large amount of data for big environments, and clearly

doesn’t scale indefinitely (we are trading off space for speed as we scale the environment).

A parametric model is required that describes each path by a few parameters, such as length

and the number of other paths into and out of it. The various approximations and distributions

could then also be parameterized, resulting in a more compact city model.

Devising good parameterizations has the flavor of a machine learning problem. We

wish to devise models that are cheap to store and evaluate yet provide sufficient flexibility to

capture the required effects, such as the expected travel time along a road. Given the model,

we would then apply fitting or learning techniques to determine the optimal model parameters

for each individual road.

6.3.4 Improving Scalability

The current city models still track all the objects that may ever appear in the simula-

tion. This is equivalent to saying that the viewer always remembers the last place they saw a

car, and can extrapolate that information into the future. That is clearly not reasonable. In real

cities the vast majority of cars a viewer sees are immediately forgotten, and they will never be

seen again. This fact should be exploited to gain higher simulation efficiency.

One way to exploit this is to cease tracking objects that have not been seen in a long

time, and add them to a general pool of objects that might be anywhere in space. To add objects

out of the pool back into the simulation, the model would include distributions for the expected

density of cars in various places. If a viewer can see a region, and the current density of cars

is unlikely, then cars would be added from the pool to make the world more plausible. Several

extension to this model are possible, including:

• Models for the density of objects that take into account what the viewer has already seen

in neighboring regions.

• Spatially local pools of cars so that cars could be relegated to the pool earlier.

• Generic cars with state that is created and deleted as needed, rather than stored over time

in a pool.
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The idea of pools of cars introduces a hierarchy of simulation models. Some objects

are simulated fully, some are tracked statistically, and some simply belong to pools.

6.3.5 Placing cars

The task of placing cars is equivalent to that of sampling from the joint distribution

on the locations of the cars that must be placed conditioned by the locations of the cars that the

viewer saw on the last frame. The joint distribution encodes the various simulation invariants

by assigning zero probability to states which violated the invariants. In chapter 2 we use the

Markov chain Monte Carlo algorithm to sample from such distributions. In this case there are

two obstacles to using MCMC: the sampling must be very fast, and it is difficult to formulate

a distribution from which we wish to sample. In particular, we would require at least a way

to evaluate the probability that a car is in a particular position given its previous position and

how long it has been traveling. These distributions are difficult to compute rapidly due to their

dependence on the previous position of the car and all the possible paths for the car to the

position of interest.

There remain significant problems with the alternative approach that we use, placing

cars individually and rejecting locations that violate the invariants. The greatest problem is that

sometimes cars cannot be placed, and we must manipulate time to put them down somewhere.

In these cases there is clearly the possibility that a car will end up somewhere it really should

not be. The root of this problem is that cars positioned earlier may take the only reasonable

spots for a later car, leaving it nowhere to go. Rather than adjusting time for the car we cannot

place, a better solution is to move cars that were placed earlier. One possible approach is to

place all the cars regardless of the invariants, and then apply a randomized relaxation procedure

to shift cars into better locations.

6.3.6 Other Quality Criteria

It may be possible to improve the quality of the culled simulation by capturing more

effects in the statistical models, or using different models entirely. For instance, the current

simulation does not attempt to capture possible correlations between the travel times of dif-

ferent cars. For example, if a sampled travel time for one car implies it took a long time to

traverse an intersection, then other cars that must traverse the same intersection should also

take longer. However, it is not clear that a viewer could ever detect the correlation, or lack
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of it in the culled model. Hence we require a greater understanding of which behaviors are

important before implementing more complex models.

Finding important behaviors is related to the problem of locating patterns in large

amounts of data, or data mining. Here, the data come from running the complete simulation

model, and we are looking for patterns in the behavior of the objects that may be important to

a viewer’s experience of the virtual world.

The city simulation sometimes exhibits extreme behaviors, such as gridlock. When

this occurs, cars cannot make any progress, and in fact the deadlocked region grows over

time as more cars get stuck waiting for intersections to clear. When gridlock arises in the

fully simulated model there is no way to resolve it (other models could be designed to resolve

deadlock). However, in the culled model it is possible to resolve deadlock by walking away

from it for a while. The statistical models for out of view travel times do not explicitly account

for the other cars, and so cars can jump out of the gridlock. Hence, the resolution of gridlock is

one apparent difference between the complete and culled simulations, yet is an extreme event.

The failure to capture extreme events is a modeling issue. If an author was concerned

with such effects, they would need to use models for out of view motion that captured the

desired behaviors. This highlights the broad point of culling: efficient culling strategies are

designed to capture those behaviors an author cares about and to ignore unimportant effects.

6.3.7 Culling Other Simulations

The cars in the city model perform purely random walk, which is not a realistic

model for most situations. The randomness has two primary consequences:

• Bounds are cheap to compute, but inefficient, in that the car will never actually visit most

of the places it could visit.

• All the interactions between cars are direct and localized.

Other simulations will not exhibit these properties, such as a simulation in which each car has

a specific destination and looks for an optimal path given the expected traffic conditions. In

such a simulation it is harder to bound the future motion of the cars, because it depends on all

the other cars. Also, interactions are not localized because the car may look ahead to determine

a good path, which may lead to stronger correlations between the behavior of various objects

in the simulation.
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Such a simulation will most likely require a more complex model for motion out of

view, at least for cars that were recently seen. On the other hand, the bounds for future motion

in such a model can probably be made tighter, because regardless of how bad the traffic is, there

are still only a few good, and hence likely, paths. Tighter bounds may offset the additional cost

of computing them, because they are less likely to be seen by a viewer.

Currently, there is no model for analyzing the tradeoffs between quality and culling.

Clearly, we are trading off some quality in the city model for very large computational savings

(by, for instance, ignoring correlations between cars and using independent car sampling mod-

els). Ideally, for a given complete simulation model and a smooth range of quality criteria, we

would like to be able to choose a cost and determine what quality could be achieved, or de-

scribe a way to optimize the tradeoff. The overall approach might be similar to Funkhouser’s

level-of-detail techniques [30] for large static environments.



115

Chapter 7

Conclusion

The work in this thesis represents a step toward directable and scalable dynamic

virtual environments, such as the virtual city discussed in the introduction. From the direction

side of the problem, we have described a Markov chain Monte Carlo sampling approach to

generate multiple constrained animations, each of which is consistent with a physical model.

The MCMC algorithm can manage discontinuous systems and those with extreme sensitivity

to parameters, such a the collision intensive multi-body systems that we demonstrate. A new

asynchronous rigid-body simulation algorithm was also developed. The algorithm offers large

speedups over previous approaches and begins to explore issues surrounding simulation re-use.

On the scalability front, we have introduced the basic ideas of simulation culling,

and demonstrated its application to a range of models. Culling has enabled the design of large

scale, highly dynamic virtual environments that can be explored in real-time.

Open problems and areas for future development have been described throughout this

thesis on the topics of direction, basic simulation and scalability. Yet to create large controllable

and scalable environments, several integration and modeling issues must be addressed, as we

discuss next.

7.1 Integrating Control and Culling

The work in this thesis describes direction, and it describes scalability, but it does

not integrate both into a single system. In principle, the algorithms we have described fit very

well together, because both may be treated as the same problem of sampling from complex

conditional distributions.
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Consider our approach to culling, where the state of objects is modeled probabilisti-

cally if the viewer has not seen the object for some time. As discussed in chapter 4, the problem

of presenting a plausible and consistent image to the viewer can be posed as a sampling prob-

lem: sample, from the marginal distribution of objects in view, new states for all the objects not

recently seen, subject to the viewer’s prior knowledge and the constraints of the simulation.

To integrate direction into this scheme, we may add additional conditions to the

sampling problem, encoding the outcomes we wish to see. We then aim to sample new states

for previously unseen cars that are not only consistent with the viewer’s previous knowledge,

but also lead to the desired outcome. Sampling problems of that form are exactly the type

addressed by the MCMC direction algorithm of chapter 2.

Three open problems must be solved in order to integrate direction and scalable

simulation in a real-time system:

• The MCMC algorithm as it stands is not real-time on anything but the simplest prob-

lems. A different sampling strategy may be required, or it may be possible to design the

constraints and simulation to make the sampling problem easier.

• Directing the simulation in an interactive system must account for the unpredictable

motion of the viewer. A good direction strategy for staging specific events must be robust

to uncertainty in a viewer’s behavior over time. On the other hand, it also suggests that

the system will not wish to look very far ahead, which may make the sampling problem

easier.

• It is not clear how best to state the desired outcomes in a real-time system. Ideally the

outcome would be expressed in terms of a few simulation parameters or generic objects.

For instance, the goal for a red light runner is to find some car to run the red light in

front of the viewer at some time in the near future. While this gives the system more

opportunities to plan events, it also requires a method for choosing the best time, place

and participants for the situation.

Solutions to these problems will likely draw on several sources, particularly work on robot

control and planning.

The work on simulation culling in this thesis enables dynamic virtual environments

that were beyond the scope of existing technology. Adding direction into these worlds will

open up an array of important applications in the fields of training and entertainment. Sim-
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pler authoring tools will further speed the development of such environments and make them

accessible to a wider user community. We might see virtual driver training on inexpensive

systems for every teenager, or computer games capable of presenting complex virtual spaces in

which to entertain. Yet, even if we are capable of producing research examples of such worlds,

modeling issues may still stand in the way of widespread adoption, an issue we turn to next.

7.2 Modeling Large Environments

Much of the work in this thesis is aimed at very large scale environments. In the

virtual city models we applied automated techniques to construct the geometry of the world

according to a particular model. We then designed by hand a vehicle simulation for that world,

and constructed a suitable culling model. However, this approach is not acceptable to a broader

audience.

Many models will be required to capture real-world environments. Work is proceed-

ing on the geometric aspects of this problem, attacking the problem either by constructing

parametric models from acquired data [24, 21] or by recording images and re-rendering them

as required [58]. Motion capture [33, 74] could be seen as achieving the same goal for motion,

but the technology does not capture higher level behaviors, nor is it clear how to parameterize

the motion in a useful way. Some work is proceeding on technology for modifying motion

capture data in order to achieve specific goals [33, 34, 74], which may be a first step in auto-

mated modeling. However, it leaves open the problem of capturing higher level interaction and

decision making behaviors.

Regardless of how a realistic simualtion model is acquired, we would like incorporate

a culling strategy into that model. For instance, given a city with models for vehicles, people

and trees, we might provide a partly interactive system in which a user is presented with the

option of capturing or ignoring various aspects of the behavior. Based on their choices, a

compiler-like system would then construct a model for culling. Such a system would most

likely require significant human guidance, but the user should not be required to manage the

low level details of distribution modeling and the like. The key problem is in determining the

correct abstractions to utilize in order to make the system sufficiently expressive while keeping

complexity down. Modeling on this scale is never likely to reach the simplicity of a word

processor (there is no demand), but the technology should be made available to more than a

few experts, and the only way to do that is with tools that take care of the details on the user’s
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behalf.
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Appendix A

Details of the Directing Simulation

Examples

A.1 Bowling Details

A.1.1 Uncertainty model

Our bowling model is derived from online data (such as http://www.brittanica.com).

The sources of uncertainty in the model are:

Ball radius Distributed uniformly on [rmin, rmax), where rmax is specified by the rules of the

game (approximately 11cm) and rmin = 0.8rmax.

Ball density Distributed uniformly on [ρmin, ρmax), with ρmax = 1440 kg m−3 (estimated

from the maximum allowed mass of the ball and the maximum size) and ρmin =

0.8ρmax.

Ball initial position Fixed in line with the end of the lane, at some point uniformly

distributed across the width of the lane, and at a height distributed according to

Φ(1.1rmax, 0.1rmax), the distribution defined by the Gaussian density function with

mean 1.1rmax and standard deviation 0.1rmax.

Ball initial velocity The component down the lane (measured in ms−1) is distributed accord-

ing to Φ(7.0, 1.0). The component across the lane is distributed according to Φ(0.0, 0.1).

The vertical component is set to zero.
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Ball initial angular velocity About a vertical axis (measured in rad s−1), distributed accord-

ing to Φ(0.0, 0.2).

Each pin Fixed shape and mass, horizontally offset from its proper location on the lane in a

random direction by a distance distributed according to Φ(0.0, 1.0) (mm).

With these distributions:

pw(A) ∝ e−
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2
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where xz is the ball’s height above the lane, vx and vy are the velocity components down and

across the lane, ωz is the angular velocity about the vertical axis, and di is the distance of pin i

from its center location. The above formula for pw(A) is valid if all the uniformly distributed

variables are within their range, and all the fixed variables have their correct values, otherwise

pw(A) = 0. We can ignore the uniformly distributed variables in computing pw(A) because

their distribution function is proportional to one.

A.1.2 Proposals

Our proposal mechanism samples a value u, uniform on [0, 1), and then:

• if u < 0.05, we sample new values for all the random variables.

• if 0.05 ≤ u < 0.125, we change the radius of the ball by adding an offset distributed

according to Φ(0.0, 0.04rmax). If the radius lies outside the allowable range, we wrap it

back into the range.

• if 0.125 ≤ u < 0.2, we change the density of the ball by adding an offset distributed

according to Φ(0.0, 0.04ρmax), wrapping to keep ρ inside the allowable range.

• if 0.2 ≤ u < 0.4, we change the initial position of the ball. We add a horizontal offset

distributed according to Φ(0.0, 0.2w) (w the width of the lane), wrapping if necessary,

and add a vertical offset distributed according to Φ(0.0, 0.05rmax).

• if 0.4 ≤ u < 0.6, we change the initial velocity of the ball. To its component down the

lane, we add an offset distributed according to Φ(0.0, 0.5). To its component across the

lane, we add an offset distributed according to Φ(0.0, 0.05).
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• if 0.6 ≤ u < 0.8, we change the initial angular velocity by adding an offset distributed

according to Φ(0.0, 0.1).

• otherwise, for each pin, with probability 1
2 , change its location by moving it in a random

direction by a distance distributed according to Φ(0.0, 0.5) (mm).

All of these proposals are symmetric, so there is no need to compute the transition probabilities

(they cancel when computing the acceptance probability).

A.2 Spelling Ball Details

A.2.1 Model details

Domed bottom

2mm thick

12mm high

Outer box 36mm high

20mm square

Figure A.1: The dimensions and tessellation for the box in the spelling ball example.

Each bin has a side length of 20mm, and each partition is 2mm thick and 12mm

high (figure A.1). The floor beneath each bin is domed to help the balls come to rest, and the

box in which the bins sit is 36mm deep. Each partition vertex is offset in a random direction

by a distance distributed according to Φ(0.0, 0.1) (mm). Each ball is dropped from rest at a

uniformly random location within a rectangle 72mm above the bottom of the box and centered

above it. The size and density of the balls is intended to resemble marbles.

The probability of an animation is:

p(A) ∝ λk
∏

V
e−

1

2

(

‖xv‖
0.1mm

)2
∏

B

1

a

where k is the number of designated bins that are filled, V is the set of partition vertices, xv

is the offset distance of vertex v (in mm), a is the area of the rectangular region from which
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the balls may be dropped and B is the set of active balls, which can vary in size for different

animations as balls are activated or deactivated. In this case we must include a term for the

uniformly distributed drop position of each ball because the number of balls can vary.

A.2.2 Proposals

Our proposal mechanism uniformly samples a random u ∈ (0, 1], and then applies

one of four strategies:

• if u < 0.04, we change all the partition vertices, giving them new randomly chosen off-

sets, and change all the balls, giving them a new active status and a new initial position.

• if 0.04 ≤ u < 0.36, for each partition vertex, we randomly decide, with probability 0.02,

to change its location by adding an offset in a random direction with length distributed

according to Φ(0.0, 0.05) (mm).

• if 0.36 ≤ u < 0.68 we uniformly randomly select an active ball to change, and offset its

starting position in a random direction for a distance distributed according to Φ(0.0, s),

where s is the bin size. We wrap the edges of the region from which balls may be

dropped.

• if 0.68 ≤ u < 0.84, for each enabled ball we uniformly sample v ∈ (0, 1] and disable

the ball if v < 0.25.

• otherwise, for each disabled ball we uniformly sample v ∈ (0, 1] and enable the ball if

v < 0.25.

All but the last two proposals are symmetric. If a ball is disabled, the ratio q(Ai|Ac)
q(Ac|Ai)

= a (the

area of the rectangle from which the ball may be dropped). If a ball is enabled, q(Ai|Ac)
q(Ac|Ai)

= 1
a

.
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Appendix B

The City Model Used for Culling

This appendix describes in detail the city model used for the culling experiments in

chapter 6. We begin with the process of generating the geometric city model, before moving

on to a description of the complete simulation model and the model used for culling.

B.1 City Modeling

The aim of the automatic city generation system is to create a roadmap resembling

that of a city, and then create all the fixed geometry associated with the city (walls, sidewalks

and signs). Additional information must also be associated with the map to assist with the car

simulation, such as the number of lanes on a road.

City generation begins by sampling random points according to a Poisson point pro-

cess of a fixed density in a rectangle. The Voronoi diagram for the points is computed, and

then any points joined by a short edge in the diagram are merged to eliminate the edge. The

diagram is cropped by removing any edges that pass outside the rectangle, and the remaining

edges form the roads.

A width is then assigned to each road. To add variety, a subset of points are desig-

nated centers, and roads along the shortest path between nearby centers are made four lanes

wide (two in each direction). All other roads are two lanes wide. The roads are thickened to

their required width, then intersected to form a 2D map like that shown in figure B.1.

To complete the city, walls and sidewalks are extruded from the map, and stop lines

and signs are added. Each road in the resulting city stores its geometry, its width, the location

of the stop lines, its lanes, and a pointer to the intersections at either end, which themselves list
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Figure B.1: A map of a 446-road city. The red cells are potentially visible from the viewer’s
location (the apex of the transparent white triangle). The yellow spots indicate the position of
potentially visible cars. In this image, cells are color coded according to how many cars have
bounds including that cell, weighed by the total number of cells in each car’s bound. Cells
with more cars potentially on them are colored green. Blue cells have no cars on them.
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the roads that enter each intersection. The result is essentially an adjacency list representation

of the underlying Voronoi diagram with geometry associated with each edge.

B.1.1 Visibility in the City

The geometry for a city must be rendered at interactive rates despite the large size of

the model. As in many virtual environments, most of the world is not visible most of the time,

in this case because the buildings and twisting roads combine to hide things behind buildings

and around corners.

Each road in the city is considered a unit of visibility. The viewer’s location is known,

as is their gaze direction. Using standard technology, we walk the road map to locate visible

roads, starting at the viewer’s location. The following algorithm is used, called initially with

the road, R that the viewer is on and the view frustum, V :

Algorithm B.1 Rendering the visible roads

renderRoad(road : R, view : V )
draw(R)
V ′ ← crop(V,R)
R.fnum← framenum
for all R′ ∈ adjacentRoads(R)

if intersect(R′, V ′)
renderRoad(R′, V ′)

The crop(V,R) function crops the view volume to all the openings between the

buildings on a road. adjacentRoads(R) returns the set of roads that meet a road, R. inter-

sect(R, V ) returns true if a road and a view frustum intersect (and hence the road is visible).

On each frame, the above algorithm is run to render the roads of the city before the

simulation is called to compute state for and then render the cars. All the roads that are drawn

are marked with the frame number to inform the simulation that the road is visible.

B.2 Car Dynamics

This section focuses on the basic car simulation model, assuming the complete sim-

ulation is running. Each car (a tricycle) consists of a body and a steering wheel (figure 6.1 on

page 97). Each car performs a random walk on the road structure: it travels along the current
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A

B C
Path

Road 1

Road 3

Road 2

Stoplines

Figure B.2: The configuration of a path. The path begins at the stop line at A, moves through
the intersection to the stop line at B, and on down the lane to the line at C. Many paths will
share the same lane BC, each coming from a different lane entering the intersection. The
position of a car on the path is parameterized from 0 to 1.0 on the curve AB, and 1.0 to 2.0 for
the straight section BC.

road until it reaches an intersection, at which point it chooses at random a new road out of the

intersection. Cars give way to other traffic as necessary, to avoid collisions both at intersections

and due to running up the back of the car in front.

We begin by adding paths to the city structure. A path is a curve to follow from the

an entry point of an intersection to the end of a lane out of that intersection (figure B.2). The

position of a car is parameterized by the path it is on and a parameter, u ∈ [0.0, 2.0), along

that path. u ∈ [0.0, 1.0) defines positions along a hermite curve through the intersection, while

u ∈ [1.0, 2.0) corresponds to positions on the straight section.

Each car’s complete state consists of (figure B.3):

p The path

u Parameter value on the path

u̇ Time derivative of u

o Orientation of the body in world coordinates

x 2D location in world space, derived directly from u

s Steering angle, derived directly from u

w1, w2, w3 Orientation of each wheel

Note that all the roads are flat, so x has two degrees of freedom and o has only one. According

to the car design, s and the wi are scalar quantities representing rotations about a fixed axis.

The acceleration of the center of mass of the car along the path is set directly to
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Figure B.3: State variables for the car. x is the world location of the car. o is the orienta-
tion of the car body in world space. s is the steering angle offset from the body. wi are the
wheel orientations. Not shown is u, the position of the car along the (dotted) path, nor u̇, the
derivative of u with respect to time.

control the car’s motion, according to the following rules:

• if the distance to the car in front or the end of the path is less than the minimum stopping

distance for the car, apply the maximum deceleration.

• otherwise, if the car’s speed is higher than its maximum allowed speed, apply the maxi-

mum deceleration.

• otherwise, if the car is traveling at the maximum speed, apply no acceleration.

• otherwise, apply maximum acceleration.

In the absence of other cars, these rules cause the car to accelerate from zero speed at

the start of the path until it reaches a maximum speed, then hold that speed until it approaches

the end of the path, when it starts decelerating. If there is another vehicle in front, the car will

slow down to avoid hitting it, which is the first source of interdependency between the motion

of different cars.

The acceleration rules determine the evolution of the location parameter, u, and its

time derivative, u̇. The steering angle for the car is set to align the steering wheel with the

tangent to the path at u. The remaining state variables, o and the wi, are related to u and u̇ by
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a set of differential equations that cause the body of the car to follow the steering wheel. All

the differential equations are solved using an explicit Euler algorithm.

When a car reaches the end of its current path, it randomly selects another path out

of the intersection it has just reached. But before the car is allowed to start along the new path,

the intersection must be clear. If it isn’t, the car is required to wait in a FIFO queue until its

turn comes to pass through the intersection. This introduces the second source of interaction

between different cars.

The inter-car interactions must be taken into account by any completeness algorithm

for two reasons:

• They influence the motion of the cars, and must be taken into account when determining

when and where a car should re-enter the view.

• They introduce simulation invariants. In particular:

– Cars should remain a minimum distance apart, because as soon as cars get closer,

the following car is slowed.

– Only one car can be in an intersection at any given moment, because the others are

forced to wait.

B.2.1 Car Visibility

If performing a simulation without culling, we still wish to avoid rendering cars that

aren’t visible. To achieve this, each road keeps a list of those cars that may be visible if the

road is visible. Rendering all the cars on potentially visible roads then renders all potentially

visible cars. The lists are kept up to date by noting visibility transition points: points at which

a car’s visibility may change (see below). Each time a car crosses such a point the visibility

lists are updated appropriately.

To locate the potentially visible roads for the purpose of drawing their cars, we use

a procedure analogous to renderRoad in section B.1.1, but rather than check for visibility

against the view frustum, we just look at the frame number marking for each road. The road is

visible only if its frame number matches the current frame.
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Figure B.4: To rapidly determine visible cars we associate with each road all the cars that
maybe visible if that road is visible, which are the cars whose geometric bound (a circle in this
2D picture) intersects the road. Road 1 has cars C and D associated with it. Road 2 has cars
A and B, and road 3 has cars B, D and E. Note that each car can be on multiple roads as it
straddles the boundary between them.

Visibility Transition Points

Each car must be associated with all the roads that are intersected by the car’s geom-

etry (figure B.4). If that is the case, we can be certain of drawing all the necessary cars if we

draw all the cars associated with visible roads. The visibility transition points are places where

there is a change in the set of roads that are intersected by the car’s geometry. We need only be

conservative in determining intersections – it doesn’t matter if we identify an intersection that

doesn’t exist, but it is a problem if we fail to find an intersection.

To speed up visibility computations, we specify a bounding sphere for each car cen-

tered on its origin and large enough to contain the car regardless of its orientation and internal

configuration. A car is considered to be intersecting a road if its sphere is.

We could find all the parameter values for the car’s location at which the intersections

may change (it is the same as finding all the crossings between the paths and a polygon offset

from the edges of the road). As a simpler approach, we conservatively identify transition points

(figure B.5). If the car is between these points, it only intersects the current road, and hence is

only visible if the current road is visible. Otherwise, we consider it to intersect all the roads

incident on the road intersection beyond the transition, and the car to be visible if any of the
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Figure B.5: To speed visibility computations we locate transition points: the position param-
eter values where a car’s geometry can conservatively intersect new roads. Here, four such
points are marked with filled dots. If the car is outside the interval between the transition points
then it is considered to intersect all the roads at the nearest intersection. Rather than compute
the exact positions where the car’s bound would cross the (thick) boundary of the road, we
instead compute points where the bound crosses the (thin) stop lines. These are much easier
to find because the car is traveling on a straight path at the transition points, rather than a
hermite curve. The simplification will result in a small number of cars being considered visible
a few frames before they actually should be, which does not incur a significant additional cost.

roads are visible.

B.3 Car Models for Culling

To enable culling, the car simulation model must be extended to include the opera-

tions described in section 6.1, listed again here:

• Determine if an object may be visible, given its position.

• Bound an object’s future locations, given its last known position and compute when that

bound expires.

• Find the set of objects with visible bounds.

• Find the actual location of an object, given its last known position.

• Set the state of an object after some period out of view.

• Sample an initial position for an object.

Each component is now described in turn.

B.3.1 Determining Car Visibility

It is is necessary to determine whether or not a car is visible in order to keep the set

of visible cars up to date. A car is visible if the road it is currently on is visible, or if its location
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parameter falls outside a visibility transition points and any road incident on the corresponding

intersection is visible. Hence we can test a car’s visibility, given its location parameter, in time

O(M), where M is the maximum number of roads at any intersection (typically less than five

in our cities).

In algorithm 6.1 in section 6.1, the current visibility of cars that were in the visible

set on the previous frame is checked after those cars are updated for the current frame, and cars

are removed if necessary. New cars are added to the set in a later phase, when cars that were

not visible on the previous frame are, if necessary, updated.

B.3.2 Bounding Future Locations

Each car not in the visible set must spatially bound its possible locations over some

future time interval, given the car’s current location, and specify when the interval ends.1In the

virtual city, the bound consists of the set of roads that the car may traverse in the interval. Each

car keeps pointers the roads in its bound, and each road keeps pointers to the cars that have

bounds including the road. The pointers in roads allow us to efficiently determine which cars

may be visible for a given frame — they are all the cars pointed to by visible roads.

Before generating the bound for a given car, we must first decide either which interval

to bound or how many roads the bound should include (how big it should be). We choose the

latter in this case, and determine the interval based on the required bound size.

A car’s bound must be updated by the simulation when one of two things happen,

each of which implies a desirable bound size:

• When the interval covered by the bound expires. This suggests large bounds covering

long periods of time.

• When a road contained in the bound is seen by the viewer. This suggests small bounds

covering very few roads.

It may be possible to analytically determine the optimal bound size at any given moment,

which is the size that minimizes the expected cost of updating the bound on a given frame

(or maximizes the expected number of frames between updates). However, the expectations

depend on both how likely it is that a viewer will see a given bound, and how quickly the bound
1The bounds are conceptually identical to those used in the rigid-body simulation algorithm of chapter 3. In that

case, bounds are used to guarantee that two objects cannot collide. Here, they are used to guarantee that an object
is not visible.
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grows with respect to the interval covered. Good models for these effects appear to be difficult

to determine.

In the experiments described here we take a heuristic approach to setting the bound

size, k. We fix a maximum bound size, kmax, and allow the actual size for a given car to vary

between one and kmax. Each time a car’s bound is updated because it was potentially visible,

the size for that car is reset to one. Each time the bound is updated because it expired, the

size is doubled (up to the maximum size). The result is that cars in the region surrounding the

viewer tend to have smaller bounds than those a long way from the viewer. This is reasonable

behavior, because for cars near the viewer updates due to visibility dominate, while the cost for

cars a long way away is dominated by expirations. For the experiments described in section 6.2,

we use kmax = 32.

Given the bound size, c.k for a car c, a procedure is required that will return approx-

imately c.k roads that the car may next traverse, and the time at which the car may first leave

that set of roads (which is the time the bound expires). All the roads that the car can reach

before the expiration time must appear in the bound.

We assume that the car is on a particular path, c.path, and we know when the car

first entered the path, and the current time. A preprocessing step computes the minimum time

a car can take to traverse each path, and the minimum time a car can take to get to the visibility

transition point at the end of the path.

Because the cars perform random walk, we use a weighted breadth first search al-

gorithm to locate roads for the bound. The algorithm maintains a priority queue, Q, in which

paths are stored, ordered by when the car will first cross the visibility transition point onto the

path. Along with each path, the queue stores the time the car’s origin enters the path, which is

necessary for computing the time the car will get to its next visibility transition point.

The bound is initialized to contain the car’s current path, c.path, and Q is seeded

with all the legal paths out of the intersection at the end of c.path, keyed by the earliest time

the car can cross the visibility transition point at the end of c.path. That time may be in the

past, because the car may have already crossed the point. It is computed based on the current

time, the time the car entered the path and the minimum time to get to the transition point.

Also, if the car has not yet crossed the visibility transition point at the start of c.path, then all

the roads leading into the current path must be included in the bound.

The procedure then repeatedly pops the minimum entry in Q, adds the road for the

minimum path p to the bound (if it isn’t already there), and adds any paths out of p to Q keyed
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on the earliest time the car can get to the transition point at the end of p. It stops when the

number of roads in the bound reaches c.k. The expiration time for the bound is the key of the

minimum entry in Q when the procedure terminates, because it is the earliest time that the car

can get to a road not in the bound. The car is then inserted into the global queue of expiration

times, keyed by its new expiration time.

B.3.3 Positioning Cars

At two points in the algorithm it is necessary to choose a location for previously

non-visible cars: when the car’s bound overlaps a visible road so the car may be visible, and

when a car’s bound expires (see the previous section). Each car’s location is specified by the

path it is currently on, and its parametric position on that path.

In determining a car’s location, it is necessary to take into account all that might

have happened to the car while it was out of view: the car should have stopped at all the

intersections, it may have had to wait for other cars to pass, or it may have been slowed down

by cars in front of it. However, we are only interested in the cumulative effect of all these

things in determining where the car is now. Rather than try to model them directly, we build a

probabilistic approximation of their effect, and sample from that approximation to choose the

location.

The particular random variable we model is the traversal time for a given path. That

is, the time taken from when the car starts out from the stop-line at the beginning of the path

in question to the time it actually enters the intersection at the end, and starts out on a new

path, including the time spent waiting to enter the intersection. A exponential distribution

was assumed for each traversal time in the implementation described here. A more recent

implementation uses mixtures of exponentials, estimated using an EM algorithm [8].

An exponential distribution is parameterized by its mean. Given a set of samples

from the distribution, we estimate the true mean with the sample mean, which is the maximum

likelihood estimate. To gather the samples, we run the complete, un-culled simulation in a

preprocessing step and record a sample each time any car traverses a path. The distribution of

the samples then captures the expected behavior of a car traversing each path, which is exactly

the distribution we wish to use when culling. The underlying assumption is that if a viewer

measures reasonable traversal times in the culled simulation they will not detect the presence

of culling.



134

The exponential distribution is defined on [0,∞), so instead of using the samples for

a given path directly we first subtract off the minimum traversal time seen among the samples

for that path. The minimum time is also needed for bounding the a car’s location, as discussed

above.

In summary, we model the probability that a car took a certain time, t to traverse a

path, p, with the density function:

f(t) =
1

βp
e

t−tmin,p

βp , t ≥ tmin,p

where tmin,p is the minimum possible time required to traverse the road (in the absence of

other cars) and βp is the mean of the distribution, estimated by:

βp =
1

N

N
∑

i=1

(ti − tminp)

for N sample times ti, computed in a pre-processing step.

The first stage in positioning a car is determining which road it is on. We do a random

walk starting at the previous location and keep track of how much time has elapsed, until the

elapsed time has brought us up to the current frame. The following pseudocode describes the

algorithm, where c.path is the car’s current path, c.tentry is the time the car started on its

current path, c.tcurrent is the time corresponding to the car’s current location, and tframe is the

frame time. sampleTraversal samples a traversal time from the model described above. At

the end of the procedure, the car is on a new path and the time we think it entered that road has

also been recorded.

Algorithm B.2 An algorithm to sample the location of a car

sampleRoad(car : c, real : tframe)
do

texit ← c.tentry + sampleTraversal(c.path)
until texit > c.tcurrent

while texit < tframe

c.tentry ← texit

c.path← nextPath(c.path)
texit ← c.tentry + sampleTraversal(c.path)

c.tcurrent ← tframe

To determine the car’s parametric position along the path, u, we use approximations.

In a preprocessing stage for each path, we fit a piecewise cubic function, ûpath(∆t), that returns
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Figure B.6: An example of the approximation function used for a car’s location on a given
path, compared to the exact function. The horizontal axis is the time spent on the path so
far, ∆t. This path takes just over nine seconds to traverse in the absence of other cars. The
vertical axis is a car’s location parameter, u, which ranges from zero at the start of the path to
two at the end. Note the discontinuity at u = 1, where the parameterization switches from the
parameter value for the hermite curve through the intersection to that for distance along the
straight road. Note also the reduction in the gradient as the car slows down to stop at the end
of the path. There is a close match between the exact and approximate representations, so the
viewer will not see strange locations as cars re-enter the view.
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the car’s approximate position on the path given how long it has been on the path, ∆t =

tframe − c.tentry , assuming that no other cars influenced its motion (figure B.6). To find

the parameter value for a car, we simply compute ∆t and evaluate the approximation. The

approximation is only defined for ∆u ∈ [0, tmin), where tmin is the time taken for a car to

traverse the road in the absence of other cars. But the traversal time we sampled for this road

in procedure sampleRoad may be greater than tmin, because it takes into account the effects

of other cars, and hence ∆t may be grater than tmin. If that is the case, we assume the car is

queued at the end of the road, and tentatively set its parameter value to 2.0.

At this point the car’s position may violate the simulation invariants implied by the

car collision avoidance scheme:

• Only one car is in any intersection at any time.

• Cars are a minimum distance, dmin, apart.

If the viewer cannot see the car, it does not matter that the invariants are violated. So at this

point in the car placement algorithm we do a visibility test for the car (section B.3.1). If the

car is not visible, we generate a new bound for the car (section B.3.2) and continue.

If the car is visible, we must deal with any violated invariants. We assume that all

the cars currently in the visible set are in their correct position for this frame, and cannot be

moved. Hence we can only adjust the position of the car we are trying to place. We apply the

following rules, in order, to reposition a car that violates invariants:

1. If the car is in an intersection (u < 1.0), then reject this position and re-run procedure

sampleRoad.

2. Search along the path for empty spaces between or at the end of existing cars that are

large enough to fit this car, and put this car in the closest one to its tentative u.

3. If there are no gaps for the car, reject this position and try again.

It is possible that many tentative positions may be rejected before a good position

is found, or even that there is no free position among those that are likely for the car (where

likely is defined by the distributions on traversal times for the roads the car may traverse). As a

heuristic to reduce the number of rejections, we delay positioning cars until we have identified

all the cars that must be positioned on this frame. We then sort the cars according to their

time out of view, and try to position cars that have been out of view for shorter periods first.
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The idea is that cars that have been out of view for longer have more variance in their possible

positions, and hence are easier to find places for, even on cluttered streets. Even this heuristic

fails sometimes, so if a car is rejected too many times we pretend that the time is later than it

actually is, and try again. This introduces errors, because cars will appear to travel faster than

they should, but these errors are not noticeable when the simulation is viewed. The time skew

can be removed later if desired.

Adjusting the position of cars can affect its visibility, so we delay the final decision

of whether or not a car is in the visible set until after placement is complete.

B.3.4 Setting Car State

Once the location of a visible car is known, it remains to set the rest of that car’s state.

Precisely, given the location of the car, how long it has been out of view, and the neighboring

cars, set the car’s orientation, speed and wheel orientations (the coordinates of the car and its

steering angle come directly from the car’s location). We assume that the viewer cannot predict

the orientation of the car’s wheels if the car been out of view. To do so would require a viewer

predicting exactly how many wheel revolutions were required for the distance the car traveled

while out of view, which is so difficult that a random orientation suffices for each wheel.

To set the orientation of the car, we use piecewise cubic approximation functions,

ôpath(u), defined for every path (figure B.7). These functions return the approximate orienta-

tion at the car’s location, and are fitted as part of a preprocessing step. We can use approxima-

tions because, while the car’s orientation is specified as the solution to a differential equation,

the orientation at the start of each path (the initial condition) is derived only from the lane

leading into the path, and the orientation evolves along the path in the same way each time.

The speed of a car in the city depends on both its location and the presence of neigh-

boring cars. If there are no cars nearby, the speed can be approximated by a set of piecewise

cubic functions ŝpath(u) defined for each path (figure B.8). Approximations are suitable be-

cause the car starts each path with zero speed (it was stopped at the stop sign), and so the

differential equations for the speed always evolve in the same way provided there is no nearby

car to slow this one down. If there is a car close in front of this car, we set the car’s speed to

match that of the one in front. Note that this gives correct queuing behavior, because if the car

in front is stopped then this one will also be stopped behind it. However, matching speeds in

this way does not always give the following car the correct speed. A better approach would fit
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Figure B.7: An example of the approximation function used for a car’s orientation on a given
road, compared to the exact function. The car’s location parameter, u, increases along the
horizontal axis. The orientation, o, measured in radians, is plotted on the vertical axis. The
orientation varies as the car goes around the corner through the intersection, then becomes
constant as the car traverses the straight road portion of the path. The approximation is close
to the real function in most places, so the user will see reasonable orientations. Even where
the approximation deviates, the dynamics will drive it quickly back to the correct value as the
car continues along the path.
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Figure B.8: An example of the approximation function used for a car’s speed on a given road
in the absence of other cars, compared to the exact function. The horizontal axis corresponds
to the car’s location parameter value, u, while the vertical plots speed, s, measured in meters
per second. The first discontinuity is due to the car ceasing to accelerate when it reaches its
maximum speed. The right discontinuity is at the location where the car begins decelerating
to stop at the end of the path. The approximation and exact function are essentially identical,
which ensures that the car does not overrun the end of the path.
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the speed and following distance as a function of the speed of the car in front and the location

on the road. This would improve the behavior as cars approach intersections.

B.3.5 Sampling Initial Positions

At the beginning of the simulation, each car must be given a position. Before the

simulation begins the viewer has no information about the location of specific cars, so the

correct approach is to sample car locations according to the probability that each car is on any

given path at a random time. We estimate these probabilities in a preprocessing step, where we

run the full simulation with all cars interacting, and record the total time spent by all the cars

on each path. The probability that a car is on any given path at the start of the simulation is

equal to the ratio of the time spent by all cars on that path to the total time spent by all cars on

all paths.

To choose an initial path for each car, we take a sample from the distribution on

paths. A parameter value for the location on the path is still required, as is the time the car

entered the path (required for bounding the car’s motion as described in section B.3.2). To

set these values, we take a sample tmax from the distribution of traversal times for the path in

question, and then assume the car has been on the path for a random time t ∈ [0, tmax]. Given

that the simulation starts at time zero, −t is the entry time for the path. We can then use the

approximations described in section B.3.3 to select a location parameter value u.

At the start of the simulation no cars are visible (the viewer doesn’t exist yet), so

all the cars set their bounds and expiration times. On the first frame the visible roads will be

known and then potentially visible cars can have their state set as usual.

B.3.6 Preprocessing Summary

Two major preprocessing steps must be run to build all the approximation functions

and distributions required by the culling algorithm. One simulation is run with all the cars, and

is used to gather samples for estimating the traversal time distributions and the probabilities

used for the initial positioning of cars. A new sample is obtained every time a car in the

simulation completes a traversal of a path, at which point the measured traversal time is a new

sample for the traversal time estimation. The time spent on the path is also added to the time

spent by all cars on the path. The distributions estimated in this phase depend on the number

of cars in the simulation, as well as the city model. Hence, this step must be conducted every
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time the city or number of participants is changed.

A second preprocessing step looks at every path in turn to build the approximation

functions ûpath(∆t), ôpath(u) and ŝpath(u). For each path, a car is positioned at the start of

the path with zero speed and an orientation aligning it with the lane leading into the path.

The equations of motion for the car are then solved with a small time step to obtain a large

set of sample states. We then use a least squares approach to fit piecewise cubic curves to

the necessary functions. The approximation functions depend only on the dynamics of an

individual car and the city model, so need only be run once for each city.
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