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A variety of pattern-based methods have been exploited to extract biological relations from 

literatures. Many of them require significant domain-specific knowledge to build the patterns by 

hand, or a large amount of labeled data to learn the patterns automatically. In this paper, a semi-

supervised model is presented to combine both unlabeled and labeled data for the pattern learning 

procedure. First, a large amount of unlabeled data is used to generate a raw pattern set. Then it is 

refined in the evaluating phase by incorporating the domain knowledge provided by a relatively 

small labeled data.  Comparative results show that labeled data, when used in conjunction with the 

inexpensive unlabeled data, can considerably improve the learning accuracy. 

1. INTRODUCTION 

Knowledge extraction from bioscience texts has become an emerging field for both 

Information Extraction and Natural Language Processing communities. These tasks 

include recognizing biological named entities [10, 21], extracting relations between 

entities [4, 12, 19], and identifying biological events and scenarios [20]. The major 

challenges come from the fact that biomedical literatures contain abundant domain-

specific knowledge, inconsistent terminologies, and complicated syntactic structures or 

expressions.  

In this paper, the work is focused on extracting relations between biological entities, 

such as protein-protein interactions (PPI). Various methods and systems have been 

proposed. The most prevalent methods are rule-based or pattern-based. Such methods 

adopt hand-coded rules or automated patterns and then use pattern matching techniques to 

capture relations. Hand-coded patterns are widely used in the early stage of this research. 

For example, Ono [11] manually constructed lexical patterns to match linguistic structures 

of sentences for extracting protein-protein interactions. Such methods contribute high 

accuracy but low coverage. Moreover, the construction of patterns is time-consuming and 

requires much domain expertise.  

Systems which can learn patterns automatically for general relation extraction include 

AUTOSLOG [14], CRYSTAL [17], SRV [6], RAPIER [1], ONBIRES [7, 8], and so 

forth. Most of them take annotated texts as input, and then learn patterns semi-
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automatically or automatically. But effective evaluation of these patterns remains a major 

unsolved problem. Moreover, most pattern-based applications require a well-annotated 

corpus for training [2, 5]. 

Since data annotation is expensive and time-consuming, the major problem in 

pattern-based methods is how to automatically learn patterns efficiently and effectively, 

with limited annotated data available. Unsupervised principle is preferable with the ability 

to exploit huge amount of unlabeled texts in biomedical domain. The crucial problem 

here is that patterns generated from unlabeled data may be erroneous or redundant. 

Therefore, pattern evaluation algorithm is indispensable. A systematic methodology based 

on ranking functions is widely used by most methods [3, 15, 18]. Such algorithms assign a 

score to each pattern according to the ranking functions and then keep the top n best 

patterns (n is a pre-specified threshold). In such algorithms, each pattern is evaluated 

independently. Thus, the redundancy among patterns is difficult to reduce. 

To solve these problems, a semi-supervised [16, 22] model is proposed, combining 

both unlabeled and labeled data. A pattern generation algorithm is first implemented to 

mine relevant pattern structures from unlabeled data, where sentences are pairwise 

aligned by dynamic programming to extract identical parts as the pattern candidates. 

Since the generation algorithm does not require any annotation in the corpus, pattern 

evaluation algorithms with labeled information are then integrated to complete the 

learning procedure. Two types of pattern evaluation algorithms are investigated. The first 

is a ranking function based algorithm, which evaluates the effectiveness of every single 

pattern independently and delete the ones that have no contribution to the performance. 

The second is heuristic evaluation algorithm (HEA), which aims to search the optimal 

pattern set in a heuristic manner. Compared to the first method, the deletion of a pattern is 

determined by the current pattern set, not only itself. Comparative results show that our 

ranking function outperforms other prevalent ones and HEA exhibits advantages over 

ranking function based algorithms. 

The paper is organized as follows. The first part of semi-supervised learning, pattern 

generation method with unlabeled data, is presented in Section 2. Then pattern evaluation 

method which relies on labeled data to curate the learning result is explained in Section 3. 

The experiments and conclusions are discussed in Section 4 and 5.  

2. Pattern Generation 

First of all, several definitions are presented here:  

• A Sentence is a sequence of word-tag pairs: STN = WTP1,2,…,N, where each WTPi is a 

word-tag pair (wi,ti). Here wi is a word and ti is the part-of-speech (POS) tag of wi. 

• Sentence Structure is defined as SS = {prefix, NE1, infix, NE2, suffix}. NE1 and NE2 

are semantic classes of the named entities. The prefix, infix, and suffix are sequences 

of WTPs before NE1, between NE1 and NE2, and behind NE2, respectively.  

• A pattern is defined as PTN = {pre-filler, NE1, mid-filler, NE2, post-filler}. The pre-

filler, mid-filler, and post-filler are sequences of WTPs before NE1, between NE1 and 

NE2, and behind NE2, respectively. 
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Examples for these definitions are shown in Table 1. 

Table 1. Examples for sentences and patterns 

 Examples 

STN Several/JJ recent/JJ studies/NNS have/VBP implicated/VBN P_00172/NN in/IN 

the/DT signaling/NN pathway/NN induced/VBN by/IN P_00006/NN ./. 

WTP induced/VB ; P_00172/NN 

 

 

SS 

{{prefix:         {Several/JJ recent/JJ studies/NNS have/VBP implicated/VBN}} 

{NE1:              {PROTEIN/NN}} 

{infix:             {in/IN the/DT signaling/NN pathway/NN induced/VBN by/IN}} 

{NE2:              {PROTEIN/NN}} 

{suffix:            {NULL}}} 

 

 

PTN 

{{pre-filler:    {NULL}} 

{NE1:              {PROTEIN/NN}} 

{mid-filler:     {induced/VBN by/IN}} 

{NE2:              {PROTEIN/NN}} 

{post-filler:     {NULL}}} 

Sequence alignment algorithm has been widely used by biologists to search 

homology between DNA or protein sequences. This idea is adopted to generate patterns 

by aligning pairwise sentences in training corpus. The identical parts in aligned sentences 

are extracted as pattern candidates. More formally, given two SSs: (prefix
i
, NE1

i
, infix

i
, 

NE2
i
, suffix

i
) and (prefix

j
, NE1

j
, infix

j
, NE2

j
, suffix

j
), the sequence alignment algorithm is 

carried out on three pairs – (prefix
i
, prefix

j
), (infix

i
, infix

j
), and (suffix

i
, suffix

j
) – to extract 

identical WTPs and form the three fillers of a PTN. The algorithm is shown in Figure 1. 

The pattern generation algorithm automatically learns patterns from sentences whose 

named entities have been pre-identified by a dictionary-based entity recognition method 

and requires no further annotation in the training corpus. It is almost unsupervised which 

is able to make better use of the enormous data available online, and release domain 

experts from the heavy burden of creating annotated corpora.  

Figure 1. Pattern learning algorithm 

3. Pattern Evaluation 

The pattern generation algorithm discussed in Section 2 does not require supervised 

information. It may produce erroneous patterns such as (“”, PROTEIN, “shown to be”, 

Input: A sentence structure set S = {SS1, SS2, 
..., SSn} 

Output: A set of patterns: P 

1. For every pair in S: (SSi, SSj)∈S (i≠j), do 

2. if SSi.NE1 !=SSj.NE1 or SSi.NE2 != SSj.NE2, then go to 1;  

3. else do 

4. NE1 = SSi.NE1, NE2 = SSij.NE2 

5. do alignment for SSi.prefix and SSj.prefix;  

6. extract the identical WTPs to form the pre-filler of a candidate pattern p.  

7. do the same operations in step 5 and 6 to form mid-filler and post- filler,. 

8. if p already exists in P, then increase the count of p with 1. 

9. else add p to P with a count of 1; 

10. Output P 
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PROTEIN, “”), which will match many false positive instances. Previous works usually 

depended on rule-based methods or manual selection to screen out the best patterns. 

To automate the relation extraction system, we developed a pattern evaluation 

algorithm to assess patterns by a small annotated corpus. Here we discuss two types of 

evaluation algorithms: the first one utilizes ranking functions and the second one is a 

heuristic evaluation algorithm. 

3.1 Ranking Function Based Algorithm 

Ranking function based evaluation algorithms assess each pattern independently. They 

assign a score to each pattern by ranking functions, and then filter out those patterns with 

lower scores than a threshold. Previous pattern-based systems have adopted a variety of 

ranking functions, which take into consideration the number of instances that are correctly 

or incorrectly matched by a pattern. Two ranking functions are surveyed here:  

The first one is proposed by Cohen in their system RIPPER [3]: 

. .
( )

. .

p positive p negative
Ripper p

p positive p negative

−
=

+  

(1) 

where p.negative indicates the number of false instances matched by the pattern p and 

p.positive denotes the number of correct instances. In essence, this function only takes 

into consideration the ratio of p.positive to p.negative (p/n for short). The second function 

is proposed by Riloff [15], with two factors – p/n and p.positive: 

2

.
( ) *log ( . )

. .

p positive
Riloff p p positive

p positive p negative
=

+  

(2) 

The critical issue about these ranking functions presented above is that only two 

factors – p/n and p.positive – are considered. However, other factors should be considered, 

such as the sum of p.positive and p.negative (p+n for short). Ripper can not distinguish a 

pattern with 50 true positives and 50 negatives (50/50 for short) from (1/1) pattern, while 

the former pattern apparently contributes more to precision and recall. Although Riloff 

function works well for the two patterns by introducing the log(p.positive) term, it does 

not work for such 4 patterns: (1/4), (2/8), (3/12) and (4/16). These patterns, whose 

p.positive is larger, will have a higher rank by Riloff function. However, since p/n is very 

low, it is reasonable to determine that patterns with larger (p+n) are worse. Riloff function 

fails to handle the case. To involve more factors for pattern evaluation, we propose a 

novel ranking function as follows:    

2

. 0.5
( ) ( log )*ln( . . 1)

. 0.5

p positive
HD p p positive p negative

p negative
β

+
= + + +

+  

(3) 

where the parameter β is a threshold that controls p/n. If β−> 2/ np , HD is an increasing 

function of (p+n), which means if several patterns have the same p/n that exceeds 2 β− , a 

pattern with larger (p+n) has a higher rank. If β−< 2/np , the first term is negative, which 

means a pattern with larger (p+n) will have a lower rank. Thus different ranking strategies 

are used when different p/n are met. Experiments in Section 4.3 will illustrate how HD 

outperforms other ranking functions, where the parameter β is set to 0.5 empirically.  
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3.2 Heuristic Evaluation Algorithm (HEA) 

Ranking function based algorithms assess each pattern independently. It is not difficult to 

delete erroneous patterns by these algorithms. However, redundancy among patterns, 

which heavily impose computational burden on relation extraction tasks, can not be 

reduced effectively. For example, there are two patterns (“”, PROTEIN, “bind to”, 

PROTEIN, “”) and (“”, PROTEIN, “to bind to”, PROTEIN, “”). Apparently, the second 

pattern is redundant since all instances it matches will also be captured by the first one. 

However, it cannot be filtered because its score is almost the same as the first ones. To 

remove erroneous and redundant patterns, we propose a heuristic evaluation algorithm 

(HEA), which aims to obtain the optimal pattern set in a heuristic manner. 

Formally, given an evaluation corpus S and a pattern set P, we define an optimization 

function which maps the pattern set P to its performance on the evaluation corpus S:   
 

),(

:),(

PSMP

RSM

a

→∑⋅                 (4) 

where Σ denotes the space of all possible pattern sets and R is the real number space. 

Starting from the initial pattern set P0, we aim to obtain the optimal set P
*
 by maximizing 

M(S,P) in a heuristic manner. The iterative procedure follows the formula below: 
    

),(arg1 k
Pp

kk PSMPP
ki

∇−=
∈

+
                   (5) 

where )},(}){,({max
),(

),( kik
Pp

k

k

k PSMpPSM
P

PSM
PSM

ki

−−=
∂

∂
=∇

∈

is the gradient of M(S,Pk) in k-th step. 

Figure 2. Heuristic Evaluation Algorithm (HEA) 

The algorithm is shown in Figure 2. In practice, we store and index all possible matching 

results produced by the whole pattern set P0 by preprocessing. Thus, for each iteration, 

evaluating the pattern set Pk is carried out by finding the results in the index (excluding all 

the patterns that are not in Pk), without a whole re-running of the program. This method 

makes the iterative procedure computationally feasible. 

Input: an initial pattern set P0= {p1, p2,
..., pn }, the training set S, the testing set T , an 

optimization function M(S,P) 

Output: the optimal pattern set P* 

1． k=0, Pk= P0 

2． Calculate the gradient: 

)},(}){,({max),( kik
Pp

k PSMpPSMPSM
ki

−−=∇
∈

 

3． Find the “worst” pattern to be deleted: 

),(arg k
Pp

m PSMp
ki

∇=
∈

 

4． If 
thkPSM ∆≥∇ ),(  then do 

5． }){,(),( 1 mkk pPSMPSM −=+
 

6． 
mkk pPP −=+1

 

7． Evaluate the performance of the pattern set Pk+1 on the testing corpus T 

8． k=k+1, go to  2 

9． else output P* = Pk 
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In this algorithm, an optimization function M(S,P) has to be determined. Note that the 

goal of HEA is to achieve the optimal pattern set out of an initial set. Thus, the direct 

target of F1 score can be taken as an optimization function. 

4. EXPERIMENT 

Corpora used in the experiments are introduced in Section 4.1. Experiments of pattern 

generation on unlabeled data and pattern evaluation on labeled data are discussed in detail 

in Section 4.2 and 4.3. These sections are aimed to investigate the effectiveness of the 

semi-supervised learning model.  

4.1 Data Preparation 

The first corpus used for protein-protein interaction extraction is downloaded from 

http://www.biostat.wisc.edu/~craven/ie/ [13]. This corpus consists of 2,430 sentences 

gathered from Munich Information Centre for Protein Sequences (MIPS). This corpus is 

used for pattern generation. 

The second is collected from the GENIA corpus [9] which consists of 2000 abstracts 

from MEDLINE. We have manually annotated the protein-protein interactions, and 

finally obtained a corpus with 4,221 PPIs in 2,561 sentences. 

4.2 Semi-supervised Learning Model 

In this section, we discuss the effectiveness of semi-supervised learning model by 

comparing the performance of refined patterns with that of original patterns. 

First, 2,480 patterns are initially obtained from MIPS by the generation algorithm. 

Their performance is set as the baseline. Then the GENIA corpus with annotated relations 

is randomly partitioned to five parts for 5-fold cross-validation, one of the five parts for 

testing and the remainder for pattern evaluation. For the two evaluation methods, the top 

100 patterns are preserved to extract relations from the testing corpus.  

Figure 3. Performance of semi-supervised model 
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Experiment results are shown in Figure 3 over different user-specified thresholds on 

the testing corpus. It shows that 1) the raw pattern set generated without labeled 

information is poor in accuracy, but has promising recall (about 45% to 50%). 2) Our 

proposed ranking function HD and HEA method both achieve significant improvements. 

The precision is improved by over 25% with little loss in recall, results in improvement of 

F1 score by 16% to 19%. These results indicate that the pattern generation algorithm does 

extract useful patterns from unlabeled data, and pattern evaluation algorithm greatly 

improves the accuracy with labeled information. 

4.3 Pattern Evaluation With Labeled Data 

In this section, we discuss the difference among different evaluation algorithms, which is 

crucial in semi-supervised learning. The GENIA corpus is used in the same way as before 

for 5-fold cross-validation. The raw pattern set is also taken from the previous experiment. 

In this experiment, the pattern deletion order in ranking function based methods, 

including Ripper, Riloff, and HD, is determined by the corresponding functions. In other 

words, patterns with lower ranks (worse patterns) will be removed earlier. In HEA, which 

pattern to be deleted is determined dynamically as before. To provide a complete 

comparison, we delete all of the patterns in each algorithm, which means the parameter 

∆th in HEA could be set to a very small numerical value. 

 
Table 2. Performance of optimal pattern sets determined by ranking function based algorithms and HEA 

Method Patterns Precision Recall F1 score Impr. of F1 

Baseline (raw) 2480 19.0% 46.5% 27.0% – 

Ripper 1626 41.0% 40.8% 40.9% +49.3% 

Riloff 88 40.8% 44.5% 42.6% +55.5% 

HD 92 52.5% 38.8% 44.5% +62.4% 

HEA 72 43.5% 45.9% 45.5% +66.1% 

 

Table 2 shows the performance and cardinality of the optimal pattern sets achieved 

by different methods. The smallest pattern set and the best system performance are 

achieved by HEA, which means HEA can reduce redundancy maximally and guarantee the 

best system performance at the same time.  Although the performance of HD and HEA is 

only slightly better than that of Ripper and Riloff function, further studies in Figure 4 will 

demonstrate why HD and HEA outperform the other two methods. 

When the 2,480
th

~1,600
th

  patterns determined by Ripper function are deleted, the 

performance is enhanced dramatically. However, when it starts to delete 50 more patterns, 

the performance degrades extremely. These patterns include (“”, NE1, “inhibit”, NE2), 

(“”, NE1, “induce”, NE2, “”) with both large p.positive and large p.negative (79/142 and 

308/220 in our experiment), but the p/n is not large enough (compared to the 3/1 or 7/3 

patterns), which directly leads to low ranks. Therefore, Ripper function that involves only 

the p/n factor can not assess patterns properly. 
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Riloff function is also unable to evaluate patterns adequately. Firstly, the “worst” 900 

patterns ranked by Riloff function are not the worst in fact, because deleting these patterns 

does not lead to remarkable improvements. However, deleting the 900
th

 ~100
th

  patterns 

results in significant improvements. Hence these patterns should have much lower ranks. 

Secondly, although the best result (42.6% with 88 patterns) is very promising, the curve 

keeps rising until it reached the optimal point at a very narrow peak. Thus it is very 

difficult to determine the number of patterns to hold in practice (The system performance 

is very sensitive to the threshold).  

In comparison, HD function exhibits advantages over traditional ranking functions. 

The HD curve shows that it removes the most undesirable patterns at position 2,460
th

 ~1,700
th

 , with 16 percentages improvement of F1 score. And then the curve rises slowly, 

when deleting “medium” patterns, until it reaches the optimal point (44.5% with 92 

patterns). After that point, deleting any pattern will cause a remarkable decline in the 

performance. This curve shows that HD ranks the patterns more precisely. And it also has 

a much broader “safe” area (from the 500
th 

to 100
th

  patterns). Thus the number of patterns 

to hold is much easier to set, compared to the narrow peak in Riloff curve.  

Figure 4. Comparison between ranking function based algorithm and HEA 
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patterns). Thus, the semi-supervised learning procedure can be carried out effectively and 

achieves a state-of-art performance. 

5. CONCLUSION 

Pattern-based methods have been widely used for the task of relation extraction from 

bioscience texts. However, most of these methods either construct patterns manually, or 

require a well-annotated training corpus to learn patterns. In this paper, we have proposed 

a semi-supervised model to automatically learn patterns with unlabeled and labeled data. 

The pattern generation method requires no manual annotation except that named entities 

need be pre-identified. Thus, little domain expertise is required and vast texts available in 

biomedical domain can be fully exploited. Moreover, two types of pattern evaluation 

algorithms based on labeled information are proposed to remove erroneous and redundant 

patterns. The first one is based on a novel ranking function HD which takes into account 

more factors than prevalent ranking functions. Experimental results show that HD 

function exhibits advantages over other ranking functions. The second one is a heuristic 

evaluation algorithm, which aims to obtain the optimal pattern set in iterative steps. This 

algorithm contributes improvement over ranking function based algorithms. 

We also note that the major bottleneck of pattern-based IE systems is whether they 

have an effective module of natural language processing to handle complex syntactic 

structures in the bioscience texts. Currently we have a shallow parsing module to enhance 

the results of pattern matching; however, the future work will still focus on developing 

more competitive NLP techniques. 
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