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In this paper, we consider the multivariate Bernoulli distribution as a model to estimate the structure of
graphs with binary nodes. This distribution is discussed in the framework of the exponential family, and its
statistical properties regarding independence of the nodes are demonstrated. Importantly the model can es-
timate not only the main effects and pairwise interactions among the nodes but also is capable of modeling
higher order interactions, allowing for the existence of complex clique effects. We compare the multivariate
Bernoulli model with existing graphical inference models – the Ising model and the multivariate Gaussian
model, where only the pairwise interactions are considered. On the other hand, the multivariate Bernoulli
distribution has an interesting property in that independence and uncorrelatedness of the component ran-
dom variables are equivalent. Both the marginal and conditional distributions of a subset of variables in
the multivariate Bernoulli distribution still follow the multivariate Bernoulli distribution. Furthermore, the
multivariate Bernoulli logistic model is developed under generalized linear model theory by utilizing the
canonical link function in order to include covariate information on the nodes, edges and cliques. We also
consider variable selection techniques such as LASSO in the logistic model to impose sparsity structure
on the graph. Finally, we discuss extending the smoothing spline ANOVA approach to the multivariate
Bernoulli logistic model to enable estimation of non-linear effects of the predictor variables.

Keywords: Bernoulli distribution; generalized linear models; LASSO; smoothing spline

1. Introduction

Undirected graphical models have been proved to be useful in a variety of applications in statisti-
cal machine learning. Statisticians and computer scientists devoted resources to studies in graphs
with nodes representing both continuous and discrete variables. Such models consider a graph
G = (V ,E), whose nodes set V represents K random variables Y1, Y2, . . . , YK connected or dis-
connected defined by the undirected edges set E. This formulation allows pairwise relationships
among the nodes to be described in terms of edges, which in statistics are defined as correlations.
The graph structure can thus be determined under the independence assumptions on the random
variables. Specifically, variables Yi and Yj are conditionally independent given all other vari-
ables if the associated nodes are not linked by an edge. Two important types of graphical models
are the Gaussian model, where the K variables are assumed to follow a joint multivariate Gaus-
sian distribution, and the Markov model, which captures the relationships between categorical
variables.

However, the assumption that only the pairwise correlations among the variables are con-
sidered may not be sufficient for real applications. When the joint distribution of the nodes is
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multivariate Gaussian, the graph structure can be directly inferred from the inverse of the covari-
ance matrix of the random variables and in recent years a large body of literature has emerged
in this area for high-dimensional data. Researchers mainly focus on different sparse structure
of the graphs or, in other words, the covariance matrix for high-dimensional observations. For
example, [11] proposes a consistent approach based on LASSO from [16] to model the sparsity
of the graph. Due to the fact that the Gaussian distribution can be determined by the means and
covariance matrix, it is valid to consider only the pairwise correlations, but this may not true for
some other distributions. The multivariate Bernoulli distribution discussed in [20], which will be
studied in Section 3, has a probability density function involving terms representing third and
higher order moments of the random variables, which is also referred to as clique effects. To
alleviate the complexity of the graph, the so-called Ising model borrowed from physics gained
popularity in the machine learning literature. [19] introduces several important discrete graphical
models including the Ising model and [1] discussed a framework to infer sparse graph structure
with both Gaussian and binary variables. In this paper, higher than second interactions among
a group of binary random variables are studied in detail. The multivariate Bernoulli model is
equivalent to Ising model and other undirected graphical model with binary nodes, which has
been used in the machine learning community for various applications. It can be extended to in-
clude k-node cliques by adding monomials of up to k orders [19]. The Ising model assumes the
nodes taking values in {−1,1}, which makes the interpretation of the interactions different form
the multivariate Bernoulli model. The literature related to structure selection of Ising models and
the applications include but are not limited to [13] and [22].

What’s more, in some real applications, people are not only interested in the graph structure
but also want to include predictor variables that potentially have influence on the graph structure.
[6] considers a multivariate Bernoulli model which uses a smoothing spline ANOVA model to
replace the linear predictor [10] for main effects on the nodes, but set the second and higher order
interactions between the nodes as constants. Higher order outcomes with hierarchical structure
assumptions on the graph involving predictor variables are studied in [4].

This paper aims at building a unified framework of a generalized linear model for the multi-
variate Bernoulli distribution which includes both higher order interactions among the nodes and
covariate information. The remainder is organized as follows. Section 2 starts from the simplest
multivariate Bernoulli distribution, the so-called bivariate Bernoulli distribution, where there are
only two nodes in the graph. The mathematical formulation and statistical properties of the mul-
tivariate Bernoulli distribution are addressed in Section 3. Section 4 serves to get a better un-
derstanding of the differences and similarities of the multivariate Bernoulli distribution with the
Ising and multivariate Gaussian models. Section 5 extends the model to include covariate in-
formation on the nodes, edges and cliques, and discusses parameter estimation, optimization
and associated problems in the resulting multivariate Bernoulli logistic model. Finally, Section 6
provides conclusion of the paper and some proofs are deferred to Appendix.

2. Bivariate Bernoulli distribution

To start from the simplest case, we extend the widely used univariate Bernoulli distribution to
two dimensions in this section and the more complicated multivariate Bernoulli distribution is
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explored in Section 3. The Bernoulli random variable Y , is one with binary outcomes chosen
from {0,1} and its probability density function is

fY (y) = py(1 − p)1−y.

Next, consider bivariate Bernoulli random vector (Y1, Y2), which takes values from (0,0), (0,1),
(1,0) and (1,1) in the Cartesian product space {0,1}2 = {0,1} × {0,1}. Denote pij = P(Y1 =
i, Y2 = j), i, j = 0,1, then its probability density function can be written as

P(Y = y) = p(y1, y2)

= p
y1y2
11 p

y1(1−y2)

10 p
(1−y1)y2
01 p

(1−y1)(1−y2)

00 (2.1)

= exp

{
log(p00) + y1 log

(
p10

p00

)
+ y2 log

(
p01

p00

)
+ y1y2 log

(
p11p00

p10p01

)}
,

where the side condition p00 + p10 + p01 + p11 = 1 holds to ensure it is a valid probability
density function.

To simplify the notation, define the natural parameters f ’s from general parameters as follows:

f 1 = log

(
p10

p00

)
, (2.2)

f 2 = log

(
p01

p00

)
, (2.3)

f 12 = log

(
p11p00

p10p01

)
, (2.4)

and it is not hard to verify the inverse of the above formula

p00 = 1

1 + exp(f 1) + exp(f 2) + exp(f 1 + f 2 + f 12)
, (2.5)

p10 = exp(f 1)

1 + exp(f 1) + exp(f 2) + exp(f 1 + f 2 + f 12)
, (2.6)

p01 = exp(f 2)

1 + exp(f 1) + exp(f 2) + exp(f 1 + f 2 + f 12)
, (2.7)

p11 = exp(f 1 + f 2 + f 12)

1 + exp(f 1) + exp(f 2) + exp(f 1 + f 2 + f 12)
. (2.8)

Here the original density function (2.1) can be viewed as a member of the exponential family,
and represented in a log-linear formulation as:

P(Y = y) = exp
{
log(p00) + y1f

1 + y2f
2 + y1y2f

12}. (2.9)
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Consider the marginal and conditional distribution of Y1 in the random vector (Y1, Y2), we
have

Proposition 2.1. The marginal distribution of Y1 in a bivariate Bernoulli vector (Y1, Y2) follow-
ing density function (2.1) is univariate Bernoulli with density

P(Y1 = y1) = (p10 + p11)
y1(p00 + p01)

(1−y1). (2.10)

What’s more, the conditional distribution of Y1 given Y2 is also univariate Bernoulli with density

P(Y1 = y1|Y2 = y2) =
(

p(1, y2)

p(1, y2) + p(0, y2)

)y1
(

p(0, y2)

p(1, y2) + p(0, y2)

)1−y1

. (2.11)

The proposition implies that the bivariate Bernoulli distribution is similar to the bivariate Gaus-
sian distribution, in that both the marginal and conditional distributions are still Bernoulli dis-
tributed. On the other hand, it is also important to know under what conditions the two random
variables Y1 and Y2 are independent.

Lemma 2.1. The components of the bivariate Bernoulli random vector (Y1, Y2) are independent
if and only if f 12 in (2.9) and defined in (2.4) is zero.

The Lemma 2.1 is a special case for Theorem 3.1 in Section 3, and the proof is attached in
Appendix. It is not hard to see from the log-linear formulation (2.9) that when f 12 = 0, the
probability density function of the bivariate Bernoulli is separable in y1 and y2 so the lemma
holds. In addition, a simple calculation of covariance between Y1 and Y2 gives

cov(Y1, Y2) = E
[
Y1 − (p11 + p10)

][
Y2 − (p11 + p01)

]
(2.12)

= p11p00 − p01p10,

and using (2.4), the disappearance of f 12 indicates that the correlation between Y1 and Y2 is null.
When dealing with the multivariate Gaussian distribution, the uncorrelated random variables
are independent as well and Section 3 below shows uncorrelatedness and independence is also
equivalent for the multivariate Bernoulli distribution.

The importance of Lemma 2.1 was explored in [20] where it was referred to as Proposi-
tion 2.4.1. The importance of f 12 (denoted as u-terms) is discussed and called cross-product
ratio between Y1 and Y2. The same quantity is actually log odds described for the univariate case
in [10] and for the multivariate case in [9].

3. Formulation and statistical properties

3.1. Probability density function

As discussed in Section 2, the two dimensional Bernoulli distribution possesses good proper-
ties analogous to the Gaussian distribution. This section is to extend it to high-dimensions and
construct the so-called multivariate Bernoulli distribution.
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Let Y = (Y1, Y2, . . . , YK) be a K-dimensional random vector of possibly correlated Bernoulli
random variables (binary outcomes) and let y = (y1, . . . , yK) be a realization of Y . The most
general form p(y1, . . . , yK) of the joint probability density is

P(Y1 = y1, Y2 = y2, . . . , YK = yK) = p(y1, y2, . . . , yK)

= p(0,0, . . . ,0)
[∏K

j=1(1−yj )]

× p(1,0, . . . ,0)
[y1

∏K
j=2(1−yj )]

× p(0,1, . . . ,0)
[(1−y1)y2

∏K
j=3(1−yj )] · · ·

× p(1,1, . . . ,1)
[∏K

j=1 yj ]
,

or in short

p(y) = p
[∏K

j=1(1−yj )]
0,0,...,0 p

[y1
∏K

j=2(1−yj )]
1,0,...,0 p

[(1−y1)y2
∏K

j=3(1−yj )]
0,1,...,0 · · ·p[∏K

j=1 yj ]
1,1,...,1 . (3.1)

To simplify the notation, denote the quantity S to be

Sj1j2···jr =
∑

1≤s≤r

f js +
∑

1≤s<t≤r

f jsjt + · · · + f j1j2···jr , (3.2)

and in the bivariate Bernoulli case S12 = f 1 + f 2 + f 12. To eliminate the product in the tedious
exponent of (3.1), define the interaction function B

Bj1j2···jr (y) = yj1yj2 · · ·yjr , (3.3)

so correspondingly in the bivariate Bernoulli distribution for the realization (y1, y2) of random
vector (Y1, Y2), the interaction function of order 2 is B12(y) = y1y2. This is the only available
order two interaction for the bivariate case. In general, there are

(
K
2

) = K(K−1)
2 different second

interactions among the binary components of the multivariate Bernoulli random vector.
The log-linear formulation of the multivariate Bernoulli distribution induced from (3.1) is

l(y, f) = − log
[
p(y)

]
(3.4)

= −
[

K∑
r=1

( ∑
1≤j1<j2<···<jr≤K

f j1j2···jr Bj1j2···jr (y)

)
− b(f)

]
,

where f = (f 1, f 2, . . . , f 12···K)T is the vector of the natural parameters for multivariate
Bernoulli, and the normalizing factor b(f) is defined as

b(f) = log
K∑

r=1

[
1 +

( ∑
1≤j1<j2<···<jr≤K

exp
[
Sj1j2···jr

])]
. (3.5)

As a member of the exponential distribution family, the multivariate Bernoulli distribution has
the fundamental ‘link’ between the natural and general parameters.
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Lemma 3.1 (Parameter transformation). For the multivariate Bernoulli model, the general
parameters and natural parameters have the following relationship.

exp
(
f j1j2···jr

)
=

∏
p(even # zeros among j1, j2, . . . , jr components and other components are all zero)∏
p(odd # zeros among j1, j2, . . . , jr components and other components are all zero)

,

where # refers to the number of zeros among the superscript yj1 · · ·yjr of f . In addition,

exp
(
Sj1j2···jr

)
(3.6)

= p(j1, j2, . . . , jr positions are one, others are zero)

p(0,0, . . . ,0)

and conversely the general parameters can be represented by the natural parameters

p(j1, j2, . . . , jr positions are one, others are zero)
(3.7)

= exp(Sj1j2···jr )

exp(b(f))
.

Based on the log-linear formulation (3.4) and the fact that the multivariate Bernoulli distribu-
tion is a member of the exponential family, the interactions functions Bj1j2···jr (y) for all com-
binations j1j2 · · · jr define the sufficient statistics. In addition, the log-partition function b(f)
as in (3.5) is useful to determine the expectation and variance of the sufficient statistics to be
addressed in later sections.

3.2. Independence, marginal and conditional distributions

One of the most important statistical properties for the multivariate Gaussian distribution is the
equivalence of independence and uncorrelatedness. As a natural multivariate extension of the
univariate Bernoulli distribution, it is of great interest to explore independence among compo-
nents of the multivariate Bernoulli distribution and it is the topic for this section.

The independence of components of a random vector is determined by separability of coordi-
nates in its probability density function and it is hard to get directly from (3.1). However, based
on the relationship between the natural parameters and the outcome in the log-linear formula-
tion (3.4), the independence theorem of the distribution can be derived as follows with proof
deferred to Appendix.

Theorem 3.1 (Independence of Bernoulli outcomes). For the multivariate Bernoulli distribu-
tion, the random vector Y = (Y1, . . . , YK) is independent element-wise if and only if

f j1j2···jr = 0 ∀1 ≤ j1 < j2 < · · · < jr ≤ K,r ≥ 2. (3.8)



Multivariate Bernoulli distribution 1471

In addition, the condition in equation (3.8) can be equivalently written as

Sj1j2···jr =
r∑

k=1

f jk ∀r ≥ 2. (3.9)

The importance of the theorem is to link the independence of components of a random vector
following the multivariate Bernoulli distribution to the natural parameters. Notice that to ensure
all the single random variable to be independent of all the others is a strong assertion and in
graphical models, researchers are more interested in the independence of two groups of nodes,
so we have the following theorem:

Theorem 3.2 (Independence of groups). For random vector Y = (Y1, . . . , YK) following the
multivariate Bernoulli distribution, without of loss of generality, suppose two blocks of nodes
Y ′ = (Y1, Y2, . . . , Yr ), Y ′′ = (Yr+1, Yr+2, . . . , Ys) with 1 ≤ r < s ≤ K , and denote index set τ1 =
{1,2, . . . , r} and τ2 = {r + 1, r + 2, . . . , s}. Then Y ′ and Y ′′ are independent if and only if

f τ = 0 ∀τ ∩ τ1 �= ∅ and τ ∩ τ2 �= ∅. (3.10)

The proof of Theorem 3.2 is also deferred to Appendix. The theorem delivers the message
that the two groups of binary nodes in a graph are independent if all the natural parameters f ’s
corresponding to the index sets that include indices from both groups disappear.

Furthermore, analogous to the multivariate Gaussian distribution, researchers are interested in
statistical distributions of marginal and conditional distributions for the multivariate Bernoulli
distribution. Likewise, the multivariate Bernoulli distribution maintains the good property that
both the marginal and conditional distributions are still multivariate Bernoulli as stated in the
following proposition.

Proposition 3.1. The marginal distribution of the random vector (Y1, . . . , YK) which follows
multivariate Bernoulli distribution with density function (3.1) to any order is still a multivariate
Bernoulli with density

P(Y1 = y1, Y2 = y2, . . . , Yr = yr) =
∑
yr+1

· · ·
∑
yK

p(y1, . . . , yK) (3.11)

for some r < K .
What’s more, the conditional distribution of (Y1, Y2, . . . , Yr ) given the rest is also multivariate

Bernoulli with density

P(Y1 = y1, . . . , Yr = yr |Yr+1 = yr+1, . . . , YK = yK) = p(y1, . . . , yK)

p(yr+1, . . . , yK)
. (3.12)
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3.3. Moment generating functions

The moment generating function for the multivariate Bernoulli distribution is useful when deal-
ing with moments and proof of Theorem 3.1.

ψ(μ1,μ2, . . . ,μK) = E
[
exp(μ1Y1 + μ2Y2 + · · · + μKYK)

]
= p00···0e0 + p10···0eμ1 + · · · + p11···1eμ1+μ2+···+μK (3.13)

=
K∑

r=1

∑
j1≤j2≤···≤jr

exp[Sj1j2···jr ]
exp[b(f)] exp

[
r∑

k=1

μjk

]
.

Hence, from the formula the moment generating function is solely determined by the S functions,
which are the transformation of the natural parameters f ’s.

3.4. Gradient and Hessian

As a member of the exponential family, the gradient and Hessian (Fisher information) are the
mean and covariance of the random vector (Y1, Y2, . . . , YK). Therefore, they are important in
statistics but also crucial for model inference when the proper optimization problem is estab-
lished. To examine the formulation of gradient and Hessian for the logarithm of the multivariate
Bernoulli distribution (3.1), let us define some notations.

Denote T to be the set of all possible superscripts of the f ’s including the null superscript with
f ∅ = 0, so it has 2K elements. In other words, T is the power set of indices {1,2, . . . ,K}. Let
| · | be the cardinality of a set then |T | = 2K . We can define the relation subset ⊂ for τ1, τ2 ∈ T
as follows.

Definition 3.1. For any two superscripts τ1 = {j1, j2, . . . , jr} such that τ1 ∈ T and τ2 =
{k1, k2, . . . , ks} with τ2 ∈ T and r ≤ s, we say that τ1 ⊆ τ2 if for any j ∈ τ1, there is a k ∈ τ2
such that j = k.

Based on the definition, the S’s in (3.2) can be reformulated as

Sτ =
∑
τ0⊆τ

f τ0 , (3.14)

specifically, S∅ = 0. Consider the gradient of the log-linear form (3.4) with respect to the f ’s,
for any τ ∈ T ,

∂l(y, f)
∂f τ

= −Bτ (y) + ∂b(f)
∂f τ

(3.15)

= −Bτ (y) +
∑

τ0⊇τ exp[Sτ0 ]
b(f)

.
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The derivation of partial derivative of b with respect to f τ in (3.15) is

∂b(f)
∂f τ

= 1

exp[b(f)] · ∂ exp[b(f)]
∂f τ

= 1

exp[b(f)] · ∂
∑

τ0∈T exp[Sτ0 ]
∂f τ

(3.16)

=
∑

τ0⊇τ exp[Sτ0]
exp[b(f)]

= E
[
Bτ (y)

]
,

and the result can also be derived from the moment generating function (3.13) by taking deriva-
tives with respect to the μ’s.

A simple example of (3.15) in the bivariate Bernoulli distribution (2.9) is

∂l(y, f)
∂f 1

= −y1 + exp(f 1) + exp(S12)

b(f)
.

Further, the general formula for the second order derivative of (3.4) with respect to any two
natural parameters f τ1 and f τ2 is

∂2l(y, f )

∂f τ1∂f τ2
= ∂2b(f)

∂f τ1∂f τ2

= ∂

∂f τ1

(∑
τ0⊇τ2

exp[Sτ0 ]
exp[b(f)]

)
(3.17)

=
∑

τ0⊇τ1,τ0⊇τ2
exp[Sτ0 ] exp[b(f)] − ∑

τ0⊇τ1
exp[Sτ0 ]∑τ0⊇τ2

exp[Sτ0 ]
exp[2b(f)]

= cov
(
Bτ1(y),Bτ2(y)

)
.

In the bivariate Bernoulli distribution,

∂2l(y, f )

∂f 1∂f 2
= exp[S12] exp[b(f)] − (exp[f 1] + exp[S12])(exp[f 2] + exp[S12])

exp[2b(f)] .

4. The Ising and the multivariate Gaussian models

As mentioned in Section 1, the Ising and the multivariate Gaussian distributions are two main
tools to study undirected graphical models, and this section is to compare the multivariate
Bernoulli model introduced in Section 3 with these two popular models.



1474 B. Dai, S. Ding and G. Wahba

4.1. The Ising model

The Ising model, which originated from [8], becomes popular when the graph structure is of in-
terest with nodes taking binary values. The log-linear density of the random vector (Y1, . . . , YK)

is

log
[
f (Y1, . . . , YK)

] =
K∑

j=1

θj,j Yj +
∑

1≤j<j ′≤K

θj,j ′YjYj ′ − log
[
Z(�)

]
, (4.1)

where � = (θj,j ′)K×K is a symmetric matrix specifying the network structure, but it is not nec-
essarily positive semi-definite. The log-partition function Z(�) is defined as

Z(�) =
∑

Yj ∈{0,1},1≤j≤K

exp

(
K∑

j=1

θj,j Yj +
∑

1≤j<j ′≤K

θj,j ′YjYj ′

)
, (4.2)

and notice that it is not related to Yj due to the summation over all possible values of Yj for
j = 1,2, . . . ,K .

It is not hard to see that the multivariate Bernoulli is an extension of the Ising model, which
assumes all Sτ = 0 for any τ such that |τ | > 2 and θj,j ′ = Sjj ′

. In other words, in the Ising model,
only pairwise interactions are considered. [13] pointed out that the higher order interactions,
which is referred to as clique effects in this paper, can be converted to pairwise ones through
the introduction of additional variables and thus retain the Markovian structure of the network
defined in [19].

4.2. Multivariate Gaussian model

When continuous nodes are considered in a graphical model, the multivariate Gaussian distribu-
tion is important since, similar to the Ising model, it only considers interactions up to order two.
The log-linear formulation is

log
[
f (Y1, . . . , YK)

] = (− 1
2 (Y − μ)T �(Y − μ)

) − log
[
Z(�)

]
, (4.3)

where Z(�) is the normalizing factor which only depends on the covariance matrix �.

4.3. Comparison of different graphical models

The multivariate Bernoulli (3.4), Ising (4.1) and multivariate Gaussian (4.3) are three different
kinds of graphical models and they share many similarities

1. All of them are members of the exponential family.
2. Uncorrelatedness and independence are equivalent.
3. Conditional and marginal distributions maintain the same structure.
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Table 1. The number of parameters in the multivariate Bernoulli, the Ising and the multivariate Gaussian
models

Graph dimension Multivariate Bernoulli Ising Multivariate Gaussian

1 1 1 2
2 3 3 5
3 7 6 9
· · · · · · · · · · · ·
K 2K − 1 K(K+1)

2 K + K(K+1)
2

However, some differences do exist. the multivariate Bernoulli and the Ising models both serve
as tools to model graph with binary nodes, and are certainly different from the multivariate Gaus-
sian model which formulates continuous variables. In addition, the multivariate Bernoulli spec-
ifies clique effects among nodes whereas the Ising model simplifies to deal with only pairwise
interactions and the multivariate Gaussian essentially is uniquely determined by its mean and
covariance structure, which is also based on first and second order moments. Table 1 illustrates
the number of parameters needed to uniquely determine the distribution for these models as the
number of nodes K in the graph increases.

5. Multivariate Bernoulli logistic models

5.1. Generalized linear model

As discussed in Section 3, the multivariate Bernoulli distribution is a member of the exponential
family and as a result, the generalized linear model theory in [10] applies. The natural parameters
(f ’s) in Lemma 3.1 can be formulated as a linear predictor in [10] such that for any τ ∈ T with
T = {1,2, . . . ,K}

f τ (x) = cτ
0 + cτ

1x1 + · · · + cτ
pxp, (5.1)

where the vector cτ = (cτ
0 , . . . , cτ

p) for τ ∈ T is the coefficient vector to be estimated and x =
(x1, x2, . . . , xp) is the observed covariate. Here p is the number of variables and there are 2K −1
coefficient vectors to be estimated so in total p × (2K − 1) unknown parameters. Equation (5.1)
is built on the canonical link where natural parameters are directly modeled as linear predictors,
but other links are possible and valid as well.

When there are n samples observed from a real data set with outcomes denoted as y(i) =
(y1(i), . . . , yK(i)) and predictor variables x(i) = (x1(i), . . . , xp(i)), the negative log likelihood
for the generalized linear model of the multivariate Bernoulli distribution is

l
(
y, f(x)

) =
n∑

i=1

[
−

∑
τ∈T

f τ
(
x(i)

)
Bτ

(
y(i)

) + b
(
f(x)

)]
, (5.2)
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where, similar to (3.5) the log partition function b is

b
(
f(x)

) = log

[
1 +

∑
τ∈T

exp
[
Sτ

(
x(i)

)]]
.

When dealing with the univariate Bernoulli distribution using formula (5.2), the resulting gen-
eralized linear model corresponding to the multivariate Bernoulli model is the same for logistic
regression. Thus the model is referred to as the multivariate Bernoulli logistic model in this paper.

5.2. Gradient and Hessian

To optimize the negative log likelihood function (5.1) with respect to the coefficient vector cτ ,
the efficient and popular iterative re-weighted least squares algorithm mentioned in [10] can be
implemented. Nevertheless, the gradient vector and Hessian matrix (Fisher Information) with
respect to the coefficients cτ are still required.

Consider any τ ∈ T , the first derivative with respect to cτ
j in the negative log likelihood (5.2)

of the multivariate Bernoulli logistic model, according to (3.15) and ignoring index i, is

∂l(y, f )

∂cτ
j

= ∂l(y, f )

∂f τ

∂f τ

∂cτ
j

(5.3)

=
n∑

i=1

[
−Bτ (y) +

∑
τ0⊇τ exp[Sτ0(x)]
exp[b(f(x))]

]
xj .

Further, the second derivative for any two coefficients c
τ1
j and c

τ2
k is

∂2l(y, f )

∂c
τ1
j ∂c

τ2
k

= ∂

∂c
τ1
j

(
∂l(y, f )

∂f τ2

∂f τ2

∂c
τ2
k

)

= ∂f τ1

∂c
τ1
j

∂2l(y, f )

∂f τ1∂f τ2

∂f τ2

∂c
τ2
k

(5.4)

=
n∑

i=1

∂2l(y, f )

∂f τ1∂f τ2
xjxk

=
∑

τ0⊇τ1,τ0⊇τ2
exp[Sτ0(x)]

exp[b(f (x))] xjxk −
∑

τ0⊇τ1
exp[Sτ0(x)]∑τ0⊇τ2

exp[Sτ0(x)]
exp[2b(f (x))] xjxk.

5.3. Parameters estimation and optimization

With gradient (5.3) and Hessian (5.4) at hand, the minimization of the negative log likeli-
hood (5.2) with respect to the coefficients cτ can be solved with Newton–Raphson or the Fisher’s
scoring algorithm (iterative re-weighted least squares) when the Hessian is replaced by the Fisher
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information matrix. Therefore, in every iteration, the new step size for current estimate ĉ(s) is
computed as


c = −
(

∂2l(y, f )

∂c
τ1
j ∂c

τ2
k

∣∣∣∣
c=ĉ(s)

)−1

·
(

∂l(y, f )

∂cτ
j

∣∣∣∣
c=ĉ(s)

)
. (5.5)

The process continues until the convergence criterion is met.

5.4. Variable selection

Variable selection is important in modern statistical inference. It is also crucial to select only
the significant variables to determine the structure of the graph for better model identification
and prediction accuracy. The pioneering paper [16] introduced the LASSO approach to linear
models. Various properties of the method were demonstrated such as in [23] and extensions of
the model to different frameworks were discussed in [11,12,24] etc.

The approach can be extended to the multivariate Bernoulli distribution since it is a member of
the exponential family. What we have to do is to apply the l1 penalty to the coefficients in (5.1),
and the target function is

Lλ(x, y) = 1

n

n∑
i=1

l
(
y(i), f

(
x(i)

)) +
∑
τ∈T

λτ

p∑
j=1

∣∣cτ
j

∣∣, (5.6)

where λτ are the tuning parameters need to be chosen adaptively. The superscript τ allows flexi-
bility to have natural parameters with different levels of complexity. For tuning in penalized re-
gression problems, the randomized generalized approximate cross-validation (GACV) designed
for smoothing spline models introduced in [21] can be derived for LASSO problem, such as
in [15]. The widely used information criterion AIC and BIC can also be implemented, but the
degrees of freedom cannot be calculated exactly. [9] demonstrates that the number of nonzero
estimates can serve as a good approximation in the multivariate Bernoulli logistic model. There
are several efficient algorithms proposed to optimize the problem (5.6), for example, the LASSO-
pattern search introduced in [15] can handle large number of unknowns provided that it is known
that at most a modest number are nonzeros. Recently, [14] has extended the algorithm in [15]
to the scale of multi-millions of unknowns. Coordinate descent [5] is also proven to be fast in
solving large p small n problems.

5.5. Smoothing spline ANOVA model

The smoothing spline model gained popularity in non-linear statistical inference since it was
proposed in [2] for univariate predictor variables. More importantly, multiple smoothing spline
models for generalized linear models enable researchers to study complex real world data sets
with increasingly powerful computers as described in [18].

As a member of the exponential family, the multivariate Bernoulli distribution can be formu-
lated under smoothing spline ANOVA framework. [6] considers the smoothing spline ANOVA
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multivariate Bernoulli model but the interactions are restricted to be constant. However, in gen-
eral the natural parameters or linear predictors f ’s can be relaxed to reside in a reproducing
kernel Hilbert space. That is to say, for the observed predictor vector x, we have

f τ (x) = ητ (x) with ητ ∈ Hτ , τ ∈ T , (5.7)

where Hτ is a reproducing kernel Hilbert space and the superscript τ allows a more flexible
model such that the natural parameters can come from different reproducing kernel Hilbert
spaces. Further, Hτ can be formulated to have several components to handle multivariate pre-
dictor variables, that is Hτ = ⊕p

β=0 Hτ
β and details can be found in [7].

As a result, the ητ is estimated from the variational problem

Iλ(x, y) = 1

n

n∑
i=1

l
(
y(i),η

(
x(i)

)) + λJ (η), (5.8)

where η is the vector form of ητ ’s. The penalty is seen to be

λJ (η) = λ
∑
τ∈T

θ−1
τ

∥∥P τ
1 ητ

∥∥2 (5.9)

with λ and θτ being the smoothing parameters. This is an over-parameterization adopted in [7],
as what really matters are the ratios λ/θτ . The functional P τ

1 projects function ητ in Hτ onto the
smoothing subspace Hτ

1 .
By the argument of smoothing spline ANOVA model in [7], the minimizer ητ has the expres-

sion as in [17],

ητ (x) =
m∑

ν=1

dτ
ν φτ

ν (x) +
n∑

i=1

cτ
i Rτ (xi, x), (5.10)

where {φτ
ν }mν=1 is a basis of Hτ

0 = Hτ � Hτ
1 , the null space corresponding to the projection

functional P τ
1 . Rτ (·, ·) is the reproducing kernel for Hτ

1 .
The variational problem (5.8) utilizing the smoothing spline ANOVA framework can be solved

by iterative re-weighted least squares (5.5) due to the linear formulation (5.10). More on tuning
and computations including software will appear in [3].

6. Conclusion

We have shown that the multivariate Bernoulli distribution, as a member of the exponential fam-
ily, is a way to formulate the graph structure of binary variables. It can not only model the
main effects and pairwise interactions as the Ising model does, but also is capable of estimating
higher order interactions. Importantly, the independence structure of the graph can be modeled
via significance of the natural parameters. The most interesting observation of the multivariate
Bernoulli distribution is its similarity to the multivariate Gaussian distribution. Both of them



Multivariate Bernoulli distribution 1479

have the property that independence and uncorrelatedness of the random variables are equiva-
lent, which is generally not true for other distributions. In addition, the marginal and conditional
distributions of a subset of variables still follow the multivariate Bernoulli distribution.

Furthermore, the multivariate Bernoulli logistic model extends the distribution to a generalized
linear model framework to include effects of predictor variables. Under this model, the traditional
statistical inferences such as point estimation, hypothesis test and confidence intervals can be
implemented as discussed in [10].

Finally, we consider two extensions to the multivariate Bernoulli logistic model. First, the vari-
able selection technique using LASSO can be incorporated to enable finding important patterns
from a large number of candidate covariates. Secondly, the smoothing spline ANOVA model is
introduced to consider non-linear effects of the predictor variables in nodes, edges and cliques
level.

Appendix: Proofs

Proof of Proposition 2.1. With the joint density function of the random vector (Y1, Y2), the
marginal distribution of Y1 can be derived

P(Y1 = 1) = P(Y1 = 1, Y2 = 0) + P(Y1 = 1, Y2 = 1)

= p10 + p11.

Similarly,

P(Y1 = 0) = p00 + p11.

Combining the side condition of the parameters p’s,

P(Y1 = 1) + P(Y1 = 0) = p00 + p01 + p10 + p11 = 1.

This demonstrates that Y1 follows the univariate Bernoulli distribution and its density function
is (2.1).

Regarding the conditional distribution, notice that

P(Y1 = 0|Y2 = 0) = P(Y1 = 0, Y2 = 0)

P (Y2 = 0)

= p00

p00 + p10
,

and the same process can be repeated to get

P(Y1 = 1|Y2 = 0) = p10

p00 + p10
.

Hence, it is clear that with condition Y2 = 0, Y1 follows a univariate Bernoulli distribution as well.
The same scenario can be examined for the condition Y2 = 1. Thus, the conditional distribution
of Y1 given Y2 is given as (2.11). �
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Proof of Lemma 2.1. Expand the log-linear formulation of the bivariate Bernoulli distribu-
tion (2.9) into factors

P(Y1 = y1, Y2 = y2) = p00 exp
(
y1f

1) exp
(
y2f

2) exp
(
y1y2f

12). (A.1)

It is not hard to see that when f 12 = 0, the density function (A.1) is separable to two components
with only y1 and y2 in them. Therefore, the two random variables corresponding to the formula
are independent. Conversely, when Y1 and Y2 are independent, their density function should be
separable in terms of y1 and y2, which implies y1y2f

12 = 0 for any possible values of y1 and y2.
The assertion dictates that f 12 is zero. �

Proof of Lemma 3.1. Consider the log-linear formulation (3.4), the natural parameters f ’s are
combined with products of some components of y. Let us match terms in the f j1···jr Bj1···jr (y)

from log-linear formulation (3.4) with the coefficient for the corresponding product yj1 · · ·yjr

terms in (3.1). The exponents of p’s in (3.1) can be expanded to summations of different products
Bτ (y) with τ ∈ T and all the p’s with yj1, . . . , yjr in the exponent have effect on f j1···jr so all
the positions other than j1, . . . , jr must be zero. Furthermore, those p’s with positive yj1 · · ·yjr

in its exponent appear in the numerator of exp[f j1···jr ] and the product is positive only if there
are even number of 0’s in the positions j1, . . . , jr . The same scenario applies to the p’s with
negative products in the exponents.

What’s more, notice that p00···0 = b(f) and

exp
[
Sj1···jr

] = exp

[ ∑
1≤s≤r

f js +
∑

1≤s<t≤r

f jsjt + · · · + f j1j2···jr

]
(A.2)

=
∏

1≤s≤r

exp
[
f js

] ∏
1≤s<t≤r

exp
[
f jsjt

] · · · exp
[
f j1j2···jr

]

and apply the formula for exp[f j1···jr ] with cancellation of terms in the numerators and the
denominators. The resulting (3.6) can then be verified.

Finally, (3.7) is a trivial extension of (3.6) by exchanging the numerator and the denomina-
tor. �

Proof of Theorem 3.1. Here, we take use of the moment generating function (3.13) but it is also
possible to directly work on the probability density function (3.1). The mgf can be rewritten as

ψ(μ1, . . . ,μK) = 1

exp[b(f)]
K∑

r=1

∑
j1≤j2≤···≤jr

exp
[
Sj1j2···jr

] r∏
k=1

exp[μjk
]. (A.3)

It is not hard to see that this is a polynomial function of the unknown variables exp(μk) for k =
1, . . . ,K . The independence of the random variables Y1, Y2, . . . , YK is equivalent to that (A.3)
can be separated into components of μk or equivalently exp(μk).
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(⇒) If the random vector Y is independent, the moment generating function should be sepa-
rable and assume the formulation is

ψ(μ1, . . . ,μK) = C

K∏
k=1

(
αk + βk exp[μk]

)
, (A.4)

where αk and βk are functions of parameters S’s and C is a constant. If we expand (A.4) to
polynomial function of exp[μk] and determine the corresponding coefficients, (3.8) and (3.9)
will be derived.

(⇐) Suppose (3.9) holds, then we have

exp
[
Sj1j2···jr

] =
r∏

k=1

exp
[
f jk

]
,

and as a result, the moment generating function can be decomposed to a product of components
of exp[μk] like (A.4) with the following relations

C = 1

exp[b(f)] ,
αk = 1,

βk = exp
[
f k

]
. �

Proof of Theorem 3.2. The idea of proving the group independence of multivariate Bernoulli
variables are similar to Theorem 3.1. Instead of decomposing the moment generating function
to products of μk , we only have to separate them into groups with each only involving the de-
pendent random variables. That is to say, the moment generating function with two separately
independent nodes in the multivariate Bernoulli should have the form

ψ(μ1, . . . ,μK)

= (
α0 + α1 exp[μ1] + · · · + αr exp[μr ]

) · (β0 + β1 exp[μr+1] + · · · + βs exp[μK ]).
Matching the corresponding coefficients of this separable moment generating function and the
natural parameters leads to the conclusion (3.10). �
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