Effectively Propositional Interpolants

Samuel Drews and Aws Albarghouthi

Effectively Propositional Logic (EPR)

$$\exists x_1 \dots x_n \ \forall y_1 \dots y_m \varphi$$

Quantifier-free
No function symbols

EPR

Decidable satisfiability!

EPR

Decidable satisfiability!

Expressive:

- Linked lists [Itzhaky et al. 2014]
- Software-defined networks [Ball et al. 2014]
- Parameterized distributed protocols [Padon et al. 2016]
- ...

Interpolants

Given A and B such that

 $A \wedge B$ is unsatisfiable

Interpolants

Given A and B such that

 $A \wedge B$ is unsatisfiable

Find I such that

 $A \rightarrow I$ is valid $I \wedge B$ is unsatisfiable I is in shared vocabulary (A, B)

$$I(\vec{x}) \wedge T(\vec{x}, \vec{x}') \rightarrow I(\vec{x}')$$
 is valid, or

$$I(\vec{x}) \wedge T(\vec{x}, \vec{x'}) \wedge \neg I(\vec{x'})$$
 is unsat

$$I(\vec{x}) \wedge T(\vec{x}, \vec{x'}) \rightarrow I(\vec{x'})$$
 is valid, or

$$\overbrace{I(\vec{x})} \land T(\vec{x}, \vec{x'}) \land \boxed{\neg I(\vec{x'})}$$
 is unsat

$$I(\vec{x}) \wedge T(\vec{x}, \vec{x'}) \rightarrow I(\vec{x'})$$
 is valid, or

$$\overbrace{I(\vec{x})} \land T(\vec{x}, \vec{x'}) \land \boxed{\neg I(\vec{x'})}$$
 is unsat

$$\exists * \forall * \varphi$$
 decidable, but $\forall * \exists * \varphi$ undecidable

$$I(\vec{x}) \wedge T(\vec{x}, \vec{x'}) \rightarrow I(\vec{x'})$$
 is valid, or

$$\underbrace{I(\vec{x})} \land T(\vec{x}, \vec{x'}) \land \boxed{\neg I(\vec{x'})}$$
 is unsat

$$\exists$$
 * \forall * φ decidable, but \forall * \exists * φ undecidable

Bummer

$$I(\vec{x}) \wedge T(\vec{x}, \vec{x}') \rightarrow I(\vec{x}')$$
 is valid, or

$$\underbrace{I(\vec{x})} \land T(\vec{x}, \vec{x'}) \land \boxed{\neg I(\vec{x'})}$$
 is unsat

$$\exists$$
 * \forall * φ decidable, but \forall * \exists * φ undecidable

- 1. \exists -logic: $\exists * \varphi$
- 2. \forall -logic: \forall * φ
- 3. AF-logic: boolean combinations of \exists -logic and \forall -logic ex: $(\exists *\varphi_1 \land \forall *\varphi_2) \lor \forall *\varphi_3$

$$\varphi = \exists a \forall b. \, p(a,b)$$

$$\varphi = \exists a \forall b. \, p(a,b)$$

Model
$$m \models \varphi$$

$$\varphi = \exists a \forall b. \, p(a,b)$$

Model
$$m \models \varphi$$

Diagram

$$diag(m) = \exists c_1, c_2.c_1 \neq c_2$$

$$\wedge p(c_1, c_1) \wedge \neg p(c_2, c_2)$$

$$\wedge p(c_1, c_2) \wedge \neg p(c_2, c_1)$$

$$diag(m) = \exists c_1, c_2.c_1 \neq c_2$$

$$\land p(c_1, c_1) \land \neg p(c_2, c_2)$$

$$\land p(c_1, c_2) \land \neg p(c_2, c_1)$$

UITP: for **\(\mathre{**

- Returning *I*: interpolant by construction
- Returning *none* is sound: diag(m) is the strongest \exists -logic formula that m models

- Returning *I*: interpolant by construction
- Returning none is sound:
 diag(m) is the strongest ∃-logic formula that m models

- Returning *I*: interpolant by construction
- Returning *none* is sound: diag(m) is the strongest \exists -logic formula that m models

- Returning *I*: interpolant by construction
- Returning *none* is sound: diag(m) is the strongest \exists -logic formula that m models

UITP Termination (and Completeness)

EPR small model property:

All EPR A have a bound k such that $m \models A \rightarrow \exists m_{small}$:

- $m_{small} \models A$
- $m_{small} \subseteq m$
- $|m_{small}| \le k$

UITP Termination (and Completeness)

EPR small model property:

All EPR A have a bound k such that $m \models A \rightarrow \exists m_{small}$:

- $m_{small} \models A$
- $m_{small} \subseteq m$
- $|m_{small}| \le k$

UITP Termination (and Completeness)

EPR small model property:

All EPR A have a bound k such that $m \models A \rightarrow \exists m_{small}$:

- $m_{small} \models A$
- $m_{small} \subseteq m$
- $|m_{small}| \le k$

So $m \neq diag(m_{small})$

Soundness: returned *I* is interpolant by construction

Soundness: returned *I* is interpolant by construction

Rel. Compl.: Existence of AF-logic interpolant → termination

If $\varphi \in \mathsf{AF}\text{-logic}$ And $A \to \varphi$ Then $\varphi \land B$ is sat

Soundness: returned *I* is interpolant by construction

Experiments

ITPV: an interpolation-based verifier

Compared to PDR → [Itzhaky et al., 2014] on linked-list programs

Experiments

ITPV: an interpolation-based verifier

Compared to PDR [Itzhaky et al., 2014] on linked-list programs

Mostly comparable in finding ∀-logic invariants

ITPV can find AF-logic invariants

Experiments

ITPV: an interpolation-based verifier

Compared to PDR [Itzhaky et al., 2014] on linked-list programs

Mostly comparable in finding ∀-logic invariants

ITPV can find AF-logic invariants

Conclusion

UITP and BITP interpolate EPR formulae

UITP: sound/complete finding interpolants in ∃ - and ∀ -logic

BITP: sound/rel.comp. finding interpolants in AF-logic