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Probabilistic Correctness Properties

P(x) := 0 ≤ x ≤ 0.2 

P(x) := 0 ≤ x ≤ 0.8 
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x ~ Uniform([0, 1])
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post := Pr[P(x) = 1] > ⅓
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✓



Probabilistic Program Synthesis

Progs

post

Q P
Pr[Q(x) ≠ P(x)] 

0 1⅓
Values of a:

Decreasing “Error” Pr[Q(x) ≠ P(x)]

Satisfy post

Progs = {P(x) := 0 ≤ x ≤ a | a ∈ R}

inputs ~ Uniform([0, 1])

post := Pr[P(x) = 1] > ⅓

Q(x) := constant-0 function



DIGITS (CAV17)

Sample Set S
{0.4,       0.6} Program Correct? Error

0 0 [0, 0.3] ✗ 0.3
0 1 unsat - -
1 0 [0, 0.5] ✓ 0.5
1 1 [0, 1] ✓ 1.0C

on
st

ra
in

ts
f :

 S
→

{0
,1

}

For each f : S → {0,1},
query a synthesis oracle

Oracles compute post and Error

Sample m inputs

Progs = {P(x) := 0 ≤ x ≤ a | a ∈ R}

inputs ~ Uniform([0, 1])

post := Pr[P(x) = 1] > ⅓

Q(x) := constant-0 function



Progs
post

DIGITS Convergence (CAV17)

Theorem (Convergence of DIGITS)
(Under certain assumptions,) with high probability, DIGITS enumerates some 
correct, (near-)near-optimal program P.

𝜀

P
Q P*

Pr[Q(x) ≠ P*(x)] 



Which Begs the Questions:
Do we really need to make exponentially many queries?

How high is the “high probability” of optimal convergence?

No!

Depends on the number of samples.



DIGITS Trie Implementation (CAV17)

unsat

Sample Set S
{0.4,       0.6} Program Correct? Error

0 0 [0, 0.3] ✗ 0.3
0 1 unsat - -
1 0 [0, 0.5] ✓ 0.5
1 1 [0, 1] ✓ 1.0C

on
st

ra
in

ts
f :

 S
→

{0
,1

}



Efficiency of the Trie “Heuristic”

5050 <<< 2100

Polynomial Trendline:

f(x) = ½ x2 + ½ x

R2 = 1



Polynomial?
Two equivalent ways of thinking:
● The trie avoids unsatisfiable parts of the search space
● The trie stays close to satisfiable parts of the search space

# Queries @ next depth =

O(# Satisfiable @ current depth)



For [0, a] intervals and m points, # Satisfiable Queries (m) = m + 1

0 1

3 samples

] ] ]]

4 choices of right endpoint

[0, a] Search Trie, depth m:

O(m+1)

m O(m2)
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Finite VC Dimension → Polynomial Bound



Progs

post

Finite VC Dimension → Polynomial Bound
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Finite VC Dimension → Polynomial Bound
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Finite VC Dimension → Polynomial Bound

unsat
unsat

unsat



Progs

post

Finite VC Dimension → Polynomial Bound

unsat
unsat

unsat

“Sauer-Shelah Lemma”: Only O(md) are satisfiable!



Finite VC Dimension → Polynomial Bound
Theorem:
If DIGITS runs on Progs using m samples, it performs O(md+1) synthesis queries.

Progs Search Trie, |S| = m:

O(md)

m O(md+1)



Which Begs the Questions:
Do we really need to make exponentially many queries?

How high is the “high probability” of optimal convergence?

No!---In fact, we only make O(md+1)

Depends on the number of samples.



𝜏-DIGITS
Use the constraint set to estimate the error Pr[Q(x) ≠ P(x)]:

Fix threshold 𝜏 ∈ (0,1] and skip any f : S → {0,1} such that
|{x ∈ S : Q(x) ≠ f(x)}| > 𝜏|S|
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Choosing 𝜏
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Adaptive 𝜏-DIGITS 
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Adaptive 𝜏-DIGITS Efficacy (Fairness Benchmarks)



Which Begs the Questions:
Do we really need to make exponentially many queries?

How high is the “high probability” of optimal convergence?

No!---in fact, we only make O(md+1)

Depends on the number of samples.
---and we can do better with 𝜏-DIGITS



Thanks!

Progs Search Trie, |S| = m:

O(md)

m O(md+1)
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