Efficient Synthesis with
Probabilistic Constraints

Samuel Drews, Aws Albarghouthi, Loris D’Antoni

WISCONSIN [MEYs|PL

NNNNNNNNNNNNNNNNNNNNNNNNNNNN

Probabilistic Correctness Properties

A

x ~ Uniform([0, 1])

post := Pr[P(x) = 1] > 5

0 1
P(x):=0<x<0.2 o | ® X

0 0.2 1
P(x):=0<x<0.8 ® ——-=e v

Probabilistic Program Synthesis

Progs={P(x) :==0<x<a|a € R} Progs
inputs ~ Uniform([0, 1])
post :=Pr[P(x)=1] > Qe

PriQ(x) # P(x)]
Q(x) := constant-0 function

Satisfy post

\

[\
Valuesof a: @ @)

0 2 1
¢== Decreasing “Error” Pr[Q(x) # P(x)]

DIGITS (CAV17)

Progs ={P(x) :=0<x<a|a € R}
inputs ~ Uniform([0, 1])
post :=Pr[P(x)=1] >

Q(x) := constant-0 function

Sample m inputs

Constraints
f:5—{0,1}

For each f: S — {0,1},
query a synthesis oracle

I

Sample Set S
{0.4, 0.6} Program Correct? Error
0 0 [0, 0.3] X 0.3
0 1 unsat - -
1 0 [0, 0.5] 4 0.5
1 1 [0, 1] 4 1.0
_—/

Oracles compute post and Error

DIGITS Convergence (CAV17)

Progs

°
¢ PriQ(x) # P*(x)]

Theorem (Convergence of DIGITS)
(Under certain assumptions,) with high probability, DIGITS enumerates some
correct, (near-)near-optimal program P.

Which Begs the Questions:

Do we really need to make exponentially many queries?

How high is the “high probability” of optimal convergence?

Depends on the number@

DIGITS Trie Implementation (CAV17)

S ={0.4} S ={0.4,0.6}

/\ VN
/\ /\

Sample Set S [0, O 3] [0, 0 5]
{0.4, 0.6} Program Correct? Error /. |
42 iy 0 0 [0, 0.3] X 0.3
T2 0 1 unsat - - /unsat .
@ J) 1 0 [0, 0.5] v/ 0.5
< 1 1 [0, 1] v/ 1.0

Efficiency of the Trie "Heuristic”

[0,a] Intervals: Synthesis Queries vs. Depth

6000
4 5050 <<< 2% 1
'% 4000
S
E Polynomial Trendline:\
‘; 2000
. fX)=%x*+Y%x
R?=1
0 J

20 40 60 80 100

Samples

Polynomial?

Two equivalent ways of thinking:
The trie avoids unsatisfiable parts of the search space
The trie stays close to satisfiable parts of the search space

N

7\

X

e

Queries @ next depth =
O(# Satisfiable @ current depth)

For [0, a] intervals and m points, # Satisfiable Queries (m)=m+ 1

3 samples

4 choices of right endpoint

[0, a] Search Trie, depth m: —m w—) 0(m?)

Finite VC Dimension — Polynomial Bound

Progs

Finite VC Dimension — Polynomial Bound

Progs

Finite VC Dimension — Polynomial Bound

Progs

Finite VC Dimension — Polynomial Bound

Progs

Finite VC Dimension — Polynomial Bound

Finite VC Dimension — Polynomial Bound

{ “Sauer-Shelah Lemma”: Only 0(m“) are satisfiable! }

Finite VC Dimension — Polynomial Bound

Theorem:
If DIGITS runs on Progs using m samples, it performs 0(m?!) synthesis queries.

—_

Progs Search Trie, |S| = m: — m —) O(m®1)

Which Begs the Questions:

Do we really need to make exponentially many queries?

No!---In fact, we only mak@

~

How high is the “high probability” of optimal convergence?

Depends on the number @
_ /

t-DIGITS

Use the constraint set to estimate the error Pr[Q(x) # P(x)]:

Fix threshold r = (0,1] and skip any f: S — {0,1} such that
[{x = §:Qx) #fx)} > 7|S|

Choosing 7

Adaptive 7-DIGITS

Adaptive 7-DIGITS

Adaptive 7-DIGITS

Adaptive 7-DIGITS

Adaptive 7-DIGITS

Adaptive t-DIGITS Efficacy (Fairness Benchmarks)

Adaptive 1-DIGITS (CAV19)

400

300

200

100

Completed Depth

100 200 300

1-DIGITS (CAV17)

400

Adaptive 1-DIGITS (CAV19)

Best Solution (Minimal Error)

0.25

0.2

0.15

0.1

0.05 e ©

0 005 01 015 02 0.25

1-DIGITS (CAV17)

Which Begs the Questions:

Do we really need to make exponentially many queries?

No!---in fact, we only makD

How high is the “high probability” of optimal convergence?

Depends on the number of samples.
---and we can do better with z-DIGITS

Thanks!

Progs Search Trie, |S| = m: /\ —m —) 0(me)

N

\ }

|
0(m%

