
Efficient Synthesis with
Probabilistic Constraints

Samuel Drews, Aws Albarghouthi, Loris D’Antoni

Probabilistic Correctness Properties

P(x) := 0 ≤ x ≤ 0.2

P(x) := 0 ≤ x ≤ 0.8

0 1
]

0.2

0 1
]

0.8

x ~ Uniform([0, 1])

10

post := Pr[P(x) = 1] > ⅓

✗

✓

Probabilistic Program Synthesis

Progs

post

Q P
Pr[Q(x) ≠ P(x)]

0 1⅓
Values of a:

Decreasing “Error” Pr[Q(x) ≠ P(x)]

Satisfy post

Progs = {P(x) := 0 ≤ x ≤ a | a ∈ R}

inputs ~ Uniform([0, 1])

post := Pr[P(x) = 1] > ⅓

Q(x) := constant-0 function

DIGITS (CAV17)

Sample Set S
{0.4, 0.6} Program Correct? Error

0 0 [0, 0.3] ✗ 0.3
0 1 unsat - -
1 0 [0, 0.5] ✓ 0.5
1 1 [0, 1] ✓ 1.0C

on
st

ra
in

ts
f :

 S
→

{0
,1

}

For each f : S → {0,1},
query a synthesis oracle

Oracles compute post and Error

Sample m inputs

Progs = {P(x) := 0 ≤ x ≤ a | a ∈ R}

inputs ~ Uniform([0, 1])

post := Pr[P(x) = 1] > ⅓

Q(x) := constant-0 function

Progs
post

DIGITS Convergence (CAV17)

Theorem (Convergence of DIGITS)
(Under certain assumptions,) with high probability, DIGITS enumerates some
correct, (near-)near-optimal program P.

𝜀

P
Q P*

Pr[Q(x) ≠ P*(x)]

Which Begs the Questions:
Do we really need to make exponentially many queries?

How high is the “high probability” of optimal convergence?

No!

Depends on the number of samples.

DIGITS Trie Implementation (CAV17)

unsat

Sample Set S
{0.4, 0.6} Program Correct? Error

0 0 [0, 0.3] ✗ 0.3
0 1 unsat - -
1 0 [0, 0.5] ✓ 0.5
1 1 [0, 1] ✓ 1.0C

on
st

ra
in

ts
f :

 S
→

{0
,1

}

Efficiency of the Trie “Heuristic”

5050 <<< 2100

Polynomial Trendline:

f(x) = ½ x2 + ½ x

R2 = 1

Polynomial?
Two equivalent ways of thinking:
● The trie avoids unsatisfiable parts of the search space
● The trie stays close to satisfiable parts of the search space

Queries @ next depth =

O(# Satisfiable @ current depth)

For [0, a] intervals and m points, # Satisfiable Queries (m) = m + 1

0 1

3 samples

]]]]

4 choices of right endpoint

[0, a] Search Trie, depth m:

O(m+1)

m O(m2)

Progs

post

Finite VC Dimension → Polynomial Bound

Progs

post

Finite VC Dimension → Polynomial Bound

Progs

post

Finite VC Dimension → Polynomial Bound

Progs

post

Finite VC Dimension → Polynomial Bound

unsat

Progs

post

Finite VC Dimension → Polynomial Bound

unsat
unsat

unsat

Progs

post

Finite VC Dimension → Polynomial Bound

unsat
unsat

unsat

“Sauer-Shelah Lemma”: Only O(md) are satisfiable!

Finite VC Dimension → Polynomial Bound
Theorem:
If DIGITS runs on Progs using m samples, it performs O(md+1) synthesis queries.

Progs Search Trie, |S| = m:

O(md)

m O(md+1)

Which Begs the Questions:
Do we really need to make exponentially many queries?

How high is the “high probability” of optimal convergence?

No!---In fact, we only make O(md+1)

Depends on the number of samples.

𝜏-DIGITS
Use the constraint set to estimate the error Pr[Q(x) ≠ P(x)]:

Fix threshold 𝜏 ∈ (0,1] and skip any f : S → {0,1} such that
|{x ∈ S : Q(x) ≠ f(x)}| > 𝜏|S|

𝜏

Q

P
4

P
2

P
3

Progs

post

Q

P
4

P
2

P
3

P
1

Progs

post

Progs

post

Q

Choosing 𝜏

𝜏
Progs

post

Q

𝜏

Progs

post

Q

Adaptive 𝜏-DIGITS

Progs

post

Q

Adaptive 𝜏-DIGITS

P
1

𝜏
Progs

post

Q

Adaptive 𝜏-DIGITS

P
1

𝜏
Progs

post

Q

Adaptive 𝜏-DIGITS

P
1

P
2

𝜏

Progs

post

Q

Adaptive 𝜏-DIGITS

P
1

P
2

Adaptive 𝜏-DIGITS Efficacy (Fairness Benchmarks)

Which Begs the Questions:
Do we really need to make exponentially many queries?

How high is the “high probability” of optimal convergence?

No!---in fact, we only make O(md+1)

Depends on the number of samples.
---and we can do better with 𝜏-DIGITS

Thanks!

Progs Search Trie, |S| = m:

O(md)

m O(md+1)

𝜏

Q

P
4

P
2

P
3

Progs

post

Q

P
4

P
2

P
3

P
1

Progs

post

