Fairness as a Program Property

Aws Albarghouthi
Loris D'Antoni **Samuel Drews**University of Wisconsin-Madison

Aditya Nori Microsoft Research

Who do you blame when an algorithm gets you fired?

The Upshot

HIDDEN BIAS

When Algorithms Discriminate

SundayReview | OPINION

Artificial Intelligence's White Guy Problem

By KATE CRAWFORD JUNE 25, 2016

Bianca Bagnarelli

Proof of correctness

Precondition $\{n > 0\}$

Postcondition $\{r = n!\}$

$$h \leftarrow \mathcal{D}(v)$$

$$\{ oldsymbol{v} = (v_1, \ldots, v_s, \ldots) \}$$
 sensitive $h \leftarrow \mathcal{D}(oldsymbol{v})$ feature (e.g. minority)

$$egin{aligned} \{oldsymbol{v} = (v_1, \dots, v_s, \dots)\} & ext{sensitive} \ h \leftarrow \mathcal{D}(oldsymbol{v}) & ext{feature} \ ext{(e.g. minority)} \ \left\{rac{\Pr[h \mid v_s]}{\Pr[h \mid \neg v_s]} > 1 - \epsilon
ight\} \end{aligned}$$

$$\{oldsymbol{v} \sim \mathcal{M}\}$$
 $\{oldsymbol{v} \sim \mathcal{M}\}$ $h \leftarrow \mathcal{D}(oldsymbol{v})$ $\Big\{rac{\Pr[h \mid v_s]}{\Pr[h \mid \neg v_s]} > 1 - \epsilon\Big\}$

Individual Fairness

$$\{v_1, v_2 \sim \mathcal{M}\}$$

$$h_1 \leftarrow \mathcal{D}(v_1)$$

$$h_2 \leftarrow \mathcal{D}(v_2)$$

$$\{\Pr[h_1 \neq h_2 \mid v_1 \sim v_2] < \epsilon\}$$
similarity

FairSquare

$\{v \sim \mathcal{M}\}$

```
define dec(colRank, yExp)
  expRank ← yExp - colRank
  if (colRank <= 5)
    hire ← true
  elif (expRank > -5)
    hire ← true
  else
    hire ← false
  return hire
```

$$\left\{ \frac{\Pr[\text{hire} \mid \text{ethnicity} > \text{10}]}{\Pr[\text{hire} \mid \text{ethnicity} <= \text{10}]} > 1 - \epsilon \right\}$$

$\{v \sim \mathcal{M}\}$

$$\left\{ \frac{\Pr[\text{hire} \mid \text{ethnicity} > \textbf{10}]}{\Pr[\text{hire} \mid \text{ethnicity} <= \textbf{10}]} > 1 - \epsilon \right\}$$

population model

```
define popModel()
  ethnicity ~ gauss(0,10)
  colRank ~ gauss(25,10)
  yExp ~ gauss(10,5)
  if (ethnicity > 10)
    colRank ← colRank + 5
  return colRank, yExp
```


decision-making program

```
define dec(colRank, yExp)
  expRank ← yExp - colRank
  if (colRank <= 5)
    hire ← true
  elif (expRank > -5)
    hire ← true
  else
    hire ← false
  return hire
```

population model

```
define popModel()
  ethnicity ~ gauss(0,10)
  colRank ~ gauss(25,10)
  yExp ~ gauss(10,5)
  if (ethnicity > 10)
    colRank ← colRank + 5
  return colRank, yExp
```


decision-making program

```
define dec(colRank, yExp)
  expRank ← yExp - colRank
  if (colRank <= 5)
    hire ← true
  elif (expRank > -5)
    hire ← true
  else
    hire ← false
  return hire
```

dec(popModel())

```
dec(popModel())
```

$\Pr[\mathsf{hire} \land \mathsf{min}]$

all possible execution paths

```
П
```

```
define popModel()
   ethnicity ~ gauss(0,10)
   colRank ~ gauss(25,10)
   yExp ~ gauss(10,5)
   if (ethnicity > 10)
      colRank ← colRank + 5
   return colRank, yExp
```

represent paths $\,\Pi_{\mathsf{hm}}$ as a region $\,\varphi\subseteq\mathbb{R}^3$

Programming Languages Magic

$$\varphi \subseteq \mathbb{R}^3$$


```
define popModel()
                  ethnicity \sim gauss(0,10)
                 colRank \sim gauss(25,10)
                 yExp \sim gauss(10,5)
                  if (ethnicity > 10)
                  colRank ← colRank + 5
                   return colRank, yExp
                define dec(colRank, yExp)
                  expRank \leftarrow yExp - colRank
                  if (colRank <= 5)</pre>
                    hire \leftarrow true
                  elif (expRank > -5)
                    hire \leftarrow true
                  else
                    hire \leftarrow false
                  return hire
\left\{ \frac{\Pr[\text{hire} \mid \text{ethnicity} > 10]}{\Pr[\text{hire} \mid \text{ethnicity} <= 10]} > 0.9 \right\}
```


