# Learning Symbolic Automata

Samuel Drews



Loris D'Antoni



University of Wisconsin-Madison



#### Motivation



#### Classic Automata



Alphabet

$$\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7\}$$

Transition

$$\delta: Q \times \Sigma \longrightarrow Q$$

#### Classic Automata



Alphabet

$$\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, \ldots\}$$

Transition

$$\delta: Q \times \Sigma \rightarrow Q$$

#### Symbolic Automata



Alphabet

Boolean Algebra

Transition

 $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, \ldots\}$ 

BA =  $\{\bot, odd, even, \top\}$ 

 $\delta: Q \times BA \rightarrow Q$ 

#### Symbolic Automata



Boolean Algebra

$$\varphi \in BA \rightarrow \neg \varphi \in BA$$

$$\phi, \psi \in BA$$

$$\rightarrow \phi \wedge \psi \in BA$$

Alphabet

 $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, ...\}$ 

Boolean Algebra

BA =  $\{\bot, odd, even, \top\}$ 

Transition

 $\delta: Q \times BA \rightarrow Q$ 

#### A\* Oracle Queries



## Λ\* Partitioning Function





## Angluin's L\* (classic automata)







Equivalence Query + Counterexample

|       | 3 | 0 |
|-------|---|---|
| 3     |   |   |
| 5     | X | X |
| 5,0   | X |   |
| 0     |   |   |
| 5,0,0 |   |   |

Rows: strings that lead to states (representatives above divider)

Columns: suffixes that tell states apart



Rows: strings that lead to states (representatives above divider)

Columns: suffixes that tell states apart



Rows: strings that lead to states (representatives above divider)

Columns: suffixes that tell states apart

|       | 3 | 0 |
|-------|---|---|
| 3     |   |   |
| 5     | X | X |
| 5,0   | X |   |
| 0     |   |   |
| 5,0,0 |   |   |

Rows: strings that lead to states (representatives above divider)

Columns: suffixes that tell states apart



Rows: strings that lead to states (representatives above divider)

Columns: suffixes that tell states apart



Rows: strings that lead to states (representatives above divider)

Columns: suffixes that tell states apart

Body: whether automaton accepts word

does not accept 5,0·ε accepts 5,0·0

|    |     | 3 | 0 |     |
|----|-----|---|---|-----|
|    | 3   |   |   |     |
|    | 5   | X | X | ξ   |
| 5  | 5,0 | X |   |     |
|    | 0   |   |   | 5,0 |
| 5, | 0,0 |   |   |     |



|    |     | 3 | 0 |     |
|----|-----|---|---|-----|
|    | 3   |   |   |     |
|    | 5   | X | X | ξ   |
| 5  | 5,0 | X |   |     |
|    | 0   |   |   | 5,0 |
| 5, | 0,0 |   |   |     |



|       | 3 | 0 |
|-------|---|---|
| 3     |   |   |
| 5     | X | X |
| 5,0   | X |   |
| 0     |   |   |
| 5,0,0 |   |   |









BA = intervals over  $Z_{\geq 0}$ 



Use partitioning function:  $P([\{0\}]) = [0,\infty)$ 



BA = intervals over  $Z_{\geq 0}$ 



Use partitioning function:  $P([\{0\}]) = [0,\infty)$ 



BA = intervals over  $Z_{\geq 0}$ 



Use partitioning function:  $P([\{0\},\{5\}]) = [0,5), [5,\infty)$ 

|       | 3 | 0 |
|-------|---|---|
| 3     |   |   |
| 5     | X | X |
| 5,0   | X |   |
| 0     |   |   |
| 5,0,0 |   |   |





 $\Sigma$  = non-negative integers BA = unions of intervals over  $\Sigma$ 



|   | 3 |
|---|---|
| 3 |   |
| 0 |   |

Initialize table:

Membership query for ε

Membership query for 0 (arbitrary)









Build "sparse" automaton from table

 $\delta: Q \times \Sigma \rightarrow Q$ 



Build "sparse" automaton from table

 $\delta: Q \times \Sigma \rightarrow Q$ 





Build symbolic automaton using partitioning function: suppose  $P({0}) = [0,\infty)$ 



|    | 3 |
|----|---|
| 3  |   |
| 0  |   |
| 51 | X |



Equivalence query:
Not equivalent! cex (51, x)



#### Move 51 to top

|    | 3 |  |
|----|---|--|
| 3  |   |  |
| 0  |   |  |
| 51 | X |  |





|      | 3 |
|------|---|
| 3    |   |
| 51   | X |
| 0    |   |
| 51,0 | X |

Not closed:

51 leads to a new state

Membership query on 51,0







|      | 3 |
|------|---|
| 3    |   |
| 51   | X |
| 0    |   |
| 51,0 | X |

Not closed:

51 leads to a new state

Membership query on 51,0





suppose 
$$P(\{0\},\{51\}) = [0,51), [51,\infty)$$
  
 $P(\{0\}) = [0,\infty)$ 







Equivalence query:

Not equivalent! cex (101; ✓)







Equivalence query:

Not equivalent! cex (101; ✓)











suppose  $P(\{0,101\},\{51\}) = [0,51) \cup [101,\infty)$ ,  $[51,\infty)$  $P(\{0\}) = [0,\infty)$ 







Equivalence query:

Not equivalent! cex (51,0,0; ✓)



51 and 51,0 seem like same state

51-0 and 51,0-0 are different states







51 and 51,0 seem like same state

51-0 and 51,0-0 are different states





Inconsistent: add 0 to E



|        | 3 | 0 |
|--------|---|---|
| 3      |   |   |
| 51     | X | X |
| 0      |   |   |
| 51,0   | X |   |
| 101    |   |   |
| 51,0,0 |   |   |

make *closed*move 51,0 to top

|        | 3 | 0 |
|--------|---|---|
| 3      |   |   |
| 51     | X | X |
| 51,0   | X |   |
| 0      |   |   |
| 101    |   |   |
| 51,0,0 |   |   |









$$P({0,101},{51}) = [0,51) \cup [101,\infty), [51,101)$$
  
 $P({0}) = [0,\infty)$ 





Equivalence query:

Equivalent!

## Why did this work?

Infinite alphabet, but finite examples

Oracle gave us good counterexamples





Call this projection of the oracle a *generator*:  $[\{0\}] \rightarrow [\{0\},\{51\}] \rightarrow [\{0,101\},\{51\}]$ 

### Learnability of Boolean Algebra

Learn automaton with oracle providing Σ\* examples



Learn partition in BA with *generator* providing Σ examples

#### "Bad" Oracle

Suppose the oracle does not provide optimal counterexamples



generator:  $[\{0\}] \rightarrow [\{0\}, \{59\}] \rightarrow [\{0,500\}, \{59,53\}] \rightarrow \dots$ 

### "Bad" Oracle

Suppose the oracle does not provide optimal counterexamples



### "Bad" Oracle

Suppose the oracle does not provide optimal counterexamples

Partitioning function assumes everything >500 behaves the same as 500





Since 500 > 101, we will never see another example >500

## s<sub>g</sub>-learnability of Boolean Algebra

c - partition in BA, g - generator

Fix a partitioning function P: define  $s_g(c) = \#$  examples from g needed for P to produce c

Ex:  $c = [0,51) \cup [101,\infty)$ , [51,101)

Good examples:  $s_g(c) = 3$ 

Bad examples:  $s_{\alpha}(c) < \infty$ 

# s<sub>g</sub>-learnability

# Equivalence queries to learn symbolic automata M

$$\leq n^2 \sum_{g,c} s_g(c)$$

oracle examples

$$C^{\forall}_{constant} \subseteq C^{\forall}_{size} \subseteq C^{\forall}_{finite}$$
In In In
 $C^{\exists}_{constant} \subseteq C^{\exists}_{size} \subseteq C^{\exists}_{finite}$ 

$$C^{\forall}_{constant} \subseteq C^{\forall}_{size} \subseteq C^{\forall}_{finite}$$
 $I \cap I \cap I \cap I$ 
 $C^{\exists}_{constant} \subseteq C^{\exists}_{size} \subseteq C^{\exists}_{finite}$ 

There exists a generator: any partition is learned from a constant # examples

For every generator: any partition is learned from a # examples based on the size of the partition

$$C^{\forall}_{constant} \subseteq C^{\forall}_{size} \subseteq C^{\forall}_{finite}$$
 $I \cap I \cap I \cap I$ 
 $C^{\exists}_{constant} \subseteq C^{\exists}_{size} \subseteq C^{\exists}_{finite}$ 

There exists a generator: any partition is learned from a constant # examples

For every generator:
any partition is learned from
a # examples based on the
size of the partition

$$C^{\forall}_{constant} \subseteq C^{\forall}_{size} \subseteq C^{\forall}_{finite}$$
In In In
 $C^{\exists}_{constant} \subseteq C^{\exists}_{size} \subseteq C^{\exists}_{finite}$ 

There exists a generator: any partition is learned from a constant # examples

A\* example

We have a non-negative integer partitioning function in  $C^{\exists}_{size}$ 

Can we learn partitions over all integers?

Disjoint union: Z ≅ Z<sub><0</sub> ⊎ Z<sub>≥0</sub>

We have a non-negative integer partitioning function in  $C^{\exists}_{size}$ 

Can we learn partitions over all integers?

We have a non-negative integer partitioning function in  $C^{\exists}_{size}$ 

Can we learn partitions over all integers?



We have a non-negative integer partitioning function in  $C^{\exists}_{size}$ 

Can we learn partitions over all integers?

Disjoint union:  $Z \cong Z_{<0} \uplus Z_{\geq 0}$ 

We can learn partitions over all integers Z

Can we learn partitions over Z<sup>2</sup>?

Cartesian product: Z<sup>2</sup> ≅ Z × Z



We can learn partitions over all integers Z

Can we learn partitions over Z<sup>2</sup>?

Cartesian product: Z<sup>2</sup> ≅ Z × Z





We can learn partitions over all integers Z

Can we learn partitions over Z<sup>2</sup>?

Cartesian product: Z<sup>2</sup> ≅ Z × Z







If BA<sub>1</sub> and BA<sub>2</sub> are Boolean Algebras in learning class C

BA<sub>1</sub> + BA<sub>2</sub> is in C

BA<sub>1</sub> × BA<sub>2</sub> is in C

Learning an automaton over strings of network packets





$$C^{\forall}_{constant} \subseteq C^{\forall}_{size} \subseteq C^{\forall}_{finite}$$
 $I \cap I \cap I \cap I \cap I$ 
 $C^{\exists}_{constant} \subseteq C^{\exists}_{size} \subseteq C^{\exists}_{finite}$