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Classic Automata

1,3,5,7
1,3,5,7

0,2,4,6
0,2,4,6

Alphabet Σ = {0,1,2,3,4,5,6,7}

Transition δ : Q × Σ → Q 



1,3,5,7,...
1,3,5,7,...

0,2,4,6,...
0,2,4,6,...

Alphabet Σ = {0,1,2,3,4,5,6,7,...}

Transition δ : Q × Σ → Q 

Classic Automata



Symbolic Automata

odd
odd

even
even

Alphabet Σ = {0,1,2,3,4,5,6,7,...}
Boolean Algebra BA = {⊥, odd, even, ⊤}
Transition δ : Q × BA → Q 



Symbolic Automata

odd
odd

even
even

Alphabet Σ = {0,1,2,3,4,5,6,7,...}
Boolean Algebra BA = {⊥, odd, even, ⊤}
Transition δ : Q × BA → Q 

Boolean Algebra

φ∈BA → ¬φ∈BA
φ,ψ ∈ BA 

      → φ∧ψ ∈ BA



Λ* Oracle Queries

Membership 
Queryword

✓ accept

✗ not accept

Equivalence 
Queryautomaton

✓ equivalent

✗ not equivalent;
counterexample word



Λ* Partitioning Function

Partitioning 
FunctionList[2Σ] List[BA]

Ex:

1,3

6

P([{1,3},{6}])

odd

even

[odd, even]=



Refine 
Observation 

Table

Conjecture
Classic

Automaton

Equivalence Query
+ Counterexample

Angluin’s L* (classic automata)
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Anatomy of the Observation Table

ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓

Rows: strings that lead to states
(representatives above divider)

Columns: suffixes that tell states apart

Body: whether automaton accepts word
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ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓

Anatomy of the Observation Table

Rows: strings that lead to states
(representatives above divider)

Columns: suffixes that tell states apart

Body: whether automaton accepts word

does not accept 5,0·ε
accepts 5,0·0



Observation Table to Intermediary Automaton

ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓

ε
✓✓

5
✗✗

5,0
✗✓
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Observation Table to Intermediary Automaton

ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓

ε
✓✓

5
✗✗

5,0
✗✓

0

5,0 5,0,0
0



Observation Table to Intermediary Automaton

ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓

ε
✓✓

0

5
✗✗

5

05,0
✗✓

0



… to Symbolic Automaton

ε
✓✓

0

5
✗✗

5

05,0
✗✓

0
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… to Symbolic Automaton

ε
✓✓

0

5
✗✗

5

05,0
✗✓

0 [0,∞)

Use partitioning function: P([{0}]) = [0,∞)

BA = intervals over Z≥0



… to Symbolic Automaton

ε
✓✓

0

5
✗✗

5

05,0
✗✓

0 [0,∞)[0,∞)

Use partitioning function: P([{0}]) = [0,∞)

BA = intervals over Z≥0



… to Symbolic Automaton

ε
✓✓

0

5
✗✗

5

05,0
✗✓

0

[0,5)
[5,∞)

[0,∞)[0,∞)

Use partitioning function: P([{0},{5}]) = [0,5), [5,∞)

BA = intervals over Z≥0



… to Symbolic Automaton

[0,5)
[5,∞)

[0,∞)[0,∞)

ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓



Λ* by Example

Σ = non-negative integers
BA = unions of intervals over Σ

[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)



Λ* by Example

Initialize table:
Membership query for ε
Membership query for 0 (arbitrary)

[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε
ε ✓

0 ✓



Λ* by Example

Initialize table:
Membership query for ε
Membership query for 0 (arbitrary)

[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε
ε ✓

0 ✓

Λ* : query
for single
element

L* : queries
for all of Σ

ε
ε ✓

0 ✓

1 ✓

2 ✓

…



Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

Build “sparse” automaton from table
δ : Q × Σ → Q

ε
✓

0ε
ε ✓

0 ✓



Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

Build “sparse” automaton from table
δ : Q × Σ → Q

ε
✓

0

L* : equivalence query

Λ* : build symbolic
Automaton
δ : Q × BA → Q

ε
ε ✓

0 ✓



Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε
✓

0 [0,∞) 

Build symbolic automaton using partitioning function:
suppose P({0}) = [0,∞)

ε
ε ✓

0 ✓



Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε
ε ✓

0 ✓

51 ✗

[0,∞) 

Equivalence query:
Not equivalent! cex (51, ✗)



Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε
ε ✓

0 ✓

51 ✗

Move 51 to top

ε
ε ✓

51 ✗

0 ✓

ε
ε ✓

51 ✗

0 ✓

51,0 ✗

Not closed:
51 leads to a new state

Membership query
on 51,0



Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε
ε ✓

0 ✓

51 ✗

Move 51 to top

ε
ε ✓

51 ✗

0 ✓

ε
ε ✓

51 ✗

0 ✓

51,0 ✗

Not closed:
51 leads to a new state

Membership query
on 51,0

L* queries all of 51·Σ



Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

suppose P({0},{51}) = [0,51) , [51,∞)
 P({0}) = [0,∞)

ε
✓

0
ε

ε ✓

51 ✗

0 ✓

51,0 ✗

51
✗

51

0

[0,51)

[0,∞)

[51,∞)



Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

[0,51)

[0,∞)

[51,∞)

Equivalence query:
Not equivalent! cex (101; ✓)

ε
ε ✓

51 ✗

0 ✓

51,0 ✗



Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

[0,51)

[0,∞)

[51,∞)

Equivalence query:
Not equivalent! cex (101; ✓)

ε
ε ✓

51 ✗

0 ✓

51,0 ✗

101 ✓



Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

[0,51)

[0,∞)

[51,∞)

Equivalence query:
Not equivalent! cex (101; ✓)

L* : every cex is a new state
Λ* :  some cex is refining the

outgoing predicates

ε
ε ✓

51 ✗

0 ✓

51,0 ✗

101 ✓



Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

[0,51)∪[101,∞)

[0,∞)

[51,100)
ε
✓

0,101

51
✗

51

0

ε
ε ✓

51 ✗

0 ✓

51,0 ✗

101 ✓

suppose P({0,101},{51}) = [0,51)∪[101,∞) , [51,∞)
 P({0}) = [0,∞)



Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε
ε ✓

51 ✗

0 ✓

51,0 ✗

101 ✓

51,0,0 ✓

[0,51)∪[101,∞)

[0,∞)

[51,100)

Equivalence query:
Not equivalent! cex (51,0,0; ✓)



Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

??
0

51 and 51,0 seem 
like same state

51·0 and 51,0·0
are different states

ε
ε ✓

51 ✗

0 ✓

51,0 ✗

101 ✓

51,0,0 ✓



Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε 0
ε ✓ ✓

51 ✗ ✗

0 ✓ ✓

51,0 ✗ ✓

101 ✓ ✓

51,0,0 ✓ ✓

Inconsistent: add 0 to E

51 and 51,0 seem 
like same state

51·0 and 51,0·0
are different states

??
0

ε
ε ✓

51 ✗

0 ✓

51,0 ✗

101 ✓

51,0,0 ✓



Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε 0
ε ✓ ✓

51 ✗ ✗

51,0 ✗ ✓

0 ✓ ✓

101 ✓ ✓

51,0,0 ✓ ✓

make closed
move 51,0 to top

ε 0
ε ✓ ✓

51 ✗ ✗

0 ✓ ✓

51,0 ✗ ✓

101 ✓ ✓

51,0,0 ✓ ✓



Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

P({0,101},{51}) = [0,51)∪[101,∞) , [51,101)
P({0}) = [0,∞)

ε
✓✓

0,101

51
✗✗

51

0

ε 0
ε ✓ ✓

51 ✗ ✗

51,0 ✗ ✓

0 ✓ ✓

101 ✓ ✓

51,0,0 ✓ ✓

51,0
✗✓

0

[0,51)∪[101,∞)

[0,∞)

[51,100)

[0,∞)



Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

[0,51)∪[101,∞)

[0,∞)

[51,100)

[0,∞)

Equivalence query:
Equivalent!

ε 0
ε ✓ ✓

51 ✗ ✗

51,0 ✗ ✓

0 ✓ ✓

101 ✓ ✓

51,0,0 ✓ ✓



Why did this work?

Infinite alphabet, but finite examples

Oracle gave us good counterexamples

Call this projection of the oracle a generator:
[{0}] → [{0},{51}] → [{0,101},{51}]

ε

[0,51)∪[101,∞)
[51,100)

ε

0
51

ε

0, 101
51

ε

0



Learnability of Boolean Algebra

Learn automaton with oracle providing Σ* examples

Learn partition in BA with generator providing Σ examples



“Bad” Oracle

Suppose the oracle does not provide optimal counterexamples

generator: [{0}] → [{0},{59}] → [{0,500},{59,53}] → … 

ε

0
59

ε

0, 500
59, 53

ε

0

ε

0, 500
59, 53, 51

ε

0, 500, 401
59, 53, 51

...



“Bad” Oracle

Suppose the oracle does not provide optimal counterexamples

ε

0, 500
59, 53



“Bad” Oracle

Suppose the oracle does not provide optimal counterexamples

Partitioning function assumes everything
>500 behaves the same as 500

Since 500 > 101, we will never
see another example >500

ε

0, 500
59, 53

ε

[0,51)∪[101,∞)
[51,100)



sg-learnability of Boolean Algebra

c - partition in BA, g - generator

Fix a partitioning function P:
define sg(c) = # examples from g needed for P to produce c

Ex: c = [0,51)∪[101,∞) , [51,101)
Good examples: sg(c) = 3
Bad examples: sg’(c) < ∞



sg-learnability

# Equivalence queries to learn symbolic automata M
≤ n2 ∑g,csg(c)

oracle examples



Learning Classes

C∀
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sizeC∀
constant

C∃
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sizeC∃
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⊆

⊆

⊆ ⊆ ⊆
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⊆ ⊆ ⊆



Learning Classes

C∀
finiteC∀

sizeC∀
constant

C∃
finiteC∃

sizeC∃
constant

There exists a generator:
any partition is learned from 

a constant # examples

For every generator:
any partition is learned from 
a # examples based on the 

size of the partition

⊆

⊆

⊆

⊆

⊆ ⊆ ⊆



Learning Classes

C∀
finiteC∀

sizeC∀
constant

C∃
finiteC∃

sizeC∃
constant

There exists a generator:
any partition is learned from 

a constant # examples

For every generator:
any partition is learned from 
a # examples based on the 

size of the partition

⊆

Λ* example

⊆

⊆

⊆

⊆ ⊆ ⊆



Composition of Boolean Algebras

We have a non-negative integer partitioning function in C∃
size

Can we learn partitions over all integers?

Disjoint union: Z ≅ Z<0 ⊎ Z≥0

{-4,5}, {-2,0}



Composition of Boolean Algebras

We have a non-negative integer partitioning function in C∃
size

Can we learn partitions over all integers?

Disjoint union: Z ≅ Z<0 ⊎ Z≥0

{-4,5}, {-2,0}
{5}, {0}

{-4}, {-2}



Composition of Boolean Algebras

We have a non-negative integer partitioning function in C∃
size

Can we learn partitions over all integers?

Disjoint union: Z ≅ Z<0 ⊎ Z≥0

{-4,5}, {-2,0}
{5}, {0}

{-4}, {-2}

[5,∞), [0,5)

(-∞,-4], (-4,-1]



Composition of Boolean Algebras

We have a non-negative integer partitioning function in C∃
size

Can we learn partitions over all integers?

Disjoint union: Z ≅ Z<0 ⊎ Z≥0

{-4,5}, {-2,0}
{5}, {0}

{-4}, {-2}

[5,∞), [0,5)

(-∞,-4], (-4,-1]
(-∞,-4]∪[5,∞), (-4,5)



Composition of Boolean Algebras

We can learn partitions over all integers Z

Can we learn partitions over Z2?

Cartesian product: Z2 ≅ Z × Z
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Cartesian product: Z2 ≅ Z × Z



Composition of Boolean Algebras

We can learn partitions over all integers Z

Can we learn partitions over Z2?

Cartesian product: Z2 ≅ Z × Z



Composition of Boolean Algebras

If BA1 and BA2 are Boolean Algebras in learning class C

BA1 ⊎ BA2 is in C

BA1 × BA2 is in C



Composition of Boolean Algebras

Learning an automaton over strings of network packets

Packet

UDP TCP
⊎

header data header data
× ×
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