
Learning Symbolic Automata

Samuel Drews Loris D’Antoni

University of Wisconsin-Madison

Motivation

Java API code

Automata
Learning

System Model

Classic Automata

1,3,5,7
1,3,5,7

0,2,4,6
0,2,4,6

Alphabet Σ = {0,1,2,3,4,5,6,7}

Transition δ : Q × Σ → Q

1,3,5,7,...
1,3,5,7,...

0,2,4,6,...
0,2,4,6,...

Alphabet Σ = {0,1,2,3,4,5,6,7,...}

Transition δ : Q × Σ → Q

Classic Automata

Symbolic Automata

odd
odd

even
even

Alphabet Σ = {0,1,2,3,4,5,6,7,...}
Boolean Algebra BA = {⊥, odd, even, ⊤}
Transition δ : Q × BA → Q

Symbolic Automata

odd
odd

even
even

Alphabet Σ = {0,1,2,3,4,5,6,7,...}
Boolean Algebra BA = {⊥, odd, even, ⊤}
Transition δ : Q × BA → Q

Boolean Algebra

φ∈BA → ¬φ∈BA
φ,ψ ∈ BA

 → φ∧ψ ∈ BA

Λ* Oracle Queries

Membership
Queryword

✓ accept

✗ not accept

Equivalence
Queryautomaton

✓ equivalent

✗ not equivalent;
counterexample word

Λ* Partitioning Function

Partitioning
FunctionList[2Σ] List[BA]

Ex:

1,3

6

P([{1,3},{6}])

odd

even

[odd, even]=

Refine
Observation

Table

Conjecture
Classic

Automaton

Equivalence Query
+ Counterexample

Angluin’s L* (classic automata)

Membership
Queries

Refine
Observation

Table

Sparse
Membership

Queries

Conjecture
Symbolic

Automaton

Equivalence Query
+ Counterexample

Λ*

Intermediary
Automaton

Partitioning
Function

Anatomy of the Observation Table

ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓

Rows: strings that lead to states
(representatives above divider)

Columns: suffixes that tell states apart

Body: whether automaton accepts word

ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓

Anatomy of the Observation Table

Rows: strings that lead to states
(representatives above divider)

Columns: suffixes that tell states apart

Body: whether automaton accepts word

ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓

Anatomy of the Observation Table

Rows: strings that lead to states
(representatives above divider)

Columns: suffixes that tell states apart

Body: whether automaton accepts word

ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓

Anatomy of the Observation Table

Rows: strings that lead to states
(representatives above divider)

Columns: suffixes that tell states apart

Body: whether automaton accepts word

ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓

Anatomy of the Observation Table

Rows: strings that lead to states
(representatives above divider)

Columns: suffixes that tell states apart

Body: whether automaton accepts word

ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓

Anatomy of the Observation Table

Rows: strings that lead to states
(representatives above divider)

Columns: suffixes that tell states apart

Body: whether automaton accepts word

does not accept 5,0·ε
accepts 5,0·0

Observation Table to Intermediary Automaton

ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓

ε
✓✓

5
✗✗

5,0
✗✓

Observation Table to Intermediary Automaton

ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓

ε
✓✓

5
✗✗

5,0
✗✓

Observation Table to Intermediary Automaton

ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓

ε
✓✓

5
✗✗

5,0
✗✓

Observation Table to Intermediary Automaton

ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓

ε
✓✓

5
✗✗

5,0
✗✓

0

5,0 5,0,0
0

Observation Table to Intermediary Automaton

ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓

ε
✓✓

0

5
✗✗

5

05,0
✗✓

0

… to Symbolic Automaton

ε
✓✓

0

5
✗✗

5

05,0
✗✓

0

… to Symbolic Automaton

ε
✓✓

0

5
✗✗

5

05,0
✗✓

0

… to Symbolic Automaton

ε
✓✓

0

5
✗✗

5

05,0
✗✓

0 [0,∞)

Use partitioning function: P([{0}]) = [0,∞)

BA = intervals over Z≥0

… to Symbolic Automaton

ε
✓✓

0

5
✗✗

5

05,0
✗✓

0 [0,∞)[0,∞)

Use partitioning function: P([{0}]) = [0,∞)

BA = intervals over Z≥0

… to Symbolic Automaton

ε
✓✓

0

5
✗✗

5

05,0
✗✓

0

[0,5)
[5,∞)

[0,∞)[0,∞)

Use partitioning function: P([{0},{5}]) = [0,5), [5,∞)

BA = intervals over Z≥0

… to Symbolic Automaton

[0,5)
[5,∞)

[0,∞)[0,∞)

ε 0
ε ✓ ✓

5 ✗ ✗

5,0 ✗ ✓

0 ✓ ✓

5,0,0 ✓ ✓

Λ* by Example

Σ = non-negative integers
BA = unions of intervals over Σ

[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

Λ* by Example

Initialize table:
Membership query for ε
Membership query for 0 (arbitrary)

[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε
ε ✓

0 ✓

Λ* by Example

Initialize table:
Membership query for ε
Membership query for 0 (arbitrary)

[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε
ε ✓

0 ✓

Λ* : query
for single
element

L* : queries
for all of Σ

ε
ε ✓

0 ✓

1 ✓

2 ✓

…

Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

Build “sparse” automaton from table
δ : Q × Σ → Q

ε
✓

0ε
ε ✓

0 ✓

Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

Build “sparse” automaton from table
δ : Q × Σ → Q

ε
✓

0

L* : equivalence query

Λ* : build symbolic
Automaton
δ : Q × BA → Q

ε
ε ✓

0 ✓

Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε
✓

0 [0,∞)

Build symbolic automaton using partitioning function:
suppose P({0}) = [0,∞)

ε
ε ✓

0 ✓

Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε
ε ✓

0 ✓

51 ✗

[0,∞)

Equivalence query:
Not equivalent! cex (51, ✗)

Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε
ε ✓

0 ✓

51 ✗

Move 51 to top

ε
ε ✓

51 ✗

0 ✓

ε
ε ✓

51 ✗

0 ✓

51,0 ✗

Not closed:
51 leads to a new state

Membership query
on 51,0

Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε
ε ✓

0 ✓

51 ✗

Move 51 to top

ε
ε ✓

51 ✗

0 ✓

ε
ε ✓

51 ✗

0 ✓

51,0 ✗

Not closed:
51 leads to a new state

Membership query
on 51,0

L* queries all of 51·Σ

Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

suppose P({0},{51}) = [0,51) , [51,∞)
 P({0}) = [0,∞)

ε
✓

0
ε

ε ✓

51 ✗

0 ✓

51,0 ✗

51
✗

51

0

[0,51)

[0,∞)

[51,∞)

Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

[0,51)

[0,∞)

[51,∞)

Equivalence query:
Not equivalent! cex (101; ✓)

ε
ε ✓

51 ✗

0 ✓

51,0 ✗

Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

[0,51)

[0,∞)

[51,∞)

Equivalence query:
Not equivalent! cex (101; ✓)

ε
ε ✓

51 ✗

0 ✓

51,0 ✗

101 ✓

Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

[0,51)

[0,∞)

[51,∞)

Equivalence query:
Not equivalent! cex (101; ✓)

L* : every cex is a new state
Λ* : some cex is refining the

outgoing predicates

ε
ε ✓

51 ✗

0 ✓

51,0 ✗

101 ✓

Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

[0,51)∪[101,∞)

[0,∞)

[51,100)
ε
✓

0,101

51
✗

51

0

ε
ε ✓

51 ✗

0 ✓

51,0 ✗

101 ✓

suppose P({0,101},{51}) = [0,51)∪[101,∞) , [51,∞)
 P({0}) = [0,∞)

Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε
ε ✓

51 ✗

0 ✓

51,0 ✗

101 ✓

51,0,0 ✓

[0,51)∪[101,∞)

[0,∞)

[51,100)

Equivalence query:
Not equivalent! cex (51,0,0; ✓)

Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

??
0

51 and 51,0 seem
like same state

51·0 and 51,0·0
are different states

ε
ε ✓

51 ✗

0 ✓

51,0 ✗

101 ✓

51,0,0 ✓

Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε 0
ε ✓ ✓

51 ✗ ✗

0 ✓ ✓

51,0 ✗ ✓

101 ✓ ✓

51,0,0 ✓ ✓

Inconsistent: add 0 to E

51 and 51,0 seem
like same state

51·0 and 51,0·0
are different states

??
0

ε
ε ✓

51 ✗

0 ✓

51,0 ✗

101 ✓

51,0,0 ✓

Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

ε 0
ε ✓ ✓

51 ✗ ✗

51,0 ✗ ✓

0 ✓ ✓

101 ✓ ✓

51,0,0 ✓ ✓

make closed
move 51,0 to top

ε 0
ε ✓ ✓

51 ✗ ✗

0 ✓ ✓

51,0 ✗ ✓

101 ✓ ✓

51,0,0 ✓ ✓

Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

P({0,101},{51}) = [0,51)∪[101,∞) , [51,101)
P({0}) = [0,∞)

ε
✓✓

0,101

51
✗✗

51

0

ε 0
ε ✓ ✓

51 ✗ ✗

51,0 ✗ ✓

0 ✓ ✓

101 ✓ ✓

51,0,0 ✓ ✓

51,0
✗✓

0

[0,51)∪[101,∞)

[0,∞)

[51,100)

[0,∞)

Λ* by Example
[51,101)

[0,∞)[0,∞)

[0,51) ∪ [101,∞)

[0,51)∪[101,∞)

[0,∞)

[51,100)

[0,∞)

Equivalence query:
Equivalent!

ε 0
ε ✓ ✓

51 ✗ ✗

51,0 ✗ ✓

0 ✓ ✓

101 ✓ ✓

51,0,0 ✓ ✓

Why did this work?

Infinite alphabet, but finite examples

Oracle gave us good counterexamples

Call this projection of the oracle a generator:
[{0}] → [{0},{51}] → [{0,101},{51}]

ε

[0,51)∪[101,∞)
[51,100)

ε

0
51

ε

0, 101
51

ε

0

Learnability of Boolean Algebra

Learn automaton with oracle providing Σ* examples

Learn partition in BA with generator providing Σ examples

“Bad” Oracle

Suppose the oracle does not provide optimal counterexamples

generator: [{0}] → [{0},{59}] → [{0,500},{59,53}] → …

ε

0
59

ε

0, 500
59, 53

ε

0

ε

0, 500
59, 53, 51

ε

0, 500, 401
59, 53, 51

...

“Bad” Oracle

Suppose the oracle does not provide optimal counterexamples

ε

0, 500
59, 53

“Bad” Oracle

Suppose the oracle does not provide optimal counterexamples

Partitioning function assumes everything
>500 behaves the same as 500

Since 500 > 101, we will never
see another example >500

ε

0, 500
59, 53

ε

[0,51)∪[101,∞)
[51,100)

sg-learnability of Boolean Algebra

c - partition in BA, g - generator

Fix a partitioning function P:
define sg(c) = # examples from g needed for P to produce c

Ex: c = [0,51)∪[101,∞) , [51,101)
Good examples: sg(c) = 3
Bad examples: sg’(c) < ∞

sg-learnability

Equivalence queries to learn symbolic automata M
≤ n2 ∑g,csg(c)

oracle examples

Learning Classes

C∀
finiteC∀

sizeC∀
constant

C∃
finiteC∃

sizeC∃
constant

⊆

⊆

⊆

⊆

⊆ ⊆ ⊆

Learning Classes

C∀
finiteC∀

sizeC∀
constant

C∃
finiteC∃

sizeC∃
constant

There exists a generator:
any partition is learned from

a constant # examples

⊆

⊆

⊆

⊆

⊆ ⊆ ⊆

Learning Classes

C∀
finiteC∀

sizeC∀
constant

C∃
finiteC∃

sizeC∃
constant

There exists a generator:
any partition is learned from

a constant # examples

For every generator:
any partition is learned from
a # examples based on the

size of the partition

⊆

⊆

⊆

⊆

⊆ ⊆ ⊆

Learning Classes

C∀
finiteC∀

sizeC∀
constant

C∃
finiteC∃

sizeC∃
constant

There exists a generator:
any partition is learned from

a constant # examples

For every generator:
any partition is learned from
a # examples based on the

size of the partition

⊆

Λ* example

⊆

⊆

⊆

⊆ ⊆ ⊆

Composition of Boolean Algebras

We have a non-negative integer partitioning function in C∃
size

Can we learn partitions over all integers?

Disjoint union: Z ≅ Z<0 ⊎ Z≥0

{-4,5}, {-2,0}

Composition of Boolean Algebras

We have a non-negative integer partitioning function in C∃
size

Can we learn partitions over all integers?

Disjoint union: Z ≅ Z<0 ⊎ Z≥0

{-4,5}, {-2,0}
{5}, {0}

{-4}, {-2}

Composition of Boolean Algebras

We have a non-negative integer partitioning function in C∃
size

Can we learn partitions over all integers?

Disjoint union: Z ≅ Z<0 ⊎ Z≥0

{-4,5}, {-2,0}
{5}, {0}

{-4}, {-2}

[5,∞), [0,5)

(-∞,-4], (-4,-1]

Composition of Boolean Algebras

We have a non-negative integer partitioning function in C∃
size

Can we learn partitions over all integers?

Disjoint union: Z ≅ Z<0 ⊎ Z≥0

{-4,5}, {-2,0}
{5}, {0}

{-4}, {-2}

[5,∞), [0,5)

(-∞,-4], (-4,-1]
(-∞,-4]∪[5,∞), (-4,5)

Composition of Boolean Algebras

We can learn partitions over all integers Z

Can we learn partitions over Z2?

Cartesian product: Z2 ≅ Z × Z

Composition of Boolean Algebras

We can learn partitions over all integers Z

Can we learn partitions over Z2?

Cartesian product: Z2 ≅ Z × Z

Composition of Boolean Algebras

We can learn partitions over all integers Z

Can we learn partitions over Z2?

Cartesian product: Z2 ≅ Z × Z

Composition of Boolean Algebras

If BA1 and BA2 are Boolean Algebras in learning class C

BA1 ⊎ BA2 is in C

BA1 × BA2 is in C

Composition of Boolean Algebras

Learning an automaton over strings of network packets

Packet

UDP TCP
⊎

header data header data
× ×

Refine
Observation

Table

Sparse
Membership

Queries

Conjecture
Symbolic

Automaton

Equivalence Query
+ Counterexample

Λ*

Intermediary
Automaton

Partitioning
Function

C∀
finiteC∀

sizeC∀
constant

C∃
finiteC∃

sizeC∃
constant

⊆

⊆

⊆

⊆

⊆ ⊆ ⊆

