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Abstract—There has been a dramatic increase in interactive
cloud based software applications. Compared to classical real-
time media applications (voice over IP (VoIP)/conferencing) and
non real-time file delivery, these interactive software applications
have unique characteristics: 1) they are delay sensitive yet
demand in order and reliable data delivery, and 2) the traffic
is usually bursty. Traditional window based congestion control
does not work well for interactive applications because thebursty
arrival of data leads to bursty network traffic, which causes
additional queuing delay and packet loss in the network which
reduces its delay performance. In this paper, we propose a new
hybrid window plus rate based congestion control technique. This
algorithm improves the delay performance of interactive appli-
cations by preventing congestion induced loss and minimizing
queuing delay while still fully utilizing network capacity and
maintaining fairness across multiple flows.

I. I NTRODUCTION

Online interactive software applications are flourishing.For
example, most web pages are no longer static and require
constant interaction (e.g. web based e-mail, financial web-
sites). Another example is online multi-player games such as
World of Warcraft and Final Fantasy XI. A further example is
software as a service (SAAS) such as Google Apps and Mi-
crosoft Office Web Apps, where massive scalable IT-enabled
capabilities are delivered to customers. SAAS is projectedto
grow to $15 billion by 2012[4], increasing its share in the
enterprise software market from 10.7% in 2007 to 18.2% in
2012. One crucial aspect that affects the user experience ofan
interactive application is its responsiveness. As an example,
consider an application where a thin client is used for display
and input (keyboard/mouse) purposes and the server is located
in a distant data center. The server processes the incoming
commands and the application responds by providing a screen
update to the client. The responsiveness of the application
is directly related to the timely delivery of this response.In
addition the server response traffic is bursty in nature.

Since most interactive applications operate as a state ma-
chine, the data has to be delivered losslessly and in-order
so that the client and server state are in sync. Therefore
most existing applications simply use TCP (New Reno) [2].
However the use of TCP for interactive applications suffers
from two main issues: 1) the use of only retransmissions
for reliability results in large delays whenever there is loss

(congestion or otherwise) and 2) the use of a window based
congestion control and only reducing rate in presence of packet
loss can result in large queuing delays and packet loss in
congested cases (whenever the instantaneous (burst) sending
rate of the application is larger than available bandwidth of the
bottleneck link). Since packet loss may result in retransmission
(even with the use of forward error correction (FEC)), both
network queuing delay and packet loss can lead to poor delay
performance for interactive applications.

In this paper, we aim to build a low delay reliable data
transmission protocol on top of user datagram protocol (UDP)
as an alternative to TCP. We have investigated the use of
forward error correction (FEC) codes to reduce the delay
caused by retransmissions in [3], [7]. In this paper, we turn
our attention to the congestion control portion of the protocol.
Our goal is to develop a protocol which minimizes queuing
delay and packet loss while fully utilizing link capacity and
maintaining fairness across flows. Two things are needed to
ensure that queuing delays and packet losses are minimized:
1) ensure that the instantaneous sending rate is close to or
below the actual available bandwidth so that queuing delay
does not build up, and 2) use queuing delay as an indicator
of congestion and use a congestion detection threshold which
is close to the desired queuing delay level.

TCP uses window based additive-increase, multiplicative-
decrease (AIMD) schemes to guarantee fairness across multi-
ple flows and maintain full link utilization [1]. However, the
use of a window can result in large network queuing delays
for bursty traffic (as large as RTT) and congestion induced
packet loss. For full link utilization, the window should be
equal to the flow’s share of bandwidth times the round trip
time (RTT). Thus although the average sending rate is close
to the bandwidth, the instantaneous sending rate can be much
higher – since an entire window of data can be pushed out
at once resulting in large queuing delays. Even delay based
schemes such as TCP Vegas/FAST TCP may still suffer from
similar issues for bursty traffic since they are also window
based. One apparent solution to this is to pace the packets
rather than allowing a full window of packets to go out at
once. In this paper, we accomplish this by designing a novel
rate plus window based rate control technique.

Although the use of pacing allows us to perform congestion



detection by looking at queuing delay with a congestion
detection threshold which is less than RTT, the use of a low
threshold can result in link under-utilization. It is knownthat
if TCP New Reno is used on high bandwidth-delay product
(BDP) networks, then if the buffers are smaller than BDP,
the link is not fully utilized since the congestion detection
threshold – which for TCP New Reno is the buffer size since
only loss implies congestion – is smaller than the BDP. Many
solutions have been proposed to improve link utilization such
as [6], [9], [8] using faster ramp-up. Our issue is similar since
we use a desired queuing delay (smaller than BDP) as the
congestion detection threshold. Thus our solution adopts a
similar strategy.

In this paper, we present a novel congestion control tech-
nique using a hybrid rate plus window based rate control to
minimize queuing delay and packet loss. It uses AIMD to
guarantee fairness across multiple flows but uses fast ramp-up
and graceful back-off to prevent link underutilization caused
by lower congestion detection thresholds. The use of pacing
and lower congestion detection thresholds allows us to control
queuing delay to desired levels. Also since our congestion
detection thresholds are less than RTT – and thus with very
high probability less than buffer sizes – we can ignore packet
losses which are not accompanied by a delay increase. This
improves the performance of our protocol on links with
random losses, such as wireless links.

II. CONGESTIONCONTROL PROTOCOL

The goal of a congestion control protocol is to control
the transmission rate so that packets suffer minimal network
queuing delay and loss caused by congestion while sustaining
throughput close to the available network bandwidth and
ensure fair sharing of network resources. Most congestion con-
trol protocols use an additive-increase multiplicative-decrease
(AIMD) scheme to adjust the transmission rate (R) or window
(W ) at thenth time instant using

Wn+1 =

{

Wn + α if no congestion
Wn(1− β) if congestion

. (1)

The details of any AIMD scheme is in its definitions of con-
gestion,α (amount to increase), andβ (amount to decrease).
Congestion is defined in terms of loss, delay, and explicit con-
gestion notification signals (if present). Since AIMD control
schemes guarantee fairness regardless of network state [1], we
use it as the base of our protocol. However, as opposed to a
congestion control strategy used for large file transfers (e.g.
TCP) which attempts to maximize throughput, the congestion
control strategy employed in our protocol has to be sensitive
to delay (minimize network queuing delay and packet loss).

Based on our requirements, the key characteristics of our
protocol are: 1) hybrid rate plus window based rate control
technique (to minimize queuing delay and packet loss), 2) fast
ramp-up / graceful back-off (to prevent link under-utilization),
3) using AIMD (to provide fairness), and 4) delay based
congestion detection (to achieve any desirable queuing delay
level). The amount of ramp-up (additive-increase) and back-off
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Fig. 1. TCP ramp-up curve behavior with the zones superimposed: (a) TCP
congestion control in [6], and (b) Proposed congestion control.

(multiplicative-decrease) uses queuing delay as an indicator of
level of congestion and is inspired by the work in [6] which
shows that a convex ramp-up curve as in Fig. 1 is optimal.

Our protocol operates on epochs of lengthL which are
defined to be units of time equal to the estimated round trip
propagation time (the minimum RTT seen so far). At the end
of each epoch, the epoch length is updated, the congestion
level is classified into one of three zones as described in
Sec. II-A, and the the transmission rate is updated as de-
scribed in Sec. II-B. Rate control is performed as describedin
Sec. II-C.

A. Congestion Level Zone Classification

Instead of simply defining congestion as a binary event
(congestion or no congestion), we use a continuous definition
of congestion level using both packet loss and queuing delay.
We first estimate the queuing delay (δavg) as the average of
relative one-way delay (ROWD) measurements of all packets
which have been acknowledged in the previous epoch. The
ROWD is computed asROWD = OWD−OWDmin, where
OWD is the actual one-way delay computed as the received
time using the receiver’s clock minus the sent time using the
sender’s clock.OWDmin is the minimumOWD seen so
far. AlthoughOWD is sensitive to clock offset,ROWD is
not sinceOWDmin is an estimate of the propagation delay
plus the clock offset. To preventROWD measurements from
being sensitive to clock drift (where one clock is running faster
than the other),OWDmin can be taken to be the minimum
over some window of measurements rather than the actual
minimum. We then classify the congestion level into one of
the following three zones.

• Zone 1: OWD trend is non-increasing and average queu-
ing delay is less than some threshold (δavg ≤ d1).

• Zone 2: OWD trend is non-increasing, no packet is lost,
andd1 < δavg ≤ d2, for d2 > d1.

• Zone 3: OWD trend is increasing,δavg > d2, or packet
loss is accompanied by a delay increase (δavg > d1).

To compute the OWD trend, we use the method developed
in [5]. If packets are being properly paced, an increasing
OWD trend means buffers are building up and thus implies
congestion. The use of delay in determining congestion level
is a commonly used technique. However, our classification of
congestion level into three zones is unique, as is the use of
OWD trend as an additional indicator of congestion.

The zone classification has an intuitive explanation. Ideally,
we would always like to stay in Zone 2 (the zone which gives
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the tolerable queuing delay) and thus the typical queuing delay
seen is betweend1 and d2. Going to Zone 1 results in a
queuing delay below what we want and lower link utilization.
Zone 3 results in higher queuing delay and probability of
congestion induced loss. Thus delays larger thand2 will only
be seen when new flows enter. By appropriately choosing
d1 andd2 and accounting for typical propagation delay seen
on the link, the end-to-end delay due to the network can be
controlled. We illustrate the three zones by superposing them
on a typical (unmodified) TCP-Illinois flow bandwidth ramp-
up curve (Fig. 1(a)). Our modifications attempt to avoid Zone
3 and are shown in Fig. 1(b).

Note that we do not back off due to packet loss unless it is
accompanied by a delay increase. This allows us to not be as
sensitive to random losses, such as caused by wireless links.

B. Rate Update

At the end of every epoch, the transmission rate (R) and
window (W ) are updated based on the congestion classifica-
tion. Instead of updating the window, the transmission rateis
directly updated using

Rn+1 =

{

Rn + α if Zone = Zone 1
Rn(1− β) if Zone = Zone 2 or Zone 3

, (2)

α =

{

αmax if δavg ≤ d0
αminαmax(d1−d0)

αmax(δavg−d0)+αmin(d1−δavg) else
, (3)

β =























βmin + βmid−βmin

d2−d1

(δavg − d1) if Zone = Zone2,

βmin + βmax−βmid

d3−d2

(δavg − d2)
if Zone = Zone3 &
OWD non-increasing
& δavg ≤ d3,

βmin + βmax−βmin

d3

δavg
if OWD increasing &
δavg ≤ d3,

βmax if δavg > d3

. (4)

α = αmax for δavg ≤ d0 and decays toα = αmin by the Zone
1 boundaryd1. The aboveβ is used in case of no packet loss.
βmin, βmid, andβmax are used to control the shape of theβ
curve.β goes fromβmin to βmid during Zone 2, and then up
to βmax in Zone 3 if the delay trend is non-increasing. If the
delay trend is increasing, then it is assumed to be a sign of
congestion andβ linearly increases as a function of delay up
to βmax regardless of queuing delay. For cases where packet
loss is encountered andδavg > d1, β = βmax.

This rate update is illustrated in Fig. 2 for both cases when
delay trend is increasing and when it is non-increasing. In

Fig. 1(b), we show how our modification avoids the original
sharp drop in sending rate in Zone 3 and how the new ramp-up
curve looks. Instead of increasing in Zone 2, we decrease the
rate in Zone 2, but not as aggressively as in Zone 3. The rate
update has the property of fast ramp up / graceful back-off
(since it is inspired by the work in [6]) and fairness across
multiple flows (since it is AIMD). The fast ramp-up prevents
link under-utilization which can occur if the thresholdsd1 and
d2 in Sec. II-A are smaller than RTT.

C. Window vs. rate based congestion control

TCP uses window based congestion control, in which the
window size defines the maximum number of bits that can
be outstanding. The protocol is allowed to transmit a packet
so long as the number of outstanding bits (call itF ) is
less than the window size (W ). The outstanding bit count
increases whenever a new packet is sent and reduces once the
packet is acknowledged (ACK) or once the packet times out
(NACK). However, in media streaming applications, rate based
congestion control is frequently used. In such applications,
the application controls the transmission rate directly. The
sender is allowed to send packets at the rate ofR bits/second,
regardless of the outstanding bit count.

The main advantage of window based congestion control
is its self-clocking behavior since the sender is not able to
increase the sending rate too fast if packets are suffering alarge
queuing delay (since the outstanding bit count only reduceson
ACK or NACK). Window based congestion control can send
out a burst of packets for bursty applications. Although for
small bursts this can result in packets potentially having a
lower end-to-end delay since they do not incur pacing delay,
for a large burst of packets, some packets can experience a
large queuing delay and even packet loss since the instanta-
neous sending rate can be much larger than the average. In our
congestion level classification, this can occur if the thresholds
d1 andd2 are smaller than the RTT.

Thus in our protocol, we further combine window based
congestion control with a rate based congestion control
scheme. That is, we use a window to control the maximum
number of outstanding bits, but also control the rate at which
packets can enter the network using a transmission rate. The
transmission rateR (in bits/sec) is the quantity which is
directly adjusted based on congestion signals and a window
of size W = RL (in bits) is used to control the maximum
number of outstanding bits, whereL is the epoch length.

In a pure rate based scheme, if we send a packet of sizeP
bits, then with a transmission rate ofR, we are only allowed
to send the next packet afterP/R seconds. In a pure window
based scheme, we are allowed to send immediately so long as
F < W . In our scheme, we want to pace the packets but at the
same time not exceed the window and thus use a joint scheme.
Suppose packetl of sizePl bits is sent at timet = Tl, then we
are allowed to send the next packet (l+1) of sizePl+1 at timet
so long ast > Tl+γPl/R and if F < W , whereγ ∈ [0.0, 1.0]
is the pacing factor. Whenγ = 1.0, the congestion control is
fully paced and is a joint rate based control with a window.
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Fig. 4. Results using our protocol (single flow), (a) Queuingdelay (δavg)
(b) Transmission rate (R).
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Fig. 5. Results using TCP New Reno.
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Fig. 6. Application bitrate (a) Using our protocol (b) UsingTCP New Reno.

If γ = 0.0, it reverts to the simple window based rate control
as in TCP. Once a packet is sent at timet, the number of
outstanding bits updates asF ← F + Pl+1 and the last sent
time is updatedTl+1 = t. Upon ACK or NACK (timeout) of
packetm, the outstanding bit count is reduced,F ← F −Pm.

III. E XPERIMENTAL RESULTS

In this section, we evaluate the performance of our con-
gestion control protocol using the ns-2 network simulator.We
construct a standard multi-hop dumbbell topology as shown
in Fig. 3, where the middle link is the bottleneck link. The
bottleneck link has a capacityC, delayD, a queue with buffer
size Q, and potentially a loss rate ofL. The queue at the
bottleneck link is a droptail queue. There areN sourcesSi

with corresponding receiversRi.
The source is assumed to be one which can generate

periodic bursts of up toP packets with a gap ofG seconds
giving a source rate ofS. It is assumed to have a rate control
module which operates as follows. The source generates pack-
ets and puts them into a buffer of sizeB. This buffer empties
packets once they are sequentially decodable (the packet and
all previous packets have been acknowledged). The source
uses this buffer to perform rate control by simply checking
if the buffer is full. For every burst, the source only generates
packets which can fit into this buffer without overflowing. This
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Fig. 7. Results using our protocol for five flows.
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Fig. 8. Results when 300Kbps CBR cross traffic is introduced.
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Fig. 9. Transmission Rate when random 5% loss is present. (a)Our protocol,
(b) TCP New Reno.

is a relatively simple model of a bursty source, but is good
for analysis purposes (for example a source will usually not
generate bursts periodically, but rather with varying intervals
between bursts).

We show via evaluation that our protocol results in no packet
loss and very low queuing delay when compared to traditional
congestion control protocols while maintaining close to full
link utilization and fairness across multiple flows. In factthe
queuing delay typically stays between the desired Zone 2
thresholds (betweend1 andd2).

For our simulations for the sources we useP = 15packets,
G = 0.1seconds, which gives a maximum source rate ofS =
1.2Mbps. The capacity of the bottleneck link isC = 1Mbps,
with a delay of D = 50ms, and droptail queue ofQ=50
packets. SinceC < S, the source application has to limit
its sending rate due to congestion. The sender buffer size is
assumed to beB=32 packets, or roughly 0.23 seconds of data.
For the protocol, we useαmin = 800bps,αmax = 40Kbps,
βmin = 0.25, βmid = 0.33, βmax = 0.5, d0 = 0, d1 = 12ms,
d2 = 24ms, d3 = 48ms, andγ = 1.0. These parameters are
found by tuning for our queuing delay requirements.

A. Performance and Stability of Protocol

We first compare our congestion control protocol with TCP-
New Reno. We show the overall performance of our protocol
for a single network flow in Fig. 4, which includes both
network queuing delay (δavg) and transmission rate (Rn) over
time. From Fig. 4, we see that our protocol is able to achieve
a queuing delay which is always between the desired target
delay of 12ms and24ms. As soon as it gets larger thand2,
we back off and our delay reduces to zero. The loss rate is



zero for our case. We can also see that the link is close to full
utilization since we quickly ramp up when we are far from
congestion (i.e. when the queuing delay is close to zero) using
the convex ramp up curve. The transmission rate is always
between 800Kbps and 1Mbps.

From Fig. 5, we see that TCP New Reno does not perform
as well. In fact the queuing delay is very large (close to
400ms), which is the size of the network buffer queueQ since
it does not back off until loss is encountered. The transmission
rate also oscillates much more (between 500Kbps and 1Mbps)
since the back off is also constant (β = 0.5) instead of being a
function of delay. In addition, there is some packet loss (close
to 0.4%) which would cause some packets to suffer a larger
delay caused by retransmissions.

As explained in Sec. I, just using TCP Vegas would not help
since queuing delays of up to RTT would still be seen (in this
case up to 100ms), whereas our protocol does not see queuing
delays much larger than 24ms. TCP-Illinois would also suffer
similar delays.

In Fig. 6, we show the bitrate as seen by the applica-
tions perspective using the source generation model described
above. We see that our protocol is able to achieve a much
smoother bitrate as seen from the application’s perspective
than using TCP New Reno (typically between 800-1000Kbps
as opposed to 500-1000Kbps).

B. Fairness of Protocol

In Fig. 7, we show the performance of the protocol when
multiple flows are present. Here we show five flows, flow 0
is present from 0-1000sec, flow 1 is present from 100-900sec,
flow 2 from 200-800sec, flow 3 from 300-700sec, and flow 4
from 400-600sec.

From Fig. 7(a), we see that the low queuing delay is
maintained regardless of the number of flows. As new flows
enter, the queuing delay sees a slight increase as the protocol
goes into Zone 3 for a while. However, this is immediately
reduced. From Fig. 7(b), we see that the protocol is able to
fairly divide the network bandwidth amongst all flows present
while utilizing close to full link capacity. The first 100 seconds
of Fig. 7(b) is identical to Fig. 4(b) since only one flow is
present. When a second flow enters (time period 100-200
seconds), it takes about 30-40 seconds for the two flows to
achieve almost the same share (about 500Kbps). As more flows
enter, they each divide the bandwidth almost equally after a
short time period. As flows exit, the remaining flows divide
the bandwidth. Again, we suffer no packet losses.

C. Effect of cross-traffic

In Fig. 8, we show the effect of constant bit rate (CBR)
traffic which does not back off. We show the result when
a competing 300Kbps CBR source enters the bottleneck link
from time period 10-25 seconds. Our protocol responds grace-
fully and reduces its transmission rate but still is able to take
the remaining 700Kbps (on average). The queuing delay does
not suffer either and no packet losses are encountered.

Of course if a more aggressive flow is present (one which
does not back off or backs off at a higher congestion level),
then our flow will yield as much bitrate as the other flow
desires. For a CBR flow, it will yield whatever the CBR flow
rate is. For other flows such as TCP file downloads where the
bitrate has no real limit, our share reduces to practically zero.
This is a common issue when flows with differing levels of
aggressiveness are present. The only solution is to detect such
situations and compete with the most aggressive flow present
which may result in larger queuing delays or loss.

D. Effect of non-congestion losses

In Fig. 9, we show the effect when random losses such as
those present on wireless links exist. We show the transmission
rate achieved by our protocol and that achieved by TCP New
Reno. Since we only respond to losses if they are accompanied
by a delay increase, we are able to maintain a much higher
average transmission rate (900Kbps vs. 750Kbps).

Again, we are able to do this since our congestion thresholds
for queuing delay are with high probability much smaller than
the buffer size, and thus we will always detect congestion prior
to the buffers being full. The use of OWD trend acts as an
additional safeguard to prevent congestion induced losses.

IV. CONCLUSION

In this paper, we have presented a hybrid window plus
rate based congestion control protocol. By using pacing (joint
window plus rate based rate control) along with a rate control
which backs off upon seeing a queuing delay larger than the
desired, we are able to achieve no packet losses and bounded
queuing delays. Combining this with the fast ramp-up and
back-off upon congestion, we are able to achieve full link
utilization and fair allocation of network resources amongst
multiple flows.
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