
Caffe to TensorFlow Conversion and Benchmarking Models

Chao Hsiang Chung

University of Illinois, Urbana-Champaign
chchung2@illinois.edu

Abstract
The CarML (Cognitive ARtifacts for Machine Learning) is
a platform allowing people to easily deploy and experiment
ML (Machine Learning)/DL (Deep Learning) frameworks
and models. It allows ML/DL software developers to deploy
their software packages, ML model developers to publish
and evaluate their models, users to experiment with differ-
ent models and frameworks, all through a web user interface
or a REST api, and system architects to capture system re-
source usage to inform future system and hardware config-
uration. In order to compare the accuracy that a model pre-
dicts among frameworks, instead of using a existing model
from different framework, it is better to use a model in
one framework to convert to other frameworks. There are
many existing converters for framework conversion; how-
ever, none of them is able to convert all kinds of models.
Therefore, I researched on how to solve the issues happened
when converting from Caffe to TensorFlow, and composed a
script to automatically collect and analyze results by inquir-
ing CarML by images.

Introduction
With the rise of popularity of ML/DL, there are numer-
ous converters available online. I adopted two converters
MMdnn by Microsoft, and caffe-tensorflow by ethereo.
Unfortunately, Caffe is far different from TensorFlow. For
instance, in the graph of Caffe, each node represents a layer.
In TensorFlow, however, each node is a tensor operation
(e.g. matrix add/multiply, convolution, etc.). Since the simi-
larity between Caffe and TensorFlow is not as high as Caffe
and Caffe2, it needs an indirect state to be converted suc-
cessfully. The conversion procedure is as Figure1:

Figure 1: Conversion from Caffe to TensorFlow with an in-
direct state Numpy

Besides, although there are many resources (converters)
available, most of these them are not perfect. They are either
rife with bugs or not supporting Caffe models. The details
will be discussed later.

Conversion
Common Layers in Caffe Graphs
The following layers are used mostly in every models I con-
verted:

1. Convolution: By weighted moving average, find out
edges, corners, or other features.

2. ReLU (Rectified Linear Units): Introduce non-linearity
to a system that basically has just been computing linear
operations during the conv layers, it is faster than Tanh or
Signoid functions. Also alleviate the vanishing gradient
problem.

3. Pooling: Maxpooling is the most popular. It takes a filter
(normally of size 2x2) and a stride of the same length to
down-sample by outputs the maximum number in every
subregion that the filter convolves around.

4. Dropout: This layer drops out a random set of activations
in that layer by setting them to zero, in order to help alle-
viate the over-fitting problem.

Figure 2: Mechanism of Dropout



Structure, Features of Models
AlexNet AlexNet is one of the first models which proved
the effectiveness of application of CNN (Convolutional Neu-
ral Network) on complex model (with error rate 15.3% in
ImageNet LSVRC-2012). It consists of 5 convolutional lay-
ers followed by 3 fully connected layers as Figure3. It
adopts ReLU, Dropout, LRN 1, and data augmentation such
as image translations, horizontal reflections, and patch ex-
tractions, which were innovative then, so that it could in-
crease the accuracy significantly compared to the past.

Figure 3: AlexNet Structure.

Inception From Figure 4 we can observe the structures
of Inception. The bottom green box is input and the top one
is output. The naive version of Inception allows to perform
all of the convolution or the pooling operations in parallel.
Nonetheless, this would lead to too many outputs. The so-
lution is to add 1x1 convolution operations before the 3x3
and 5x5 layers since 1x1 convolutions 2 provide a way of a
method of dimensionality reduction.

Figure 4: Inception Structures.

The evolution of Inception:

– V1 (GoogLeNet) to V2: Introduce to factorization
(factorize convolutions into smaller convolutions). For
example, Convolution whose kernel is larger than 3x3
can be expressed more efficiently with a series of
smaller convolutions. (As Figure 5)

1LRN layers are used in Alexnet to normalize pixels across
channels in the first convolutional layers, in order to to ensure that
very bright or dark pixels do not dominate their neighbors.

21x1 convolutions (Network in Network layer) span a certain
depth, so we can think of it as a 1 x 1 x N convolution where N
is the number of filters applied in the layer. Effectively, this layer
is performing a N-D element-wise multiplication where N is the
depth of the input volume into the layer.

– V2 to V3: A variant of Inception-v2 which adds
BN-auxiliary, which is the version in which the fully
connected layer of the auxiliary classifier is also-
normalized, not just convolutions. Besides, it tears
down 3x3 convolution in to 3x1 and 1x3 to reduce pa-
rameters. (As Figure 6)

– V3 to V4: A streamlined version of v3 with a more uni-
form architecture and better recognition performance.

Figure 5: By using smaller kernel, the calculation will be
more efficient.

Figure 6: By using 1x3 and 3x1, it can reduce parameter
usage.

GoogLeNet The appearance of GoogLeNet proved that
with more convolutions, deeper layer, it is more likely to
obtain a bettern result (accuracy). It won ILSVRC 2014
with a top 5 error rate of 6.7%, and it was one of the first
CNN architectures that really strayed from the general
approach of simply stacking convolution and pooling layers
on top of each other in a sequential structure. GoogLeNet
has 22 layers, which means almost 12x less parameters,
so it is faster and less than AlexNet and much more accurate.

When observing the structure of GoogLeNet (as Figure 7),
it is obvious that not everything is happening sequentially.
Some of pieces of this network which are happening in par-
allel, which is Inception module actually. GoogLeNet has 9
Inception modules in the entire structure, and with over 100
layers in total. In addition, it did not use fully connected
layers, which could save a huge number of parameters. It
is important that it combined with Inception module so



that it can have amazing performance and computationally
efficiency.

Figure 7: GoogLeNet Structure.

VGG (Visual Geometry Group) The characteristics of
VGG are simplicity and depth. Though it did not win the
championship of ILSVRC 2014 (it was GoogLeNet), it still
performed marvelously with only 7.3% error rate. By uti-
lizing small filters (3x3), it effectively reduces the need of
the amount of parameters, and thereby it is able to use more
ReLU layers and go deeper. The structure is as Figure 8.
The usage of smaller filters influenced some renowned mod-
els such as ResNet and GoogLeNet. However, it is time-
consuming to train VGG and its weights are large (VGG16
is over 533MB and VGG19 is over 574MB)

Figure 8: VGG16 Structure.

ResNet ResNet is known for its extremely huge number
of layers (can be as large as 269), which helped it won
ILSVRC 2015 with an incredible error rate of 3.6%. The
reason that it can achieve numerous layers is that it utilize
residual block. The idea of residual block is that when the
input x was originally going to go through conv-relu-conv
series (as Figure 9), instead of going through them, it just
bypasses them and go to the output, then add the F(x) to the
output to achieve similar result of going through the series.
By doing so, a tremendous number of layers is achievable.
Also, its fantastic performance inspired people to focus on
residual learning.

Figure 9: Residual Learning: A Building Block.

The evolution of ResNet is from small number of lay-
ers to huge number of layers, so does the performance
(accuracy rate). However, it should be noted that ResNet
team did try a 1202 layers network, but ended up having
lower performance owing to over-fitting.

SqueezeNet Unlike other models which pursue higher ac-
curacy, SqueezeNet was invented to reduce the complexity
of network. Although deep residual learning models (e.g.,
ResNet) have implemented small kernel (3x3), SqueeseNet
substituted some of 3x3 kernel to 1x1. This can effectively
reduce 9 times smaller parameters. The reason why
SqueezeNet did not replace them all is not to cause negative
effect on accuracy.

Figure 10: Fire Module

SqueezeNet also reduce the number of inputs for the
remaining 3x3 filters. This strategy reduces the number
of parameters by basically just using fewer filters. The
mechanism behind this is by feeding squeeze layers
into what they term expand layers (as Figure 10). By
reducing the number of filters in the squeeze layer feeding
into the expand layer, they are reducing the number of



connections entering these 3x3 filters thus reducing the to-
tal number of parameters. (This is also called FireModule)

Finally, it down-samples late in the network so that
convolution layers have large activation maps. The principle
is to decrease the stride with later convolution layers and
thus creating a larger activation/feature map later in the
network, classification accuracy actually increases.

SqueezeNet takes advantages of fire module and chains
many of these modules together to arrive at a smaller model.
Figure 11 shows some variants of this chaining process.

Figure 11: Left: SqueezeNet. Middle: SqueezeNet with
simple bypass. Right: SqueezeNet with complex bypass.

Note that SqueezeNet architecture was able to achieve a
50X reduction in model size compared to AlexNet while
meeting or exceeding the top-1 and top-5 accuracy of
AlexNet. Also, its size is 510x smaller than AlexNet.
These results are really encouraging because SqueezeNet
shows the potential for combining different approaches for
compression

NIN (Network-in-network) NIN is proposed to enhance
model discriminability for local patches within the receptive
field. Rather than using the conventional convolutional
layer, whose linear filters followed by a nonlinear activa-
tion function to scan the input, NIN builds micro neural
networks with more complex structures to abstract the data
within the receptive field. (As Figure 12)

Figure 12: The linear convolution layer includes a linear fil-
ter while the mlpconv layer includes a micro network (mul-
tilayer perceptron)

The feature maps are obtained by sliding the a multilayer
perceptron (MLP) over the input in a similar manner as
CNN and are then fed into the next layer. Therefore, the
overall structure of the NIN is the stacking of multiple
mlpconv layers. (As Figure 13)

Note that the idea of using MLP is adopted by ResNet
and Inception.

Figure 13: NIN Structure

Xception The Xception model is an extension of Incep-
tion. It takes advantage of depth-wise separable convolu-
tions and the residual block from ResNet. By using depth-
wise separable convolutions and the residual block, Xcep-
tion can reduce a huge amount of computational resources,
and thus having around 91 MB for its weights. The structure
of Xception can refer to Figure 14.

WRN (Wide Residual Networks) To WRN, residual
blocks of ResNet tends to provide little amount of informa-
tion since ResNet is too deep; namely, WRN considers that
the success of ResNet was credited to residual block instead
of deeper layers. Also, WRN thinks that each fraction
of a percent of improved accuracy costs nearly doubling
the number of layers, and so training very deep residual



Figure 14: Xception Structure: the data first goes through the entry flow, then through the middle flow which is repeated eight
times, and finally through the exit flow. Note that all Convolution and Separable Convolution layers are followed by batch
normalization (not included in the diagram). All Separable Convolution layers use a depth multiplier of 1 (no depth expansion).

networks has a problem of diminishing feature reuse, which
makes these networks very slow to train.

As a result, WRN decreases depth and increases width
of residual networks. To achieve it, WRN utilizes the
following three way: More convolution layers; More feature
planes; Increment filter size of convolution layers. Besides,
with the rise of width, parameters will also be increased
by the power of two. To reduce the number of parameters,
WRN adopts dropout.

The performance and the number of parameters of
WRN40-4 is similar to ResNet1001; however, WRN’s
training time is less 8 times than ResNet’s.

DPN (Dual Path Networks) ResNet focuses on the
reuse of the characteristics, but giving up exploring new
characteristics. The DenseNet is the opposite. DPN takes

Figure 15: Various residual blocks used by WRN.

advantages of ResNet and DenseNet. As Figure 16 (e),
DPN uses ResNet as main body, aided by DenseNet.

Note that DPN won the championship in Object Lo-
calization Task in ILSVRC 2017, with all competition tasks
within Top 3.



Figure 16:
(a): Residual Network; (b): DenseNet Structure; (c): When sharing all first 1x1 convolutional filter, DenseNet can be in format
of the residual block; (d): DPN Structure; (e): DPN Implementation.

FCN (Fully Convolutional Networks) FCN adapts
contemporary classification networks (AlexNet, VGG,
and GoogLeNet) into fully convolutional networks and
transfer their learned representations by fine-tuning to the
segmentation task. Then, it defines a novel architecture that
combines semantic information from a deep, coarse layer
with appearance information from a shallow, fine layer to
produce accurate and detailed segmentations

Figure 17: FCN end-to-end dense prediction pipeline.

In FCN, the features are merged from different stages in the
encoder which vary in coarseness of semantic information.
Also, the up-sampling of learned low resolution semantic
feature maps is done using de-convolutions which are
initialized with billinear interpolation filters.

For traditional up-sampling, due to the fixed stride, it
does not take care of margin, and also limits the scale of
detail of the up-sampling output. FCN use skip layer, which
will decrease the size of stride around margin area, and

incorporate the fine layer and the coarse layer, then do the
up-sampling. This method takes care of local and global
information. Hence it enhances the performance.

Figure 18: FCN-32s Structure.

Conversion Results
In 31 models, I successfully converted 27 Caffe models into
TensorFlow. The 4 failed ones are DPN68, DPN92, voc-
fcn16s, and voc-fcn32s. During the conversion, there were
many bugs found and fixed. The detail about bug fixing will
be elaborated in next section.

From Caffe to Numpy

1. The first issue I encountered was
Unable to determine kernel parameter. I tried
to set lots of break points to find out the cause. Finally,
I found that this happened because the converter did not
know the input shape when trying to get the stride kernel
output shape. The solution is to set the input shape in the



file layers.py and shapes.py before using layers to get
the result.

2. Another issue was Unknown layer type encountered. I
tried to traced the cause but everything looked well. Then
I tried to find resource from the internet, and I noticed that
this converter needs a great amount of memory space. I
expanded the memory size (from 2GB to 4GB) that the
converter can use and solved this issue.

3. Some of the models were out of date so that the converter
could not use those models as inputs. The solution is sim-
ply to update Caffe models by using the tool in the Caffe
Library.

4. One more issue was that parsing slice layer is not imple-
mented in the converter. This one led to DPN and fcn
models conversion. I have posted an issue on GitHub and
the author replied that he will get it fixed soon.

From Numpy to TensorFlow

1. There was one error message saying that TypeError :
Input split dim ofSplit Op has type float32 that
does not match expected type of int32. I tried to
change the parameter type before passing to the func-
tion; however, this caused other problems that the func-
tion wants the original type. Then I set break points try-
ing to figure out what happened. I found out this was
nothing to do with type error; instead, when the converter
trying to call a function split in python library, it passed
the parameters with the wrong order. It happened since
the documentation of that function was wrong:

On the documentation, it shows that the or-
der of the parameter of the function is
tf.split(split dim, num split, value, name =′

split′). But actually it is defined as
split(value, num or size splits, axis = 0, num =
None, name = ”split”).

Since the converter used the function based on the
documentation, I changed the order and it worked.

2. Another issue was assertion error. In Caffe, it accepts
more types of padding, but TensorFlow only accepts ei-
ther SAME 3 or V ALID 4. Therefore, when I converted
models from Caffe, some of them may have padding type
None (i.e., without any padding). After looking for in-
formation about SAME and V ALID, I realized that
V ALID itself is without padding. So I change None
to V ALID and resolved the issue.

3SAME means the output of convolution is exactly the same
size of the input since it will add padding to input.

4VALID does not add any padding to input.

3. The last one was caused by the dimension of the layers
of models. Some of them exceeds the dimension defined
in functions of the converter so that there will be negative
dimension when doing convolution. This issue happens in
the converter caffe-tensorflow by ethereo. The solution
is to observe what is the maximum number of dimension
needed by the input, then modified it in the functions of
the converter. However, since the converter MMdnn by
Microsoft has dealt with this situation, we can use it
instead, and the problem resolved.

Conclusion Before fixing the bugs, I could only converted
18 models from Caffe to Numpy, and only 13 of them could
be converted from Numpy to TensorFlow. Nevertheless, af-
ter bugs fixed, I am certainly sure that every Numpy can be
converted to TensorFlow, and after MMdnn updates, every
caffe should be able to be converted from Caffe to Numpy.

Benchmark
Data Collection Implementation
My script for inference is adapted from Abdul Dakkak’s
script. In his script, when a website of an URL is corrupted,
the entire results will be gone. Thus, I tried two methods to
improve Abdul Dakkak’s script for inference:

1. First, I tried to examine the HTTP response code to check
if the website is still accessible. By this method I can
eliminate many corrupted website. However, I found out
even some of the responses are 404, the images on those
website are still available. As a result, after checking
the HTTP response code, I also try to load the image to
validate if the image is available. This will slow down
the speed of inference, but this helps a lot since there are
many resources showing 404 while the image exists.

Unfortunately, there are some URLs with HTTP re-
sponse code 200 (i.e., the request has succeeded.) will
also lead to the script crashed and lose the result. What’s
worse, when trying to check those URLs by inputting
them in browser, they just show up normally. Therefore,
if we want to use this method, we have to manually take
out these URLs.

2. Since the first method was not ideal, I try to utilize
another strategy: do inference one URL by one URL.
Instead of checking the validation of an URL, I just input
it and try to analyze the result on CarML. If this URL is
corrupted, pass it and try the next one; if it works, then
write the result into output file.

This method effectively eliminate any possibility of
program crash, as well as the lose of results. What’s
more, without trying to check validation of images by
loading the image, this method is far faster than method



1. Therefore, I adopt the second method to do inference
and result collection.

Detailed Methodology Used for Benchmarking
Data To analyze the performance of models, first thing
is to have sufficient data to input. I used URLs from
ImageNet. Since sometimes an output from model may
have names in the format of scientific name or some unusual
name, it is not easy to analyze the statistical result. Thus,
I chose images of Bear for the most of the outputs of bear
include ’Bear’.

Result Collection By using the script, For each output of
an input, I will write three results with Top 3 probability
to the output file. For example, when there is an output as
following:

Name Probability
Cheeseburger 0.9993

Meat loaf 0.0003
Ice cream 0.0002
Hotdog 0.0001

Guacamole 0.0001

I will only output Cheeseburger, Meat loaf, and Ice cream
with their probabilities individually.

Analysis After having sufficient data of results (i.e.,
around 6000.), I can start analyze. First, I check the name
each data of results whether has Bear’.

• If it does not match, then add 0 to the variable
sumProbability.

• If it matches, choose the highest probability among three
results, and also add it into the variable sumProbability.
Meanwhile, if the result with the highest probability
matches, increment sumAccuracy by 1.

After checking 6000 results, we will derive the overall av-
erage of the probability and the overall accuracy by the fol-
lowing two equations:

OverallAccuracy =
sumAccuracy

6000

OverallProbability =
sumProbability

6000

By having the overall average of the performance (ac-
curacy) and probability for each model, we will be able
to see the difference between models (i.e., which one has
higher performance, etc.). The next step is to analyze
the same model perform on different frameworks (which
framework has higher performance, etc.).

Frameworks→ Caffe TensorFlow
Models ↓ Accuracy Probability Accuracy Probability
BVLC-AlexNet 0.820 0.677 0.804 0.688
BVLC-
GoogLeNet

0.877 0.783 0.841 0.788

BVLC-Reference-
CaffeNet

0.817 0.681 0.778 0.685

DPN68 0.945 0.818 N/A N/A
DPN92 0.952 0.844 N/A N/A
Inception-
ResNet v2

0.949 0.926 N/A N/A

Inception-v3 0.943 0.809 N/A N/A
Inception-v4 0.950 0.822 N/A N/A
ResNet101 0.872 0.827 N/A N/A
ResNet101-v2 0.934 0.881 N/A N/A
ResNet152 0.877 0.832 N/A N/A

Table 1: Results of Each Model in Different Frameworks.
Caffe has 6000s inputs. TensorFlow has 1000s inputs.

Figure 19: The Expected Performance of Each Model.

Result
Result Analysis From Table 1 and Figure 19, it can be
observed that

1. Most of the results are similar to the expected ones. How-
ever, some of ResNets have incredible accuracy (i.e.,
95%). I believe this is caused by over-fitting since ResNet
typically has a hugh number of layers, but it can only pass
a small amount of information to the next layer. If using
more kinds of input (i.e., using various kinds of images)
and calculate the average accuracy, it will reduce the prob-
lem with such a high accuracy due to over-fitting.

2. With the improvement of the model (e.g., Inception-v3 to
Inception-v4, etc.), the overall accuracy is enhanced.



3. Since AlexNet is the earliest model here and almost every
other model is based on AlexNet, its accuracy is relatively
low than others.

4. In this result table, we cannot analyze the difference be-
tween frameworks since Tensorflow only has 1

6 inputs
compared to Caffe. Nonetheless, it is still somewhat ob-
servable that the overall accuracy on TensorFlow is close
to one on Caffe.

Difference between Caffe and TensorFlow

• TensorFlow

– Pros:
∗ Python + Numpy
∗ Computational graph abstraction
∗ TensorBoard for visualization
∗ Data and model parallelism

– Cons:
∗ Slower than other frameworks
∗ Not many pretrained models
∗ Computational graph is pure Python, therefore slow
∗ Drops out to Python to load each new training batch
∗ Not very toolable

• Caffe

– Pros:
∗ Good for feedforward networks and image processing
∗ Train models without writing any code

– Cons:
∗ Need to write C++ / CUDA for new GPU layers
∗ Not good for recurrent networks
∗ Cumbersome for big networks (GoogLeNet, ResNet)
∗ Not extensible, bit of a hairball

Explanation of Insufficient Data The reason that there is
only few result is that

1. I used a huge number of inputs for each model. When I
tried to run 6000s inputs, it took around 2 hours.

2. The CarML website is not stable. It is easy to crash when
receiving a certain number of inferences.

I was told that 1000 inputs is enough for analyzing during
the last meeting with AbdulDakkak. This is also why there
are only 1000 inputs for TensorFlow.

I am confident that my script is perfect, so if I can
have enough time (including restarting CarML server), I
can get all of results from models on frameworks.

Conclusion/Prospect
Basically, almost every model can be converted from Caffe
to TensorFlow, and results of each model can be derived
given time.

By using models from one specific framework to con-
vert to other frameworks, it can used to analyze the
difference between frameworks since these model is from
the same resource instead of re-training on different frame-
works. Also, with more and more models available on
frameworks on CarML, CarML can be a public platform for
analysis of Machine Learning/Deep Learning models!

References
Francois Chollet. Deep Learning with Depthwise Separable

Convolutions.

Min Lin, Qiang Chen, Shuicheng Yan. Network In Net-
works.

Sergey Zagoruyko, Nikos Komodakis. Wide Residual Net-
works.

Sergey Zagoruyko, Nikos Komodakis. Wide Residual Net-
works.

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin,
Shuicheng Yan, Jiashi Feng. Dual Path Networks.

Jonathan Long, Evan Shelhamer, Trevor Darrell. Fully Con-
volutional Networks for Semantic Segmentation.

Karen Simonyan, Andrew Zisserman. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition.

Microsoft.
https://github.com/Microsoft/MMdnn

ethereon.
https://github.com/ethereon/caffe-tensorflow


