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Abstract. There are boundless posts from Facebook, Twitter, Insta-
gram, and so on. However, some of them might include violence, obscene,
threat, insult, etc. In order to efficiently identify and remove these posts
and/or messages which violate the terms of service, we need some trained
models to support spotting them out.

In this paper I present a combination of models which use Long Short-
Term Memory, Naive Bayes-Support Vector Machine, Convolutional Neu-
ral Network to identify if a comment is toxic.

1 Problem Statement

1.1 Related Works

Long Short-Term Memory (LSTM) Instead of doing sentiment analysis on
specific keywords, it is better to analyze a sentence by its context. The motivation
behind the LSTM model is that there can be lags of unknown duration between
important events (contextual connections) in a time series (sentence). Also, a
word appears in the beginning may somehow determine the meaning for another
word later in a sentence or the entire meaning of a sentence. E.g., ”am” decides
the meaning of ”I am a human”, while ”have” decides the meaning of ”I have a
human”.

Naive Bayes-Support Vector Machine (NBSVM) For NBSVM, we want
to first generate Term Frequency-Inverse Document Frequency (TF-IDF) where
TF is the frequency of any word, and IDF is log( number of documents

number of documents which have the word in TF ).
By doing TF-IDF, it can filter some frequent but meaningless words (e.g., I, this,
etc.) since TF might be large, but IDF will be almost zero, which leads TF-IDF
to nearly zero.

After doing TF-IDF, calculate conditional probability (parameters for Bayesian
classifier) and derive the output from Bayesian classifier. These outputs will be
data for support vector machine to compute the final prediction.
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Convolutional Neural Network (CNN) For CNN, try to convert a sentence
into a 2-Dimensional matrix to perform 2-Dimensional convolution. By perform-
ing 2-Dimensional convolutional and maxpool operations, it will generate the
predicted result of the text/sentence.

1.2 Performance/Cost Metrics

The loss1 and accuracy for these related works are:

Model Training Accuracy Training Loss Testing Accuracy Testing Loss Kaggle Score

LSTM 0.9825 0.0475 0.9780 0.0736 0.9269
NBSVM 0.9983 0.0298 0.9485 0.0903 0.9615

CNN 0.9854 0.0372 0.9823 0.0534 0.9788

2 Model & Result & Analysis

2.1 Data

Data set is derived from ”Toxic Comment Classification Challenge” on Kaggle.
For each comment/post, it has six corresponding classes (labels):

– Toxic
– Severe Toxic
– Obscene
– Threat
– Insult
– Identity Hate

The objective for this task is to identify if a comment/post belongs to any of
these classes (can be mutiple).

2.2 Methods

LSTM Before feeding data from raw dataset (sentences) into the model, it has
to be preprocessed by

a. Tokenization, which breaks down the sentence into unique words. E.g., ”AI
is the future and ML is the future” becomes [”AI”, ”is”, ”the”, ”future”,
”and”, ”ML”]

1 The loss function used here is binary cross entropy since we are predicting either it
is toxic or not. Using binary cross entropy can be better than using mean square
error
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b. Indexing, which makes the words in a dictionary like structure and assigns
each of them an index. E.g., {1: ”AI”, 2: ”is”, 3: ”the”, 4: ”future”, 5: ”and”,
6: ”ML”}

c. Text to Sequence, which represents the sequence of words in the comments
in the form of index, and feed this series of index into LSTM model. E.g.,
the original sentence becomes [1, 2, 3, 4, 5, 6, 2, 3, 4]

After converting articles from text to sequence, they are represented using word
embedding to reduce the model size and high dimensionality. The output of the
Embedding layer is a list of coordinates of words in the (word) vector space.
Thus, the distance of these coordinates can be used to detect relevance and con-
text.

Next, feed these coordinates into LSTM layer. As discussed previously, LSTM
can be an ideal model dealing with data with time series. The model I referred
to uses one-directional LSTM (Fig. 1.), which means that former words can
influence latter words, while latter ones do not affect former ones. As natural
languages are usually inter-weaved, the improvement here can be made is to
change one-directional LSTM to bi-directional LSTM (Fig. 2.)

Finally, collects outputs from LSTM layer and feeds them to a neural network.
After a series of trials, when the model has 3-layers (each of them has its dropout
layer), and uses rectified linear unit (ReLU) as activation function, it can achieve
the highest score.

Fig. 1. As discussed, ht will be affected by all Xt∗ , where t∗ < t in one-directional
LSTM. Namely, an output of a word is only influenced by past words.

NBSVM First, compute TF-IDF for each n-gram2. Using n-gram can link
meanings of words in a sentence to better interpret a sentence.

2 n-gram, also known as shingles, is a contiguous sequence of n words from a given
sentence
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Fig. 2. Outputs of bi-directional LSTM yt are influenced by xt∗ , where t∗ 6= t. That
is, for an output of a word, it is affected by past and future words.

After getting TF-IDF, calculate conditional probability for each word as pa-
rameters in a Bayesian classifier model, whose output will be data for training
support vector machine (SVM) model.

Finally, train SVM model and outputs of the trained model are the prediction
of whether the input sentence is toxic or not.

CNN Similar to LSTM, data has to be preprocessed by tokenization, index-
ing, text to sequence first. Next, data also has to be processed by embedding as
LSTM.

The following is the procedure for doing CNN:

1. Processed data (sentence/paragraph) has to be converted to a 2-dimensional
array (Fig. 3. (1)).

2. Apply several kernels on the 2-dimensional array. Kernel size should be n by
the length of columns since n words should be examined together (similar to
n-gram). (Fig. 3. (2))

3. Implement max pooling on each result from each kernel. The output of this
layer will be one by one by depth. (Fig. 3. (3))

4. Concatenate and flatten outputs from previous layer, then feed the result
into a one layer perceptron model. The final output is the prediction of
whether it is a toxic comment. (Fig. 3. (4))

Ensemble Each of the models discussed above may be more or less biased on
some specific types of data. In order to reduce variance and bias, and improve
prediction, combining several machine learning techniques into one predictive
model to balance different models. Here are two ways to implements ensemble:
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Fig. 3. (1) Convert a sentence/paragraph into a 2-dimensional array where each row
represents a coordinate (vector) of a word. (2) Apply several kernels with size n by the
length of columns. This is similar to n-gram. (3) Implement 2-dimensional max pooling
on the outputs of step 2. and concatenate the outputs from max pooling layers to an
one by m by depth tensor, where m is the number of kernels. (4) Flatten the tensor to
a vector and feed it into an one-layer neural network to get the final result.

1. Average the predicted outputs.

2. Build another neural network to determine the final prediction by feeding in
predictions from each model.

2.3 Model Structures

Fig. 4. LSTM Structure

Fig. 5. NBSVM Structure
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Fig. 6. CNN Structure

Fig. 7. Ensemble Structure

2.4 Results

Model Training Accuracy Training Loss Testing Accuracy Testing Loss Kaggle Score

LSTM 0.9832 0.0449 0.9826 0.0492 0.9781
NBSVM 0.9994 0.0127 0.9547 0.0889 0.9645

CNN 0.9946 0.0154 0.9836 0.0427 0.9823
Ensemble - - - - 0.9834

2.5 Analysis & Discussion

After a few experiments, here are some values of parameters for LSTM, NBSVM,
CNN, Ensemble models:
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LSTM

– Max features3: 20000. For this data-set, when max features is set higher
than 20000, the corresponding vector may be sparse; while when it is set
lower, the corresponding vector will be too close. Both of them harms the
results since they reduce the accuracy of measuring similarity between any
two vectors.

– Embedded Size4: 350. Theoretically, the larger the size is, the more precise
it maybe. I experimented from 100 to 600, but when it is around 350, the
result is converged.

– Dropout Percentage: 10%. I experimented from 0% to 35%. When it is
set to be 10%, it has the best result. It is due to the reason that when it
is 0%, it is prone to over-fitting, while when it is higher than 10%, it will
increase the bias, which causes lower performance.

NBSVM

– N-gram: 1-3. I experimented it with N=1-2, 1-3, 3-4, 3-5, 1-5, etc.. Unfor-
tunately, due to my laptop capacity, it is not able to run N=1-5 or above.
Among them when n=1-3 has the highest performance. The reason behind
this may owing to the fact that the shorter length of a sub-sentence accounts
for more importance than longer ones.

– C (Regularization): 4. As we know, small C allows constraints to be easily
ignored, which causes large margin; large C makes constraints hard to ignore,
which causes narrow margin; when C → ∞ enforces all constraints, which
leads to hard margin. After a few experiments, when C is small (4), it has
the best result since if C is too large, the SVM cannot find the separator; if
C is too small, it will allow too many errors.

CNN

– Max features: 100000. Since there is an existing trained vector space, we
can convert words to a larger space compared to LSTM’s max features.

– Embedded Size: 300. Same as LSTM. I experimented from 100 to 600, but
when it is around 300, the result is converged.

– Kernel Sizes: (1, 2, 3, 4, 5, 6, 7, 8) × (Embedded Size). As Fig. 3. (1), the
width of the kernel has to be the same as embedded size, and the length of
the kernel will be similar to n-gram. The reason CNN can have longer size
than NBSVM is that it convolutes with larger size and it does not need to
extract and replicate data again and again from the comment/post.

3 The maximum number of different words in word-space
4 The size of the vector for each word in word space
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Ensemble

– Neural Network I implemented one-layer and multi-layer perceptron to
emsemble results from LSTM, NBSVM, CNN. However, their performances
are even lower than every result individually. The result may be caused by
overfitting. After a series of trials, I chose not to continue with using this
method due to low performance.

– Average When the results from LSTM, NBSVM, CNN are averaged, the
performance measured by Kaggle score increases. I also experimented them
with different weights, but mostly when they have equal weights, they per-
form better. Thus, my final ensemble model is to equally average the input.

3 Conclusion & Future Work

From this project, I learned how to apply neural networks to process natural
languages. Measured by Kaggle score, from my original adopted model, with
score of only 0.9269 (Rank: 4000+), to my improved model, with score of 0.9834
(Rank: 1702), it has advanced a lot. Considering the highest score is 0.9885, my
model is quite close to the best one; however, I believe there is still little room
for improvement. Here are some proposed solutions:

1. Ensemble with some more models (e.g., Gated Recurrent Unit, Hierarchical
Attention Network, etc.) to mitigate bias.

2. Modify model structures (e.g., add mutiple LSTM layers to LSTM model)

Finally, apart from testing data, using my proposed approaches, my model can
accurately identify real toxic comments/posts. Therefore, the model is useful.
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