
1

Online Network Design Algorithms
via

Hierarchical Decompositions

Eindhoven University of Technology

Seeun William Umboh

Appeared in SODA 2015

Overview

2

• Analysis framework based on tree embeddings

• Improved algorithms for online network design

Network Design

3

Given a graph G with edge costs and requirements,
find a min-cost network in G

Steiner Tree
Root

• Given graph and terminals

• Find min-cost subgraph connecting terminals

4

Steiner Tree
Root

• Given graph and terminals

• Find min-cost subgraph connecting terminals

5

Online Steiner Tree
Root

• Initially, only given graph and root

• At each time step, we are given a terminal i to connect

• Maintain min-cost subgraph connecting terminals to root

• Chosen edges cannot be removed later
6

Example
Root

Terminals
Non-terminals

7

Root

Example

Terminals
Non-terminals

8

Root

Terminals
Non-terminals

Example

9

Root

Terminals
Non-terminals

Example

10

Root

Terminals
Non-terminals

Example

11

Terminals
Non-terminals

Example
Root

12

Terminals
Non-terminals

Example
Root

12

Competitive Ratio: max
requirements R
sequence σ

ALG(R,σ)

OPT(R)

Problems

13

Problems
• Steiner forest: “connect terminals si and ti”

13

Problems
• Steiner forest: “connect terminals si and ti”

• Steiner network: “connect terminals si and ti with Ri
edge-disjoint paths, edge-duplication allowed”

13

Problems
• Steiner forest: “connect terminals si and ti”

• Steiner network: “connect terminals si and ti with Ri
edge-disjoint paths, edge-duplication allowed”

• Prize-collecting Steiner forest: “connect terminals
si and ti or pay penalty pi”

13

Problems
• Steiner forest: “connect terminals si and ti”

• Steiner network: “connect terminals si and ti with Ri
edge-disjoint paths, edge-duplication allowed”

• Prize-collecting Steiner forest: “connect terminals
si and ti or pay penalty pi”

• Rent-or-Buy

13

Problems
• Steiner forest: “connect terminals si and ti”

• Steiner network: “connect terminals si and ti with Ri
edge-disjoint paths, edge-duplication allowed”

• Prize-collecting Steiner forest: “connect terminals
si and ti or pay penalty pi”

• Rent-or-Buy

• Connected Facility Location
13

Results
Problem Approximation Ratio

Steiner tree
Steiner forest

1.39 [Byrka-Grandoni-Rothvoss-Sanita 10]
2 [Agrawal-Klein-Ravi 91; Goemans-Williamson 92]

PC Steiner tree
PC Steiner forest

2 [Goemans-Williamson 95]
2.54 [Hajiaghayi-Jain 06]

Steiner network 2 [Jain 98]

Rent-or-buy 3.19 [Grandoni-Rothvoss 11]

Connected
facility location 3.19 [Grandoni-Rothvoss 11]

14

Results
Problem Approx.

Ratio Previous Competitive Ratios

Steiner tree
Steiner forest

1.39
2

O(log k), 𝛀(log k) [Imase-Waxman 91]
O(log k) [Berman-Coulston 97]

PC Steiner tree
PC Steiner forest

2
2.54 O(log k) [Qian-Williamson 11]

Steiner network 2 O(log n) randomized [folklore]

Rent-or-buy 3,19 O(log2 k) deterministic, O(log k) randomized
[Awerbuch-Azar-Bartal 96]

Connected
facility location 3,19 O(log2 k) randomized

[San Felice-Williamson-Lee 14]

15

k = # of terminals; n = # of vertices

Results
Problem Approx.

Ratio Prev. Comp. Ratios Our Comp. Ratios

Steiner tree
Steiner forest

1.39
2

O(log k), 𝛀(log k)
O(log k)

O(log k)
O(log k) (simpler proof)

PC Steiner tree
PC Steiner forest

2
2.54 O(log k) O(log k) (simpler proof)

Steiner network 2 O(log n) randomized O(log k) deterministic

Rent-or-buy 3,19 O(log2 k) deterministic
O(log k) randomized O(log k) deterministic

Connected
facility location 3,19 O(log2 k) randomized O(log k) deterministic

16

k = # of terminals; n = # of vertices

Results
Problem Approx.

Ratio Prev. Comp. Ratios Our Comp. Ratios

Steiner tree
Steiner forest

1.39
2

O(log k), 𝛀(log k)
O(log k)

O(log k)
O(log k) (simpler proof)

PC Steiner tree
PC Steiner forest

2
2.54 O(log k) O(log k) (simpler proof)

Steiner network 2 O(log n) randomized O(log k) deterministic

Rent-or-buy 3,19 O(log2 k) deterministic
O(log k) randomized O(log k) deterministic

Connected
facility location 3,19 O(log2 k) randomized* O(log k) deterministic

17

k = # of terminals; n = # of vertices

Results
Problem Approx.

Ratio Prev. Comp. Ratios Our Comp. Ratios

Steiner tree
Steiner forest

1.39
2

O(log k), 𝛀(log k)
O(log k)

O(log k)
O(log k) (simpler proof)

PC Steiner tree
PC Steiner forest

2
2.54 O(log k) O(log k) (simpler proof)

Steiner network 2 O(log n) randomized O(log k) deterministic

Rent-or-buy 3,19 O(log2 k) deterministic
O(log k) randomized O(log k) deterministic

Connected
facility location 3,19 O(log2 k) randomized* O(log k) deterministic

18

k = # of terminals; n = # of vertices

Results
Problem Approx.

Ratio Prev. Comp. Ratios Our Comp. Ratios

Steiner tree
Steiner forest

1.39
2

O(log k), 𝛀(log k)
O(log k)

O(log k)
O(log k) (simpler proof)

PC Steiner tree
PC Steiner forest

2
2.54 O(log k) O(log k) (simpler proof)

Steiner network 2 O(log n) randomized O(log k) deterministic

Rent-or-buy 3,19 O(log2 k) deterministic
O(log k) randomized O(log k) deterministic

Connected
facility location 3,19 O(log2 k) randomized* O(log k) deterministic

18

k = # of terminals; n = # of vertices(*Independently improved to
O(log k) randomized)

Previous Approaches

19

Greedy / Primal-Dual

Previous Approaches

19

Greedy / Primal-Dual Tree Embeddings

Previous Approaches

19

• Deterministic algorithms • Randomized algorithms

Greedy / Primal-Dual Tree Embeddings

Previous Approaches

19

• Deterministic algorithms

• Intricate dual construction

• Randomized algorithms

• Simple analysis

Greedy / Primal-Dual Tree Embeddings

Previous Approaches

19

Our Approach
• Greedy algorithms but analyze using tree

embeddings

• Deterministic algorithms and simple analyses

• Unified approach to online network design

20

Our Approach
• Greedy algorithms but analyze using tree

embeddings

• Deterministic algorithms and simple analyses

• Unified approach to online network design

20

Takeaway: Tree embeddings and metric decompositions
are useful for designing and analyzing greedy algorithms

Outline

1. Overview of Analysis Framework

2. Warm-Up: Steiner Tree

3. Rent-or-Buy

4. Steiner Network

21

Metric Problems

• Up to constants, can assume input graph G is complete
and edge costs form a metric

• Henceforth, input is a metric

22

Tree Embeddings

23

(V, d)

24

(V, d)

24

Embedding (V’, T)

(V, d)

24

Embedding (V’, T)

V

(V, d)

v

v

u

u

24

Embedding (V’, T)

V

(V, d)

v

v

u

u

Theorem [Fakcharoenphol-Rao-Talwar 04]:
There exists a randomized embedding into HSTs satisfying:
For all u,v in V T(u,v) ≥ d(u,v)

E[T(u,v)] ≤ O(log n) d(u,v)

24

Embedding (V’, T)

V

(V, d)

v

v

u

u

Theorem [Fakcharoenphol-Rao-Talwar 04]:
There exists a randomized embedding into HSTs satisfying:
For all u,v in V T(u,v) ≥ d(u,v)

E[T(u,v)] ≤ O(log n) d(u,v)

24

Embedding (V’, T)

V

Corollary For many network design problems,
OPT ≤ E[OPT(T)] ≤ O(log n) OPT

(V, d) Embedding (V’, T)

1. Embed into T at the start

25

Previous Online Application

(V, d) Embedding (V’, T)

1. Embed into T at the start

2. Solve on T

25

Previous Online Application

(V, d) Embedding (V’, T)

1. Embed into T at the start

2. Solve on T

3. Translate into
original metric space
ALG(T)≤ O(1)OPT(T)

25

Previous Online Application

(V, d) Embedding (V’, T)

1. Embed into T at the start

2. Solve on T

3. Translate into
original metric space
ALG(T)≤ O(1)OPT(T)

25

E[ALG(T)] ≤ O(log n) OPT

Previous Online Application

(V, d) Embedding (V’, T)

1. Embed into T at the start

2. Solve on T

3. Translate into
original metric space
ALG(T)≤ O(1)OPT(T)

25

E[ALG(T)] ≤ O(log n) OPT

Previous Online Application

• O(log n) competitive ratio even with k ≪ n requests

• Requires randomness

Drawbacks

(V, d)

26

Our Application

1. Run greedy algorithm ALG

(V, d)

26

Our Application

Main Lemma:

ALG ≤ O(1) OPT(T) for any HST embedding T

Embedding (V’, T)

2. Bound ALG against OPT(T)1. Run greedy algorithm ALG

(V, d)

26

Our Application

Main Lemma:

ALG ≤ O(1) OPT(T) for any HST embedding T

ALG ≤ O(1) minT OPT(T) ≤ O(log n) OPT

Embedding (V’, T)

2. Bound ALG against OPT(T)1. Run greedy algorithm ALG

(V, d)

27

Our Application

Main Lemma:

ALG ≤ O(1) OPT(T) for any HST embedding T

ALG ≤ O(1) minT OPT(T) ≤ O(log n) OPT

Embedding (V’, T)

2. Bound ALG against OPT(T)1. Run greedy algorithm ALG

(V, d) Embedding (V’, T)

2. Bound ALG against OPT(T)

28

Our Application

Main Lemma:

ALG ≤ O(1) OPT(T) for any HST embedding T of terminals

ALG ≤ O(1) minT OPT(T) ≤ O(log k) OPT

1. Run greedy algorithm ALG

HST Embeddings

29

HST Embeddings

29

Terminals → leaves of T

HST Embeddings

29

Level 0

HST Embeddings

30

2j

Level j

Level 0

HST Embeddings

30

2j

< 2j

Level j

1. Leaves of level-j edge → 2j-diam subset

Level 0

C1

C1

HST Embeddings

30

2j

2j-diam partition

< 2j

Level j

1. Leaves of level-j edge → 2j-diam subset
2. Level-j edges → 2j-diam decomposition

Level 0

C1

C1

C2

C2

HST Embeddings

30

Goal: ALG ≤ O(1) OPT(T) for any HST embedding T

Proof Strategy:

31

2j

Goal: ALG ≤ O(1) OPT(T) for any HST embedding T

Proof Strategy:

31

1. Decompose OPT(T) into contributions from tree edges

2j

Goal: ALG ≤ O(1) OPT(T) for any HST embedding T

Proof Strategy:

31

1. Decompose OPT(T) into contributions from tree edges
2. Charge ALG to tree edges

2j

Goal: ALG ≤ O(1) OPT(T) for any HST embedding T

Proof Strategy:

31

1. Decompose OPT(T) into contributions from tree edges
2. Charge ALG to tree edges
3. Use bounded-diameter property to argue no edge is

overcharged

2j

Goal: ALG ≤ O(1) OPT(T) for any HST embedding T

Proof Strategy:

31

Outline

1. Overview of Analysis Framework ✔

2. Warm-Up: Steiner Tree

3. Rent-or-Buy

4. Steiner Network

32

Online Steiner Tree
Root

• Terminals arrive over time

• Maintain min-cost subgraph connecting terminals to root

33

Online Steiner Tree
Root

• Terminals arrive over time

• Maintain min-cost subgraph connecting terminals to root

33

We will show: greedy algorithm is O(log k)-competitive
[Imase-Waxman 91]

Greedy Algorithm
Connect current terminal to nearest previous terminal

terminal i

34

Root

Greedy Algorithm
Connect current terminal to nearest previous terminal

terminal i

35

Root

Greedy Algorithm
Connect current terminal to nearest previous terminal

terminal i

Augmentation cost of i

35

Root

Greedy Algorithm
Connect current terminal to nearest previous terminal

terminal i

Augmentation cost of i Assume aug costs are powers of 2

35

Root

Greedy Algorithm
Connect current terminal to nearest previous terminal

terminal i

Augmentation cost of i Assume aug costs are powers of 2

Claim: Total augmentation cost ≤ OPT(T)
35

Root

Analysis

2j

36

Analysis

2j

36

1. Level-j edge contributes
2j to OPT(T)

Analysis

2j

36

1. Level-j edge contributes
2j to OPT(T)

2. If terminal has aug
cost 2j, charge aug cost

to level-j edge

Analysis

2j

36

1. Level-j edge contributes
2j to OPT(T)

2. If terminal has aug
cost 2j, charge aug cost

to level-j edge

C

3a. Charged 2j for each
terminal in C with aug cost 2j

Analysis

2j

36

1. Level-j edge contributes
2j to OPT(T)

2. If terminal has aug
cost 2j, charge aug cost

to level-j edge

C

3a. Charged 2j for each
terminal in C with aug cost 2j

< 2j

Analysis

2j

36

1. Level-j edge contributes
2j to OPT(T)

2. If terminal has aug
cost 2j, charge aug cost

to level-j edge

C

3a. Charged 2j for each
terminal in C with aug cost 2j

3b. At most one terminal in C
with aug cost 2j

< 2j

Lemma: Greedy ≤ OPT(T) for any HST embedding T

37

Lemma:

Theorem [Imase-Waxman 91]:
Greedy is O(log k)-competitive for online Steiner tree

Greedy ≤ OPT(T) for any HST embedding T

37

Lemma:

Theorem [Imase-Waxman 91]:
Greedy is O(log k)-competitive for online Steiner tree

Greedy ≤ OPT(T) for any HST embedding T

We also get a simpler analysis for the
online Steiner forest algorithm of Berman-Coulston.

37

Outline

1. Overview of Analysis Framework ✔

2. Warm-Up: Steiner Tree ✔

3. Rent-or-Buy

4. Steiner Network

38

Rent-or-Buy

39

Rent-or-Buy
• Initially, given root and parameter M ≥ 1

39

Rent-or-Buy
• Initially, given root and parameter M ≥ 1

• Maintain a connected subgraph H containing root

39

Rent-or-Buy
• Initially, given root and parameter M ≥ 1

• Maintain a connected subgraph H containing root

• When given terminal i:

• “buy” edges (add them to H), and

• “rent” edges Qi so that H U Qi connects i to r

39

Rent-or-Buy
• Initially, given root and parameter M ≥ 1

• Maintain a connected subgraph H containing root

• When given terminal i:

• “buy” edges (add them to H), and

• “rent” edges Qi so that H U Qi connects i to r

Cost:
39

Rent-or-Buy
• Initially, given root and parameter M ≥ 1

• Maintain a connected subgraph H containing root

• When given terminal i:

• “buy” edges (add them to H), and

• “rent” edges Qi so that H U Qi connects i to r

Cost:
Buy cost Rent cost of i39

Mc(H) +
�

i

c(Qi)

Example

1

40

rootTree instance

n

𝜀

Example

1

40

rootTree instance

n
Terminals are leaves

𝜀

Example

1

40

rootTree instance

n
Terminals are leaves

When to buy this edge?

𝜀

Example

1

OPT = min {#terminals, M}

40

rootTree instance

n
Terminals are leaves

When to buy this edge?

𝜀

Example

1

OPT = min {#terminals, M}

First M terminals: Rent
(M+1)th terminal: Buy

40

Online Algorithm

rootTree instance

n
Terminals are leaves

When to buy this edge?

𝜀

Example

1

OPT = min {#terminals, M}

First M terminals: Rent
(M+1)th terminal: Buy

40

Online Algorithm

rootTree instance

n
Terminals are leaves

Buy when sufficient rent cost to
pay for buy cost (break-even rule)

When to buy this edge?

𝜀

i

ai

• When a terminal i arrives:

• Let e be shortest edge to H and ai its length

• If ≥ M terminals with rent cost ≥ ai within
distance ai, buy e at cost Mai

• Otherwise, rent e at cost ai

Algorithm:

H

41

i

ai

• When a terminal i arrives:

• Let e be shortest edge to H and ai its length

• If ≥ M terminals with rent cost ≥ ai within
distance ai, buy e at cost Mai

• Otherwise, rent e at cost ai

Algorithm:

H

41

i

ai

• When a terminal i arrives:

• Let e be shortest edge to H and ai its length

• If ≥ M terminals with rent cost ≥ ai within
distance ai, buy e at cost Mai

• Otherwise, rent e at cost ai

Algorithm:

Analysis:

H

41

i

ai

• When a terminal i arrives:

• Let e be shortest edge to H and ai its length

• If ≥ M terminals with rent cost ≥ ai within
distance ai, buy e at cost Mai

• Otherwise, rent e at cost ai

Algorithm:

Analysis:

Lemma: Buy cost ≤ O(1) Rent cost

H

41

i

ai

• When a terminal i arrives:

• Let e be shortest edge to H and ai its length

• If ≥ M terminals with rent cost ≥ ai within
distance ai, buy e at cost Mai

• Otherwise, rent e at cost ai

Algorithm:

Analysis:

Lemma: Buy cost ≤ O(1) Rent cost

Lemma: Rent cost ≤ O(1)OPT(T) for any HST embedding T

H

41

i

ai

• When a terminal i arrives:

• Let e be shortest edge to H and ai its length

• If ≥ M terminals with rent cost ≥ ai within
distance ai, buy e at cost Mai

• Otherwise, rent e at cost ai

Algorithm:

Analysis:

Lemma: Buy cost ≤ O(1) Rent cost

Lemma: Rent cost ≤ O(1)OPT(T) for any HST embedding T

Theorem: ALG is O(log k)-competitive for ROB

H

41

Analysis

2j

42

r

Analysis

2j

42

1. Level-j edge contributes
2j min{M, |C|} to OPT(T)

if r not in C

C r

Analysis

2j

42

1. Level-j edge contributes
2j min{M, |C|} to OPT(T)

if r not in C

2. If terminal has rent
cost 2j, charge rent cost

to level-j edge

C r

Analysis

2j

42

1. Level-j edge contributes
2j min{M, |C|} to OPT(T)

if r not in C

2. If terminal has rent
cost 2j, charge rent cost

to level-j edge

C

3a. Charged 2j for each
terminal in C with rent cost 2j

r

Analysis

2j

42

1. Level-j edge contributes
2j min{M, |C|} to OPT(T)

if r not in C

2. If terminal has rent
cost 2j, charge rent cost

to level-j edge

C

3a. Charged 2j for each
terminal in C with rent cost 2j

< 2j r

Analysis

2j

42

1. Level-j edge contributes
2j min{M, |C|} to OPT(T)

if r not in C

2. If terminal has rent
cost 2j, charge rent cost

to level-j edge

C

3a. Charged 2j for each
terminal in C with rent cost 2j

3b. At most M terminals in C
with rent cost 2j

< 2j r

Analysis

2j

43

1. Level-j edge contributes
2j min{M, |C|} to OPT(T)

if r not in C

2. If terminal has rent
cost 2j, charge rent cost

to level-j edge

C

3a. Charged 2j for each
terminal in C with rent cost 2j

3b. At most M terminals in C
with rent cost 2j

< 2j r

Algorithm was designed
with this in mind!

Other Problems

• Works for many other “rent-or-buy”-type problems

• Connected facility location

• Prize-collecting Steiner forest (simpler analysis than
[Qian-Williamson 11])

44

Outline

1. Overview of Analysis Framework ✔

2. Warm-Up: Steiner Tree ✔

3. Rent-or-Buy ✔

4. Steiner Network

45

Single-Source Steiner Network

46

Single-Source Steiner Network

• Given metric space and root

• Terminals with requirements Ri arrive one-by-one

• Maintain multigraph (edge-duplication allowed) s.t.
terminal i has Ri edge-disjoint paths to root

46

Single-Source Steiner Network

• Given metric space and root

• Terminals with requirements Ri arrive one-by-one

• Maintain multigraph (edge-duplication allowed) s.t.
terminal i has Ri edge-disjoint paths to root

Assume

46

Single-Source Steiner Network

• Given metric space and root

• Terminals with requirements Ri arrive one-by-one

• Maintain multigraph (edge-duplication allowed) s.t.
terminal i has Ri edge-disjoint paths to root

Assume
• Given maximum requirement (Rmax)

• Each requirement Ri is a power of 2
46

Intuition

47

Intuition
Root

Ri = 2 for all i

47

Intuition
Root

Ri = 2 for all i

47

Intuition
Root

Ri = 2 for all i

47

Intuition
Root

Ri = 2 for all i

47

 If all requirements = 2m, then OPT = 2m SteinerTree

Intuition
Root

Ri = 2 for all i

47

 If all requirements = 2m, then OPT = 2m SteinerTree

Key Idea: Decompose into several Steiner tree instances

Offline

48

Offline
[Goemans-Bertsimas 93]:

48

Offline
[Goemans-Bertsimas 93]:

• For each scale 0 ≤ m ≤ log Rmax

48

Offline
[Goemans-Bertsimas 93]:

• For each scale 0 ≤ m ≤ log Rmax

• Xm = terminals with requirement 2m and root

48

Offline
[Goemans-Bertsimas 93]:

• For each scale 0 ≤ m ≤ log Rmax

• Xm = terminals with requirement 2m and root

• buy 2m copies of MST(Xm)

48

Offline
[Goemans-Bertsimas 93]:

• For each scale 0 ≤ m ≤ log Rmax

• Xm = terminals with requirement 2m and root

• buy 2m copies of MST(Xm)

• OPT ≥ 2mSteinerTree(Xm) ⟹ 2(log Rmax)-approx

48

Offline
[Goemans-Bertsimas 93]:

• For each scale 0 ≤ m ≤ log Rmax

• Xm = terminals with requirement 2m and root

• buy 2m copies of MST(Xm)

• OPT ≥ 2mSteinerTree(Xm) ⟹ 2(log Rmax)-approx

48

Tight

Online
Our algorithm:

• For each scale 0 ≤ m ≤ log Rmax

• Xm = terminals with requirement 2m and root

• buy 2m copies of Greedy(Xm)

• OPT ≥ 2mSteinerTree(Xm) ⟹ O(log k log Rmax)-approx

49

Online
Our algorithm:

• For each scale 0 ≤ m ≤ log Rmax

• Xm = terminals with requirement 2m and root

• buy 2m copies of Greedy(Xm)

• OPT ≥ 2mSteinerTree(Xm) ⟹ O(log k log Rmax)-approx

Surprisingly, our analysis gives O(log k)!

49

Analysis
Fix a HST embedding T
Let OPTm(T) = optimal Steiner tree for Xm in T

50

Analysis
Fix a HST embedding T
Let OPTm(T) = optimal Steiner tree for Xm in T

50

Subtree of T induced by Xm

Analysis

ALG = ∑m 2m Greedy(Xm) ≤ ∑m 2m OPTm(T)

Fix a HST embedding T
Let OPTm(T) = optimal Steiner tree for Xm in T

50

Subtree of T induced by Xm

Analysis

ALG = ∑m 2m Greedy(Xm) ≤ ∑m 2m OPTm(T)

Fix a HST embedding T

Lemma ∑m 2m OPTm(T) ≤ 2 OPT(T)

Let OPTm(T) = optimal Steiner tree for Xm in T

50

Subtree of T induced by Xm

Analysis

ALG = ∑m 2m Greedy(Xm) ≤ ∑m 2m OPTm(T)

Fix a HST embedding T

Lemma ∑m 2m OPTm(T) ≤ 2 OPT(T)

On trees, optimal SS Steiner network solution decomposes
into log Rmax optimal Steiner tree solutions at a loss of 2.

Let OPTm(T) = optimal Steiner tree for Xm in T

50

Subtree of T induced by Xm

Analysis

ALG = ∑m 2m Greedy(Xm) ≤ ∑m 2m OPTm(T)

Fix a HST embedding T

Lemma ∑m 2m OPTm(T) ≤ 2 OPT(T)

On trees, optimal SS Steiner network solution decomposes
into log Rmax optimal Steiner tree solutions at a loss of 2.

Theorem:
ALG is O(log k)-competitive for SS Steiner network

Let OPTm(T) = optimal Steiner tree for Xm in T

50

Subtree of T induced by Xm

Summary

51

Summary
• New analysis framework based on HST embeddings

and metric decompositions

51

Summary
• New analysis framework based on HST embeddings

and metric decompositions

• Unified approach for online network design

51

Summary
• New analysis framework based on HST embeddings

and metric decompositions

• Unified approach for online network design

• Question: for what other problems can we apply this
framework to?

51

Summary
• New analysis framework based on HST embeddings

and metric decompositions

• Unified approach for online network design

• Question: for what other problems can we apply this
framework to?

• Progress so far: multicast games, spanners, LASTs,
simultaneous buy-at-bulk, Steiner leasing
[Bienkowski-Kraska-Schmidt 17]

51

Summary
• New analysis framework based on HST embeddings

and metric decompositions

• Unified approach for online network design

• Question: for what other problems can we apply this
framework to?

• Progress so far: multicast games, spanners, LASTs,
simultaneous buy-at-bulk, Steiner leasing
[Bienkowski-Kraska-Schmidt 17]

Thank you!
51

