Online Network Design Algorithms via Hierarchical Decompositions

Appeared in SODA 2015

Seeun William Umboh

Eindhoven University of Technology

- Analysis framework based on tree embeddings
- Improved algorithms for online network design

Network Design

Given a graph G with edge costs and requirements, find a min-cost network in G

- Given graph and terminals
- Find min-cost subgraph connecting terminals

- Given graph and terminals
- Find min-cost subgraph connecting terminals

Online Steiner Tree

- Initially, only given graph and root
- At each time step, we are given a terminal i to connect
- Maintain min-cost subgraph connecting terminals to root
- Chosen edges cannot be removed later

11

- Steiner forest: "connect terminals s_i and $t_i\ensuremath{"}$

- Steiner forest: "connect terminals s_i and $t_i\ensuremath{"}$
- Steiner network: "connect terminals s_i and t_i with R_i edge-disjoint paths, edge-duplication allowed"

- Steiner forest: "connect terminals s_i and t_i "
- Steiner network: "connect terminals s_i and t_i with R_i edge-disjoint paths, edge-duplication allowed"
- Prize-collecting Steiner forest: "connect terminals s_i and t_i or pay penalty p_i"

- Steiner forest: "connect terminals s_i and t_i "
- Steiner network: "connect terminals s_i and t_i with R_i edge-disjoint paths, edge-duplication allowed"
- Prize-collecting Steiner forest: "connect terminals s_i and t_i or pay penalty p_i"
- Rent-or-Buy

- Steiner forest: "connect terminals s_i and t_i "
- Steiner network: "connect terminals s_i and t_i with R_i edge-disjoint paths, edge-duplication allowed"
- Prize-collecting Steiner forest: "connect terminals s_i and t_i or pay penalty p_i"
- Rent-or-Buy
- Connected Facility Location

Problem	Approximation Ratio
Steiner tree Steiner forest	1.39 [Byrka-Grandoni-Rothvoss-Sanita 10] 2 [Agrawal-Klein-Ravi 91; Goemans-Williamson 92]
PC Steiner tree PC Steiner forest	2 [Goemans-Williamson 95] 2.54 [Hajiaghayi-Jain 06]
Steiner network	2 [Jain 98]
Rent-or-buy	3.19 [Grandoni-Rothvoss 11]
Connected facility location	3.19 [Grandoni-Rothvoss 11]

Problem	Approx. Ratio	Previous Competitive Ratios
Steiner tree Steiner forest	1.39 2	$O(\log k), \Omega(\log k)$ [Imase-Waxman 91] $O(\log k)$ [Berman-Coulston 97]
PC Steiner tree PC Steiner forest	2 2.54	O(log k) [Qian-Williamson 11]
Steiner network	2	O(log n) randomized [folklore]
Rent-or-buy	3,19	O(log ² k) deterministic, O(log k) randomized [Awerbuch-Azar-Bartal 96]
Connected facility location	3,19	O(log ² k) randomized [San Felice-Williamson-Lee 14]

Problem	Approx. Ratio	Prev. Comp. Ratios	Our Comp. Ratios
Steiner tree Steiner forest	1.39 2	O(log k), Ω (log k) O(log k)	O(log k) O(log k) (simpler proof)
PC Steiner tree PC Steiner forest	2 2.54	O(log k)	O(log k) (simpler proof)
Steiner network	2	O(log n) randomized	O(log k) deterministic
Rent-or-buy	3,19	O(log ² k) deterministic O(log k) randomized	O(log k) deterministic
Connected facility location	3,19	O(log ² k) randomized	O(log k) deterministic

Problem	Approx. Ratio	Prev. Comp. Ratios	Our Comp. Ratios
Steiner tree Steiner forest	1.39 2	O(log k), Ω (log k) O(log k)	O(log k) O(log k) (simpler proof)
PC Steiner tree PC Steiner forest	2 2.54	O(log k)	O(log k) (simpler proof)
Steiner network	2	O(log n) randomized	O(log k) deterministic
Rent-or-buy	3,19	O(log ² k) deterministic O(log k) randomized	O(log k) deterministic
Connected facility location	3,19	O(log ² k) randomized*	O(log k) deterministic

Problem	Approx. Ratio	Prev. Comp. Ratios	Our Comp. Ratios
Steiner tree Steiner forest	1.39 2	O(log k), Ω (log k) O(log k)	O(log k) O(log k) (simpler proof)
PC Steiner tree PC Steiner forest	2 2.54	O(log k)	O(log k) (simpler proof)
Steiner network	2	O(log n) randomized	O(log k) deterministic
Rent-or-buy	3,19	O(log ² k) deterministic O(log k) randomized	O(log k) deterministic
Connected facility location	3,19	O(log ² k) randomized*	O(log k) deterministic

Problem	Approx. Ratio	Prev. Comp. Ratios	Our Comp. Ratios
Steiner tree Steiner forest	1.39 2	O(log k), Ω (log k) O(log k)	O(log k) O(log k) (simpler proof)
PC Steiner tree PC Steiner forest	2 2.54	O(log k)	O(log k) (simpler proof)
Steiner network	2	O(log n) randomized	O(log k) deterministic
Rent-or-buy	3,19	O(log ² k) deterministic O(log k) randomized	O(log k) deterministic
Connected facility location	3,19	O(log ² k) randomized*	O(log k) deterministic

(*Independently improved to O(log k) randomized)

Greedy / Primal-Dual

Greedy / Primal-Dual

Tree Embeddings

Greedy / Primal-Dual

• Deterministic algorithms

Tree Embeddings

Randomized algorithms

Greedy / Primal-Dual

- Deterministic algorithms
- Intricate dual construction

Tree Embeddings

- Randomized algorithms
- Simple analysis

Our Approach

- Greedy algorithms but analyze using tree embeddings
- Deterministic algorithms and simple analyses
- Unified approach to online network design

Our Approach

- Greedy algorithms but analyze using tree embeddings
- Deterministic algorithms and simple analyses
- Unified approach to online network design

Takeaway: Tree embeddings and metric decompositions are useful for designing and analyzing greedy algorithms

Outline

- 1. Overview of Analysis Framework
- 2. Warm-Up: Steiner Tree
- 3. Rent-or-Buy
- 4. Steiner Network

Metric Problems

- Up to constants, can assume input graph G is complete and edge costs form a metric
- Henceforth, input is a metric

Tree Embeddings

(V, d)

(V, d)

Theorem [Fakcharoenphol-Rao-Talwar 04]:

There exists a randomized embedding into HSTs satisfying:

For all u,v in V $T(u,v) \ge d(u,v)$ $E[T(u,v)] \le O(\log n) d(u,v)$

Theorem [Fakcharoenphol-Rao-Talwar 04]:

There exists a randomized embedding into HSTs satisfying:

For all u,v in V $T(u,v) \ge d(u,v)$ $E[T(u,v)] \le O(\log n) d(u,v)$

<u>Corollary</u> For many network design problems, $OPT \le E[OPT(T)] \le O(\log n) OPT$

1. Embed into T at the start

3. Translate into original metric space $ALG(T) \le O(1)OPT(T)$

Previous Online Application Embedding (V', T) (V, d) 1. Embed into T at the start 3. Translate into original metric space $ALG(T) \le O(1)OPT(T)$ 2. Solve on T $E[ALG(T)] \le O(\log n) OPT$ Drawbacks

- O(log n) competitive ratio even with k « n requests
- Requires randomness

Our Application

1. Run greedy algorithm ALG

Main Lemma:

ALG ≤ O(1) OPT(T) for *any* HST embedding T

1. Hun greedy algorithm AEG

0 ()

Main Lemma:

 $ALG \le O(1) \min_{T} OPT(T) \le O(\log n) OPT$

ALG ≤ O(1) OPT(T) for *any* HST embedding T

1. Hun greedy algontinn ALC

2. Bound ALG against OPT(T)

Main Lemma:

 $ALG \le O(1) \min_{T} OPT(T) \le O(\log n) OPT$

ALG ≤ O(1) OPT(T) for *any* HST embedding T

Main Lemma:

 $ALG \le O(1) \min_{T} OPT(T) \le O(\log k) OPT$

ALG \leq O(1) OPT(T) for *any* HST embedding T of terminals

1. Leaves of level-j edge $\rightarrow 2^{j}$ -diam subset 2. Level-j edges $\rightarrow 2^{j}$ -diam decomposition

Proof Strategy:

Proof Strategy:

Proof Strategy:

1. Decompose OPT(T) into contributions from tree edges

Proof Strategy:

1. Decompose OPT(T) into contributions from tree edges

2. Charge ALG to tree edges

Proof Strategy:

- 1. Decompose OPT(T) into contributions from tree edges
- 2. Charge ALG to tree edges
- 3. Use bounded-diameter property to argue no edge is overcharged

Outline

- 1. Overview of Analysis Framework 🗸
- 2. Warm-Up: Steiner Tree
- 3. Rent-or-Buy
- 4. Steiner Network

Online Steiner Tree

- Terminals arrive over time
- Maintain min-cost subgraph connecting terminals to root

Online Steiner Tree

- Terminals arrive over time
- Maintain min-cost subgraph connecting terminals to root

We will show: greedy algorithm is O(log k)-competitive [Imase-Waxman 91]

Connect current terminal to nearest previous terminal

Claim: Total augmentation cost \leq OPT(T)

Analysis

Lemma: Greedy \leq OPT(T) for any HST embedding T

Lemma: Greedy \leq OPT(T) for any HST embedding T

Theorem [Imase-Waxman 91]: Greedy is O(log k)-competitive for online Steiner tree

Lemma: Greedy \leq OPT(T) for any HST embedding T

Theorem [Imase-Waxman 91]: Greedy is O(log k)-competitive for online Steiner tree

We also get a simpler analysis for the online Steiner forest algorithm of Berman-Coulston.

Outline

- 1. Overview of Analysis Framework 🗸
- 2. Warm-Up: Steiner Tree 🗸
- 3. Rent-or-Buy
- 4. Steiner Network

• Initially, given root and parameter $M \geq 1$

- Initially, given root and parameter $M \geq 1$
- Maintain a connected subgraph H containing root

- Initially, given root and parameter $M \geq 1$
- Maintain a connected subgraph H containing root
- When given terminal i:
 - "buy" edges (add them to H), and
 - "rent" edges Q_i so that $H \cup Q_i$ connects i to r

- Initially, given root and parameter $M \ge 1$
- Maintain a connected subgraph H containing root
- When given terminal i:
 - "buy" edges (add them to H), and
 - "rent" edges Q_i so that $H \cup Q_i$ connects i to r

Cost:

- Initially, given root and parameter $M \geq 1$
- Maintain a connected subgraph H containing root
- When given terminal i:
 - "buy" edges (add them to H), and
 - "rent" edges Q_i so that $H \; U \; Q_i$ connects i to r

$$\begin{array}{ccc} {\rm Cost:} & Mc(H) + \sum_i c(Q_i) \\ & & \\ {\rm Buy \ cost} \end{array} \end{array} \\ \begin{array}{c} {\rm Sy \ cost} \end{array} \\ \end{array} \\ \begin{array}{c} {\rm Rent \ cost \ of \ i} \end{array} \end{array}$$

Tree instance

Terminals are leaves

<u>Online Algorithm</u> First M terminals: Rent (M+1)th terminal: Buy

<u>Online Algorithm</u> First M terminals: Rent (M+1)th terminal: Buy

Buy when sufficient rent cost to pay for buy cost (break-even rule)

- When a terminal i arrives:
 - Let e be shortest edge to H and a_i its length
 - If ≥ M terminals with rent cost ≥ a_i within distance a_i, buy e at cost Ma_i
 - Otherwise, rent e at cost ai

- When a terminal i arrives:
 - Let e be shortest edge to H and a_i its length
 - If ≥ M terminals with rent cost ≥ a_i within distance a_i, buy e at cost Ma_i
 - Otherwise, rent e at cost ai

- When a terminal i arrives:
 - Let e be shortest edge to H and a_i its length
 - If ≥ M terminals with rent cost ≥ a_i within distance a_i, buy e at cost Ma_i
 - Otherwise, rent e at cost ai

Analysis:

- When a terminal i arrives:
 - Let e be shortest edge to H and a_i its length
 - If ≥ M terminals with rent cost ≥ a_i within distance a_i, buy e at cost Ma_i
 - Otherwise, rent e at cost ai

Analysis:

Lemma: Buy cost $\leq O(1)$ Rent cost

- When a terminal i arrives:
 - Let e be shortest edge to H and a_i its length
 - If ≥ M terminals with rent cost ≥ a_i within distance a_i, buy e at cost Ma_i
 - Otherwise, rent e at cost ai

Analysis:

Lemma: Buy cost $\leq O(1)$ Rent cost

Lemma: Rent cost $\leq O(1)OPT(T)$ for any HST embedding T

- When a terminal i arrives:
 - Let e be shortest edge to H and a_i its length
 - If ≥ M terminals with rent cost ≥ a_i within distance a_i, buy e at cost Ma_i
 - Otherwise, rent e at cost ai

Analysis:

Lemma: Buy cost $\leq O(1)$ Rent cost

Lemma: Rent cost $\leq O(1)OPT(T)$ for any HST embedding T

Theorem: ALG is O(log k)-competitive for ROB

Analysis

Analysis

Analysis

Other Problems

- Works for many other "rent-or-buy"-type problems
- Connected facility location
- Prize-collecting Steiner forest (simpler analysis than [Qian-Williamson 11])

Outline

- 1. Overview of Analysis Framework 🗸
- 2. Warm-Up: Steiner Tree 🗸
- 3. Rent-or-Buy ✔
- 4. Steiner Network
- Given metric space and root
- Terminals with requirements R_i arrive one-by-one
- Maintain multigraph (edge-duplication allowed) s.t. terminal i has R_i edge-disjoint paths to root

- Given metric space and root
- Terminals with requirements R_i arrive one-by-one
- Maintain multigraph (edge-duplication allowed) s.t. terminal i has R_i edge-disjoint paths to root

Assume

- Given metric space and root
- Terminals with requirements R_i arrive one-by-one
- Maintain multigraph (edge-duplication allowed) s.t. terminal i has R_i edge-disjoint paths to root

Assume

- Given maximum requirement (R_{max})
- Each requirement R_i is a power of 2

Root

 $R_i = 2$ for all i

Root

 $R_i = 2$ for all i

Root

 $R_i = 2$ for all i

If all requirements = 2^{m} , then OPT = 2^{m} SteinerTree

Root

 $R_i = 2$ for all i

If all requirements = 2^{m} , then OPT = 2^{m} SteinerTree Key Idea: Decompose into several Steiner tree instances

[Goemans-Bertsimas 93]:

• For each scale $0 \le m \le \log R_{max}$

- For each scale $0 \le m \le \log R_{max}$
 - X_m = terminals with requirement 2^m and root

- For each scale $0 \le m \le \log R_{max}$
 - X_m = terminals with requirement 2^m and root
 - buy 2^m copies of MST(X_m)

- For each scale $0 \le m \le \log R_{max}$
 - X_m = terminals with requirement 2^m and root
 - buy 2^m copies of MST(X_m)
- OPT $\geq 2^{m}$ SteinerTree(X_m) $\implies 2(\log R_{max})$ -approx

[Goemans-Bertsimas 93]:

- For each scale $0 \le m \le \log R_{max}$
 - X_m = terminals with requirement 2^m and root
 - buy 2^m copies of MST(X_m)

Tight

• OPT $\ge 2^m$ SteinerTree(X_m) $\implies 2(\log R_{max})$ -approx

Online

Our algorithm:

- For each scale $0 \le m \le log \; R_{max}$
 - X_m = terminals with requirement 2^m and root
 - buy 2^m copies of Greedy(X_m)
- OPT $\ge 2^m$ SteinerTree(X_m) $\implies O(\log k \log R_{max})$ -approx

Online

Our algorithm:

- For each scale $0 \le m \le log \; R_{max}$
 - X_m = terminals with requirement 2^m and root
 - buy 2^m copies of Greedy(X_m)
- OPT $\ge 2^{m}$ SteinerTree(X_m) $\implies O(\log k \log R_{max})$ -approx

Surprisingly, our analysis gives O(log k)!

- Fix a HST embedding T
- Let $OPT_m(T) = optimal Steiner tree for X_m in T$

Fix a HST embedding T Subtree of T induced by X_m

Let $OPT_m(T) = optimal Steiner tree for X_m in T$

Fix a HST embedding T Subtree of T induced by X_m Let $OPT_m(T) = optimal$ Steiner tree for X_m in T

 $ALG = \sum_{m} 2^{m} Greedy(X_{m}) \leq \sum_{m} 2^{m} OPT_{m}(T)$

Fix a HST embedding T Subtree of T induced by X_m Let $OPT_m(T) = optimal$ Steiner tree for X_m in T

$ALG = \sum_{m} 2^{m} Greedy(X_{m}) \leq \sum_{m} 2^{m} OPT_{m}(T)$

<u>Lemma</u> $\sum_{m} 2^{m} OPT_{m}(T) \leq 2 OPT(T)$

Fix a HST embedding T Subtree of T induced by X_m Let $OPT_m(T) = optimal Steiner tree for <math>X_m$ in T

$ALG = \sum_{m} 2^{m} Greedy(X_{m}) \leq \sum_{m} 2^{m} OPT_{m}(T)$

<u>Lemma</u> $\sum_{m} 2^{m} OPT_{m}(T) \leq 2 OPT(T)$

On trees, optimal SS Steiner network solution decomposes into log R_{max} optimal Steiner tree solutions at a loss of 2.

Fix a HST embedding T Subtree of T induced by X_m Let $OPT_m(T) = optimal Steiner tree for <math>X_m$ in T

$ALG = \sum_{m} 2^{m} Greedy(X_{m}) \leq \sum_{m} 2^{m} OPT_{m}(T)$

<u>Lemma</u> $\sum_{m} 2^{m} OPT_{m}(T) \leq 2 OPT(T)$

On trees, optimal SS Steiner network solution decomposes into log R_{max} optimal Steiner tree solutions at a loss of 2.

<u>Theorem</u>: ALG is O(log k)-competitive for SS Steiner network

 New analysis framework based on HST embeddings and metric decompositions

- New analysis framework based on HST embeddings and metric decompositions
- Unified approach for online network design

- New analysis framework based on HST embeddings and metric decompositions
- Unified approach for online network design
- Question: for what other problems can we apply this framework to?

- New analysis framework based on HST embeddings and metric decompositions
- Unified approach for online network design
- Question: for what other problems can we apply this framework to?
- Progress so far: multicast games, spanners, LASTs, simultaneous buy-at-bulk, Steiner leasing [Bienkowski-Kraska-Schmidt 17]

- New analysis framework based on HST embeddings and metric decompositions
- Unified approach for online network design
- Question: for what other problems can we apply this framework to?
- Progress so far: multicast games, spanners, LASTs, simultaneous buy-at-bulk, Steiner leasing [Bienkowski-Kraska-Schmidt 17]

Thank you!