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Overview

* Analysis framework based on tree embeddings

* Improved algorithms for online network design



Network Design

[0 .

Given a graph G with edge costs and requirements,

find a min-cost network in G
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Steiner Tree

L

e Given graph and terminals

* Find min-cost subgraph connecting terminals
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e Given graph and terminals

* Find min-cost subgraph connecting terminals



Online Steiner Tree

N

Initially, only given graph and root
At each time step, we are given a terminal | to connect
Maintain min-cost subgraph connecting terminals to root

Chosen edges cannot be removed later
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Results

Problem Approximation Ratio

Steiner tree 1.39 [Byrka-Grandoni-Rothvoss-Sanita 10]
SIS el e 2 [Agrawal-Klein-Ravi 91; Goemans-Williamson 92]

LS LA 2 [Goemans-Williamson 95]
HORS CIGE A M 2 54 [Hajiaghayi-Jain 06]

SICIEEEN (O 2 [Jain 98]

SIS N 3,19 [Grandoni-Rothvoss 11]

Connected
facility location

3.19 [Grandoni-Rothvoss 11]
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Results

Approx.

Problem Ratio

Steiner tree
Steiner forest W

PC Steiner tree ¥
PC Steiner forest &Y

Steiner network W

Rent-or-buy EHRie

Connected
facility location

3,19

Previous Competitive Ratios

O(log k), Q(log k) [Imase-Waxman 91]
O(log k) [Berman-Coulston 97]

O(log k) [Qian-Williamson 11]

O(log n) randomized [folklore]

O(log? k) deterministic, O(log k) randomized
[Awerbuch-Azar-Bartal 96]

O(log? k) randomized
[San Felice-Williamson-Lee 14]

kK = # of terminals; n = # of vertices
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Results

Approx.

Problem Prev. Comp. Ratios Our Comp. Ratios

Ratio

Steiner tree O(log k), Q(log k) O(log k)
Steiner forest P« O(log k) O(log k) (simpler proof)
PC Steiner tree .
PC Steiner forest pasY Lilleg) Lileg b felreler jproer)
Steiner network O(log n) randomized O(log k) deterministic

O(log? k) deterministic

Rent-or-buy  [CHie O(log k) randomized

O(log k) deterministic

Connected
facility location

3,19 O(log? k) randomized O(log k) deterministic

kK = # of terminals; n = # of vertices
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Results

Approx.

Problem Prev. Comp. Ratios Our Comp. Ratios

Ratio

Steiner tree O(log k), Q(log k) O(log k)
Steiner forest W O(log k) O(log k) (simpler proof)
PC Steiner tree P .
PC Steiner forest P! Sieg Ly O{log k) (simpler proof)
Steiner network O(log n) randomized O(log k) deterministic

O(log? k) deterministic

Rent-or-buy  [CHie O(log k) randomized

O(log k) deterministic

Connected
facility location

3,19 O(log? k) randomized* O(log k) deterministic

(*Independently improved to k = # of terminals; n = # of vertices

O(log k) randomized) .
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Previous Approaches

Greedy / Primal-Dual Tree Embeddings
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e Deterministic algorithms  Randomized algorithms
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Previous Approaches

Greedy / Primal-Dual Tree Embeddings
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e Deterministic algorithms  Randomized algorithms

* Intricate dual construction e Simple analysis
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Our Approach

* (GGreedy algorithms but analyze using tree
embeddings

* Deterministic algorithms and simple analyses

* Unified approach to online network design
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Our Approach

* (GGreedy algorithms but analyze using tree
embeddings

* Deterministic algorithms and simple analyses

* Unified approach to online network design

Takeaway: Tree embeddings and metric decompositions
are useful for designing and analyzing greedy algorithms
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Outline

1. Overview of Analysis Framework
2. Warm-Up: Steiner Tree
3. Rent-or-Buy

4. Steiner Network
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Metric Problems

* Up to constants, can assume input graph G is complete
and edge costs form a metric

 Henceforth, input is a metric
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Tree Embeddings



(V, d)
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(V, d) Embedding (V', T)

V_>oooo.oo e o o

u Vv

heorem [Fakcharoenphol-Rao-Talwar 04]:
'here exists a randomized embedding into HSTs satistying:

For allu,vinV T(u,v) > d(u,v)
E[T(u,v)] < O(log n) d(u,v)
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(V, d) Embedding (V', T)

V_>oooo.oo e o o

u Vv

heorem [Fakcharoenphol-Rao-Talwar 04]:
'here exists a randomized embedding into HSTs satistying:

For allu,vinV T(u,v) > d(u,v)
E[T(u,v)] < O(log n) d(u,v)

Corollary For many network design problems,
OPT < E[OPT(T)] < O(log n) OPT
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Previous Online Application
(V, d) Embedding (V', T)

. 1. Embed into T at the start
¢ >
o
o
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Previous Online Application

(V, d)

Embedding (V', T)

1. Embed into T at the start

>

<

3. Translate into
original metric space

ALG(T) < O(1)OPT(T)

2.Solveon T

E[ALG(T)] < O(log n) OPT
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Previous Online Application

(V, d) Embedding (V', T)
. 1. Embed into T at the start
o ° 3. Translate into
original metric space e o 6 o oo o o
ALG(T)< O(1)OPT(T) 5 Solve on T
< Ol PT

* O(log n) competitive ratio even with k « n requests

* Requires randomness
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Our Application

(V, d)

1. Run greedy algorithm ALG
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Our Application

(V, d) Embedding (V', T)
1. Run greedy algorithm ALG 2. Bound ALG against OPT(T)
Main Lemma: ALG < O(1) minr OPT(T) < O(log k) OPT

ALG < O(1) OPT(T) for any HST embedding T of terminals
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HST Embeddings

1. Leaves of level-j edge — 2-diam subset
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HST Embeddings

2
Level ] —
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2l-diam partition Level 0 —»> ?? ? /C\ ?\ ({ ? ?
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C+ Co

1. Leaves of level-j edge — 2-diam subset
2. Level-j edges — 2--diam decomposition

30




Goal: ALG < O(1) OPT(T) for any HST embedding T
Proof Strategy:
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Goal: ALG < O(1) OPT(T) for any HST embedding T
Proof Strategy:

1. Decompose OPT(T) into contributions from tree edges

2. Charge ALG to tree edges

3. Use bounded-diameter property to argue no edge is
overcharged N



Outline

1. Overview of Analysis Framework ¢/
2. Warm-Up: Steiner Tree
3. Rent-or-Buy

4. Steiner Network
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Online Steiner Tree

N

e ferminals arrive over time

* Maintain min-cost subgraph connecting terminals to root
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Online Steiner Tree

N

e ferminals arrive over time

* Maintain min-cost subgraph connecting terminals to root

We will show: greedy algorithm is O(log k)-competitive

[Imase-Waxman 91]
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Greedy Algorithm

Connect current terminal to nearest previous terminal

Root
® ®

O ® <«— terminal |
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Greedy Algorithm

Connect current terminal to nearest previous terminal

Root
O °
°
°
® ® <«— terminal i
Augmentation cost of | Assume aug costs are powers of 2

Claim: Total augmentation cost < OPT(T)
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AnalysIs

1. Level-] edge contributes
2110 OPT(T) 2!
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AnalysIs

3a. Charged 2 for each
terminal in C with aug cost 2!

1. Level-] edge contributes
2110 OPT(T) 2!

2. If terminal has aug
cost 2J, charge aug cost
to level-j edge

< 2
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AnalysIs

3a. Charged 2 for each
terminal in C with aug cost 2!

1. Level-] edge contributes
2110 OPT(T) 2!

2. If terminal has aug
cost 2J, charge aug cost
to level-j edge

3b. At most one terminal in C < 9 C

with aug cost 2
36



Lemma: Greedy < OPT(T) for any HST embedding T
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Lemma: Greedy < OPT(T) for any HST embedding T

Theorem [Imase-Waxman 91]:
Greedy is O(log k)-competitive for online Steiner tree
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Lemma: Greedy < OPT(T) for any HST embedding T

Theorem [Imase-Waxman 91]:
Greedy is O(log k)-competitive for online Steiner tree

We also get a simpler analysis for the
online Steiner forest algorithm of Berman-Coulston.
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Outline

1. Overview of Analysis Framework ¢/
2. Warm-Up: Steiner Tree v/
3. Rent-or-Buy

4. Steiner Network
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Rent-or-Buy

* |nitially, given root and parameter M > 1
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Rent-or-Buy

* |nitially, given root and parameter M > 1
* Maintain a connected subgraph H containing root
* When given terminal I:

* “pbuy” edges (add them to H), and

* “rent” edges Qi so that HU Qiconnectsitor

Cost: Mc(H) + Z c(Q:)

By cost Rent cost of |

39



Example

Tree Instance root ¢
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Example

Tree Instance root ¢
1 When to buy this edge”
c%\o i
Terminals are leaves
N

OPT = min {#terminals, M}

Online Algorithm

First M terminals: Rent
(M+1)th terminal: Buy
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Example

Tree Instance root ¢
1 When to buy this edge”
c%\o i
Terminals are leaves
N

OPT = min {#terminals, M}

Online Algorithm

First M terminals: Rent Buy when sufficient rent cost to
(M+1)th terminal: Buy P for buy cost (break-even rule)

40




Algorithm:
e \When a terminal | arrives:

* Let e be shortest edge to H and a;j its length

e |t > M terminals with rent cost > a; within
distance aj, buy e at cost Ma;

 Otherwise, rent e at cost a;
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Algorithm:
e \When a terminal | arrives:

* Let e be shortest edge to H and a;j its length

e |t > M terminals with rent cost > a; within
distance aj, buy e at cost Ma;

 Otherwise, rent e at cost a;

Analysis:

Lemma: Buy cost < O(1) Rent cost

Lemma: Rent cost < O(1)OPT(T) for any HST embedding T

Theorem: ALG is O(log k)-competitive for ROB
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Analysis

1. Level-] edge contributes
2 min{M, |C|} to OPT(T)
if rnotin C

(00 @0 ©) o0 o o o
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AnalysIs

3a. Charged 2/ for each
terminal in C with rent cost 2!

1. Level-] edge contributes
2 min{M, |C|} to OPT(T)

if rnotin C 2
2. If terminal has rent
cost 2, charge rent cost
to level-j edge
o 0 0 o oo o o o
3b. At most M terminals in C < 0] C r

with rent cost 2!
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AnalysIs

3a. Charged 2/ for each
terminal in C with rent cost 2!

1. Level-] edge contributes
2 min{M, |C|} to OPT(T)
if rnotin C

D I tArminal haS rent

ent cost
Algorithm was designed 8qge

with this in mind!

(00 @ @ 0).oo o o o
C

3b. At most M terminals in C < Oj r

with rent cost 2!
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Other Problems

* Works for many other “rent-or-buy”-type problems
e Connected facility location

* Prize-collecting Steiner forest (simpler analysis than
‘Qian-Williamson 11])
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Outline

1. Overview of Analysis Framework ¢/
2. Warm-Up: Steiner Tree v/

3. Rent-or-Buy v

4. Steiner Network
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Single-Source Steiner Network

e (Given metric space and root
* Terminals with requirements R; arrive one-by-one

* Maintain multigraph (edge-duplication allowed) s.t.
terminal | has Ri edge-disjoint paths to root
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Single-Source Steiner Network

e (Given metric space and root
* Terminals with requirements R; arrive one-by-one

* Maintain multigraph (edge-duplication allowed) s.t.
terminal | has Ri edge-disjoint paths to root

Assume
e Given maximum requirement (Rmax)

 Each requirement Riis a power of 2

46
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INtultion

Root

Ri=2foralli

It all requirements = 2mM, then OPT = 2m Steinerlree
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INtultion

Root

Ri=2foralli

It all requirements = 2mM, then OPT = 2m Steinerlree

Key Idea: Decompose into several Steiner tree instances
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[Goemans-Bertsimas 93]:
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Offline

[Goemans-Bertsimas 93]:

 For each scale O < m < log Rmax
 Xm = terminals with requirement 2™ and root
* pbuy 2™ copies of MST(Xm) Tight

o OPT > 2mGteinerTree(Xm) = 2(log Rmax)-approx
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Online

Our algorithm:
 For each scale O <m < log Rmax
e Xm = terminals with requirement 2™ and root

* buy 2™ copies of Greedy(Xm)

o OPT > 2mGteinerTree(Xm) = O(log K log Rmax)-approx
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Online

Our algorithm:
 For each scale O <m < log Rmax
e Xm = terminals with requirement 2™ and root

* buy 2™ copies of Greedy(Xm)

o OPT > 2mGteinerTree(Xm) = O(log K log Rmax)-approx
Surprisingly, our analysis gives O(log k)!
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AnalysIs

Fix a HST embedding T
Let OPTm(T) = optimal Steiner tree for Xm in T
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iNnto log Rmax optimal Steiner tree solutions at a loss of 2.
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AnalysIs

Fix a HST embedding T Subtree of T induced by Xm
Let OPTm(T) = optimal Steiner tree for Xmin T

ALG = Y1 2m Greedy(Xm) £ >m 2™ OPTm(T)

Lemma Ym 2™ OPTH(T) < 2 OPT(T)

On trees, optimal SS Steiner network solution decomposes
iNnto log Rmax optimal Steiner tree solutions at a loss of 2.

Theorem:
ALG is O(log k)-competitive for SS Steiner network
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and metric decompositions

Unified approach for online network design

Question: for what other problems can we apply this
framework to”?

Progress so far: multicast games, spanners, LASTS,

simultaneous buy-at-bulk, Steiner leasing
[Bienkowski-Kraska-Schmidt 17]
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summary

New analysis framework based on HST embeddings
and metric decompositions

Unified approach for online network design

Question: for what other problems can we apply this
framework to”?

Progress so far: multicast games, spanners, LASTS,
simultaneous buy-at-bulk, Steiner leasing
[Bienkowski-Kraska-Schmidt 17]

Thank you!
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