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Overview
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• Analysis framework based on tree embeddings 

• Improved algorithms for online network design



Network Design
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Given a graph G with edge costs and requirements,  
find a min-cost network in G



Steiner Tree
Root

• Given graph and terminals 

• Find min-cost subgraph connecting terminals
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Steiner Tree
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Online Steiner Tree
Root

• Initially, only given graph and root 

• At each time step, we are given a terminal i to connect 

• Maintain min-cost subgraph connecting terminals to root 

• Chosen edges cannot be removed later
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Competitive Ratio: max
requirements R
sequence σ

ALG(R,σ)

OPT(R)
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Results
Problem Approximation Ratio

Steiner tree
Steiner forest

1.39 [Byrka-Grandoni-Rothvoss-Sanita 10] 
2 [Agrawal-Klein-Ravi 91; Goemans-Williamson 92]

PC Steiner tree
PC Steiner forest

2 [Goemans-Williamson 95] 
2.54 [Hajiaghayi-Jain 06]

Steiner network 2 [Jain 98]

Rent-or-buy 3.19 [Grandoni-Rothvoss 11]

Connected  
facility location 3.19 [Grandoni-Rothvoss 11]
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Results
Problem Approx. 

Ratio Previous Competitive Ratios

Steiner tree
Steiner forest

1.39 
2

O(log k), 𝛀(log k) [Imase-Waxman 91] 
O(log k) [Berman-Coulston 97] 

PC Steiner tree
PC Steiner forest

2 
2.54 O(log k) [Qian-Williamson 11]

Steiner network 2 O(log n) randomized [folklore]

Rent-or-buy 3,19 O(log2 k) deterministic, O(log k) randomized  
[Awerbuch-Azar-Bartal 96]

Connected  
facility location 3,19 O(log2 k) randomized  

[San Felice-Williamson-Lee 14]
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k = # of terminals; n = # of vertices



Results
Problem Approx. 

Ratio Prev. Comp. Ratios Our Comp. Ratios

Steiner tree
Steiner forest

1.39 
2

O(log k), 𝛀(log k) 
O(log k) 

O(log k) 
O(log k) (simpler proof)

PC Steiner tree
PC Steiner forest

2 
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k = # of terminals; n = # of vertices(*Independently improved to  
O(log k) randomized)
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• Deterministic algorithms • Randomized algorithms

Greedy / Primal-Dual Tree Embeddings

Previous Approaches
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• Deterministic algorithms

• Intricate dual construction

• Randomized algorithms

• Simple analysis

Greedy / Primal-Dual Tree Embeddings

Previous Approaches
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Our Approach
• Greedy algorithms but analyze using tree 

embeddings 

• Deterministic algorithms and simple analyses 

• Unified approach to online network design
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Our Approach
• Greedy algorithms but analyze using tree 

embeddings 

• Deterministic algorithms and simple analyses 

• Unified approach to online network design
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Takeaway: Tree embeddings and metric decompositions 
are useful for designing and analyzing greedy algorithms



Outline

1. Overview of Analysis Framework 

2. Warm-Up: Steiner Tree 

3. Rent-or-Buy 

4. Steiner Network
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Metric Problems

• Up to constants, can assume input graph G is complete 
and edge costs form a metric 

• Henceforth, input is a metric
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Tree Embeddings
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Theorem [Fakcharoenphol-Rao-Talwar 04]:  
There exists a randomized embedding into HSTs satisfying:
For all u,v in V      T(u,v) ≥ d(u,v) 

E[T(u,v)] ≤ O(log n) d(u,v)
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For all u,v in V      T(u,v) ≥ d(u,v) 

E[T(u,v)] ≤ O(log n) d(u,v)
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Embedding (V’, T) 

V

Corollary For many network design problems,  
OPT ≤ E[OPT(T)] ≤ O(log n) OPT
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(V, d) Embedding (V’, T) 

1. Embed into T at the start

2. Solve on T

3. Translate into 
original metric space
ALG(T)≤ O(1)OPT(T)

25

E[ALG(T)] ≤ O(log n) OPT

Previous Online Application

• O(log n) competitive ratio even with k ≪ n requests 

• Requires randomness

Drawbacks
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Our Application

1. Run greedy algorithm ALG
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Our Application

Main Lemma:

ALG ≤ O(1) OPT(T) for any HST embedding T

Embedding (V’, T) 

2. Bound ALG against OPT(T)1. Run greedy algorithm ALG
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Our Application
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(V, d) Embedding (V’, T) 

2. Bound ALG against OPT(T)
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Our Application

Main Lemma:

ALG ≤ O(1) OPT(T) for any HST embedding T of terminals

ALG ≤ O(1) minT OPT(T) ≤ O(log k) OPT

1. Run greedy algorithm ALG
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HST Embeddings
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Terminals → leaves of T

HST Embeddings
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Level 0

HST Embeddings
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2j

Level j

Level 0

HST Embeddings
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2j

< 2j

Level j

1. Leaves of level-j edge → 2j-diam subset

Level 0

C1

C1

HST Embeddings
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2j

2j-diam partition

< 2j

Level j

1. Leaves of level-j edge → 2j-diam subset
2. Level-j edges → 2j-diam decomposition

Level 0

C1

C1

C2

C2

HST Embeddings
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Goal: ALG ≤ O(1) OPT(T) for any HST embedding T

Proof Strategy:
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1. Decompose OPT(T) into contributions from tree edges
2. Charge ALG to tree edges
3. Use bounded-diameter property to argue no edge is 

overcharged

2j

Goal: ALG ≤ O(1) OPT(T) for any HST embedding T

Proof Strategy:

31



Outline

1. Overview of Analysis Framework ✔ 

2. Warm-Up: Steiner Tree 

3. Rent-or-Buy 

4. Steiner Network
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Online Steiner Tree
Root

• Terminals arrive over time 

• Maintain min-cost subgraph connecting terminals to root
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Online Steiner Tree
Root

• Terminals arrive over time 

• Maintain min-cost subgraph connecting terminals to root
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We will show: greedy algorithm is O(log k)-competitive  
[Imase-Waxman 91]



Greedy Algorithm
Connect current terminal to nearest previous terminal

terminal i
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Greedy Algorithm
Connect current terminal to nearest previous terminal

terminal i

Augmentation cost of i Assume aug costs are powers of 2

Claim: Total augmentation cost ≤ OPT(T)
35
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Analysis

2j

36

1. Level-j edge contributes 
2j to OPT(T)

2. If terminal has aug 
cost 2j, charge aug cost 

to level-j edge

C

3a. Charged 2j for each 
terminal in C with aug cost 2j

3b. At most one terminal in C 
with aug cost 2j

< 2j 



Lemma: Greedy ≤ OPT(T) for any HST embedding T
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Lemma:

Theorem [Imase-Waxman 91]:  
Greedy is O(log k)-competitive for online Steiner tree
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Lemma:

Theorem [Imase-Waxman 91]:  
Greedy is O(log k)-competitive for online Steiner tree

Greedy ≤ OPT(T) for any HST embedding T

We also get a simpler analysis for the  
online Steiner forest algorithm of Berman-Coulston.
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Rent-or-Buy
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Rent-or-Buy
• Initially, given root and parameter M ≥ 1

• Maintain a connected subgraph H containing root

• When given terminal i: 

• “buy” edges (add them to H), and 

• “rent” edges Qi so that H U Qi connects i to r

Cost:
Buy cost Rent cost of i39

Mc(H) +
�

i

c(Qi)
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Example
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Example

1

OPT = min {#terminals, M}

First M terminals: Rent 
(M+1)th terminal: Buy

40

Online Algorithm

rootTree instance

n
Terminals are leaves

Buy when sufficient rent cost to 
pay for buy cost (break-even rule)

When to buy this edge?

𝜀
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ai

• When a terminal i arrives: 

• Let e be shortest edge to H and ai its length 

• If ≥ M terminals with rent cost ≥ ai within 
distance ai, buy e at cost Mai 

• Otherwise, rent e at cost ai

Algorithm:

H
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• Let e be shortest edge to H and ai its length 

• If ≥ M terminals with rent cost ≥ ai within 
distance ai, buy e at cost Mai 

• Otherwise, rent e at cost ai

Algorithm:

Analysis:

Lemma: Buy cost ≤ O(1) Rent cost

Lemma: Rent cost ≤ O(1)OPT(T) for any HST embedding T
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i

ai

• When a terminal i arrives: 

• Let e be shortest edge to H and ai its length 

• If ≥ M terminals with rent cost ≥ ai within 
distance ai, buy e at cost Mai 

• Otherwise, rent e at cost ai

Algorithm:

Analysis:

Lemma: Buy cost ≤ O(1) Rent cost

Lemma: Rent cost ≤ O(1)OPT(T) for any HST embedding T

Theorem: ALG is O(log k)-competitive for ROB

H

41
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Analysis

2j
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1. Level-j edge contributes 
2j min{M, |C|} to OPT(T)  

if r not in C

2. If terminal has rent 
cost 2j, charge rent cost 

to level-j edge

C

3a. Charged 2j for each 
terminal in C with rent cost 2j

3b. At most M terminals in C 
with rent cost 2j

< 2j r

Algorithm was designed 
with this in mind!



Other Problems

• Works for many other “rent-or-buy”-type problems 

• Connected facility location 

• Prize-collecting Steiner forest (simpler analysis than 
[Qian-Williamson 11])

44
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3. Rent-or-Buy ✔ 

4. Steiner Network
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terminal i has Ri edge-disjoint paths to root
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Single-Source Steiner Network

• Given metric space and root

• Terminals with requirements Ri arrive one-by-one

• Maintain multigraph (edge-duplication allowed) s.t. 
terminal i has Ri edge-disjoint paths to root

Assume
• Given maximum requirement (Rmax)  

• Each requirement Ri is a power of 2 
46
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Intuition
Root

Ri = 2 for all i

47

 If all requirements = 2m, then OPT = 2m SteinerTree

Key Idea: Decompose into several Steiner tree instances 
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Tight



Online
Our algorithm: 

• For each scale 0 ≤ m ≤ log Rmax  

• Xm = terminals with requirement 2m and root 

• buy 2m copies of Greedy(Xm) 

• OPT ≥ 2mSteinerTree(Xm)  ⟹  O(log k log Rmax)-approx 
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Online
Our algorithm: 

• For each scale 0 ≤ m ≤ log Rmax  

• Xm = terminals with requirement 2m and root 

• buy 2m copies of Greedy(Xm) 

• OPT ≥ 2mSteinerTree(Xm)  ⟹  O(log k log Rmax)-approx 

Surprisingly, our analysis gives O(log k)!

49



Analysis
Fix a HST embedding T
Let OPTm(T) = optimal Steiner tree for Xm in T
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Lemma ∑m 2m OPTm(T) ≤ 2 OPT(T)

On trees, optimal SS Steiner network solution decomposes 
into log Rmax optimal Steiner tree solutions at a loss of 2.
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Analysis

ALG = ∑m 2m Greedy(Xm) ≤  ∑m 2m OPTm(T)

Fix a HST embedding T

Lemma ∑m 2m OPTm(T) ≤ 2 OPT(T)

On trees, optimal SS Steiner network solution decomposes 
into log Rmax optimal Steiner tree solutions at a loss of 2.

Theorem:  
ALG is O(log k)-competitive for SS Steiner network

Let OPTm(T) = optimal Steiner tree for Xm in T

50

Subtree of T induced by Xm
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Summary
• New analysis framework based on HST embeddings 

and metric decompositions

• Unified approach for online network design

• Question: for what other problems can we apply this 
framework to?

• Progress so far: multicast games, spanners, LASTs, 
simultaneous buy-at-bulk, Steiner leasing 
[Bienkowski-Kraska-Schmidt 17]

Thank you!
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