
XML-to-SQL Query Translation

By

Rajasekar Krishnamurthy

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN – MADISON

2004

i

Abstract

Developing techniques for managing and querying the growing body of XML data is

becomingly increasingly important. A popular approach to evaluating XML queries is

to translate them to relational queries and then to use a relational database system to

evaluate the result.

The XML and relational data models are significantly different, and as a result, the

corresponding query languages (XQuery and SQL respectively) also differ significantly.

This mismatch raises some interesting questions: (i) From a functionality perspective, is

it possible to handle all XML data sets using this approach or are there any fundamental

limitations in SQL that create problems? (ii) From a performance perspective, are there

any implications on the quality of the SQL queries produced due to this mismatch between

the two data models? In this thesis, we address the above two questions in two different

scenarios: XML storage and XML publishing. In the former, the goal is to use relational

databases to store and query existing XML data, while in the latter, existing relational

data is exported as XML.

We demonstrate that it is possible to translate path expression queries (an important

class of XML queries) into a single SQL query, even in the presence of recursion in

the XML schema and the XML query. We then show that the SQL queries output

by previously published algorithms often blindly reflect the hierarchical nature of the

XML schema, even when it is clearly unnecessary. We present algorithms that avoid

this problem by using additional semantic information intelligently. Since the form and

nature of semantic information available differs for the XML storage and XML publishing

scenarios, we need different mechanisms for achieving this goal in the two scenarios.

ii

Experiments with a commercial relational database system show that the SQL queries

output by our algorithms can be far more efficient than the queries output by previous

translation algorithms.

iii

Acknowledgements

I thank my advisor Jeff Naughton for all his help and mentoring during my graduate

study. His invaluable advice and constant guidance has helped me mature as a researcher

in the last few years. He gave me complete freedom to work on topics that interested

me. He also taught me several important things about doing research such as focusing on

the core aspects of any problem and making the correct simplifying assumptions during

this process. He is also primarily responsible for improving my presentation skills: both

written and oral.

I would like to thank David DeWitt and Raghu Ramakrishnan for their support

and encouragement, especially during my job search. I would also like to thank Jin-yi

Cai for the technical discussions we had. I would like to thank David DeWitt, Raghu

Ramakrishnan, Jin-yi Cai and Dharmaraj Veeramani for being on my committee.

Special thanks are due for Raghav Kaushik and Venkat Chakaravarthy for working

with me. I really enjoyed all the fruitful discussions we had and without their collabora-

tion this dissertation would not be in its present form.

I would like to thank Jayavel Shanmugasundaram and Eugene Shekita for introducing

me to the problem of querying XML data using RDBMS during my internship at IBM-

Almaden. Jayavel was also supportive and very helpful during my job search.

During my graduate study, I had the pleasure of working with a lot of people — Ashraf

Aboulnaga, Jennifer Beckham, Josef Burger, Venkatesan Chakaravarthy, Jianjun Chen,

David DeWitt, Leonidas Galanis, Alan Halverson, Jaewoo Kang, Raghav Kaushik, Jerry

Kiernan, Ameet Kini, Qiong Luo, Jeffrey Naughton, Naveen Prakash, Raghu Ramakr-

ishnan, Ravishankar Ramamurthy, Ajith Nagaraja Rao, Jayavel Shanmugasundaram,

iv

Eugene Shekita, Feng Tian, Stratis Viglas, Yuan Wang and Chun Zhang. I really en-

joyed working with them and learned a lot from all these interactions. I would also like

to thank Neoklis Polyzotis for his feedback on my work and Brian Forney for the long

conversations we had.

I had a great bunch of friends during my stay in Madison: Charles, Koushik, Muthian,

Prabu, Raghav, Ram, Ravi, Sricharan, Venkat and Venkatanand. I would like to thank

all of them for their friendship and for making my stay in Madison pleasurable.

I would like to thank Balaji for all his support and encouragement and for being a

great friend. I would also like to thank Karthik, Murali and Sriram for their friendship.

Above all, I would like to thank my family: my parents, Balu, Janani, Srini, Malini

and Srikar, for their love and support.

v

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Schema-Based XML Storage . 3

1.2 XML Publishing . 6

2 Background and Current State of the Art 10

2.1 XML Publishing . 12

2.1.1 XML View Definition . 13

2.1.2 Materializing the XML View . 14

2.1.3 Evaluating XML Queries . 14

2.1.4 Open Problems . 17

2.1.5 Recursive XML View Schema and Linear Recursion in SQL . . . 19

2.2 Schema-Oblivious XML Storage . 21

2.2.1 Relational Schema Design . 22

2.2.2 Query Translation . 24

2.2.3 Summary and Open Problems . 25

2.3 Schema-Based XML Storage . 28

2.3.1 Relational Schema Selection . 28

2.3.2 Query Translation . 29

2.3.3 Discussion and Open Problems 31

vi

2.4 Summary . 34

3 Schema-based XML storage: Recursive Schemas and Queries 36

3.1 Formal Model . 37

3.1.1 XML Schema Graph . 37

3.1.2 XML to Relational Mappings . 38

3.1.3 Path Expression Queries . 43

3.2 Query Translation Over Recursive XML schemas 43

3.2.1 PathId stage . 45

3.2.2 SQLGen stage . 53

3.2.3 A Note on Query Translation Time 64

3.2.4 Extensions to the Algorithm . 65

3.3 Related Work . 66

3.4 Summary . 67

4 Mapping-aware Query Translation 68

4.1 Motivation for mapping aware techniques 69

4.2 Exploiting the “lossless from XML” constraint for Tree XML Schemas . . 73

4.2.1 Basic Idea behind the Algorithm 73

4.2.2 Terminology . 78

4.2.3 The Pruning Stage . 80

4.2.4 The SQLGen Stage . 82

4.2.5 Some Alternative Solutions . 87

4.3 Exploiting the “lossless from XML” constraint for complex XML Schemas 90

4.3.1 Combinability for Complex Schema 90

4.3.2 The Pruning Stage . 95

vii

4.3.3 Schema-Oblivious Storage . 99

4.4 Experimental Study . 103

4.5 Summary . 105

5 Generating Efficient SQL Queries in the Publishing Scenario 106

5.1 Motivation . 110

5.2 Problem Definition . 113

5.3 The SQL Optimization approach . 118

5.3.1 Previous work on Relational Query Minimization 118

5.3.2 Impact on the SQL Optimization approach 120

5.4 Intelligent Query Translation . 121

5.4.1 Outline of our approach . 122

5.4.2 Bijective mappings . 124

5.4.3 Prefix Elimination Optimality . 125

5.4.4 The query translation algorithm 126

5.5 The constraint aware approach . 129

5.5.1 Terminology . 129

5.5.2 Precomputation Phase . 130

5.5.3 Run-Time Query Translation Algorithm 137

5.5.4 Analysis . 140

5.6 Extensions to More General Cases . 145

5.6.1 Path Expression Queries Involving Non-Leaf Nodes 145

5.6.2 Beyond Path Expressions . 146

5.6.3 Beyond Bijective Mappings . 147

5.7 Summary . 148

viii

6 Conclusions and Future Work 150

Bibliography 152

A Queries used in the experiments in Chapter 4.4 162

ix

List of Tables

1 Summary of various published techniques 11

2 Execution time of translation algorithm 64

3 Part of Relational Schema for ADEX dataset 102

4 Part of Relational Schema for XMark dataset 102

5 Relative performance improvement obtained by the mapping aware algo-

rithm . 103

x

List of Figures

1 High-Level Taxonomy of interaction between XML and RDBMS 2

2 Using RDBMS to store and query XML data 4

3 Publishing Relational data as XML . 7

4 Focus of published solutions . 11

5 Sample XML-to-Relational mapping schema 33

6 Sample XML-to-Relational mapping schema 37

7 SQL Query associated with a path p in the XML schema 41

8 Query Translation Algorithm handling recursion in XML schema and query 44

9 Example to illustrate PathId . 44

10 Example to illustrate duplicate counting in PathId 45

11 PathId Algorithm . 48

12 SQLGen Algorithm . 54

13 Sample recursive schema to explain the SQLGen algorithm 55

14 SQLGen Algorithm for a DAG Component 56

15 SQLGen Algorithm for a Recursive Component 60

16 SQL query output by the XML to SQL algorithm for Q = /E0//E10 . . 62

17 XMark benchmark schema and a sample relational decomposition 70

18 Query Translation Algorithm using the “lossless from XML” constraint . 73

19 Result of PathId stage for Q1 and Q2 . 74

20 Pruning stage for tree XML schema . 80

21 Example mapping S1 to explain the pruning algorithm 85

22 Modified pruning stage . 88

xi

23 Example mapping S2 to explain issues in defining combinability for com-

plex schema . 91

24 Pruning stage for recursive XML schema 95

25 Examples to illustrate the mapping aware algorithm 96

26 Examples to illustrate the mapping aware algorithm 97

27 XMark schema mapped to the Edge relation 100

28 Part of ADEX XML schema . 102

29 Stages in using an RDBMS to evaluate an XML query 107

30 Sample relational schema and corresponding XML view 110

31 View Definition expressed as an XQuery query over the default view . . 115

32 Example view to illustrate (non)bijective mappings 123

33 Algorithm to check if a relational column is bijectively mapped 134

34 Algorithm to compute lda information 135

35 constraint aware query translation algorithm for path expression queries . 138

36 Prefix-Elimination phase . 139

1

Chapter 1

Introduction

XML is emerging as the universal standard format for data exchange, and as a result,

XML data management is becoming increasingly important. Relational database systems

(RDBMSs) have dominated the commercial data management space for several decades.

So, using RDBMSs to manage XML data is an attractive option. Unfortunately, the

XML data model differs substantially from the relational data model, so using RDBMSs

to support XML data poses a number of interesting and challenging problems. This

thesis focuses on query translation, which lies at the core of managing XML data using

relational database systems. Because SQL is the query language used by all relational

database systems, we refer to this query translation problem as “XML-to-SQL query

translation”.

The main scenarios in which XML-to-SQL query translation is required are shown in

Figure 1. In XML storage, the goal is to use an RDBMS to store and query existing XML

data. Based on whether or not the XML schema is used to decide on the corresponding

relational schema, the techniques can be classified as schema-based or schema-oblivious

XML storage. By contrast, in XML Publishing, the goal is to treat existing relational

data sets as if they were XML. In other words, an XML view of the relational data set

is defined and XML queries are posed over this view.

Note that the above scenarios have the common property that the data is stored

(physically) in a relational database system and users (or applications) write queries over

2

Schema Based

Requires the XML schema

Schema Oblivious

Does not require the XML schema

Ignores the schema even if available

Problem Space

XML−Publishing
Existing relational data
published as XML

XML−Storage
RDBMS used to store and
query XML data

Figure 1: High-Level Taxonomy of interaction between XML and RDBMS

an XML view of this data. We believe that the main advantages of this approach are as

follows:

• In the XML storage scenario, where the input data is a collection of XML doc-

uments, using an RDBMS to store and query the data set allows us to leverage

the advancements made in relational technology in the last few decades. The vast

amount of knowledge accumulated about the relational model and the presence of

fairly mature commercial RDBMSs can be tapped to handle XML workloads.

• A large amount of commercial data is currently stored in RDBMSs. XML originated

as a data exchange format. In this role, organizations need to be able to exchange

data, which is currently primarily relational. This makes the XML publishing

scenario important.

• In a few years, organizations can be expected to receive and handle large amounts

of data in both relational and XML format. This implies that data management

capabilities across both types of data is essential. Using a relational database to

handle both types of data is an attractive option for being able to seamlessly query

across the entire data set.

In this thesis, we present solutions for the XML-to-SQL query translation problem

3

in the schema-based XML storage and XML publishing scenarios. We focus on a class

of XML queries called path expression queries, which are the building block of XQuery.

In the next two sections, we describe the schema-based XML storage and XML pub-

lishing scenarios in more detail and also outline the contributions of this thesis in the

corresponding scenario.

1.1 Schema-Based XML Storage

A popular approach to store and query XML data is to use existing relational database

systems. Two main advantages of using RDBMS to handle XML workloads are: (i)

We can leverage decades of research and development in relational database technology.

If we can efficiently cross the data model boundary, then we get all the advantages of

mature commercial relational database systems. (ii) In the future, applications are likely

to produce and consume both relational and XML data. So, database systems will need

to support both data formats. Using a single storage engine and query processor for

both data formats is likely to be more efficient than having two loosely coupled database

systems. In this direction, using existing relational database systems for this purpose is

a promising approach.

The various steps involved in using a relational database for supporting XML work-

loads are shown in Figure 2. An XML-enablement layer on top of the relational query

processor handles the conversion across data models. Note that this layer can either be a

part of the relational database or it can be middleware. There are two main components

in the XML-enablement layer: the shredder and the query translator. The functions of

the two components are described below.

• Given an XML schema, the shredder decides on a good relational schema and

4

XML−to−Relational

XML dataXML Schema

Relational Data

SQL query Relational results

XML query XML results

Relational Schema

mapping

book1 t1
book2 t2

book1 pub1
book2 pub2

book1 author1
book1 author2

sec1 intro
sec2 functionality

XML enablement
layer

Relational Query
 Processor

Shredder Query Translator

Figure 2: Using RDBMS to store and query XML data

creates the appropriate tables. The association between the XML schema and the

relational schema is maintained in (what we refer to as) the XML-to-Relational

mapping. In this step, the shredder may also use other information such as XML

data statistics and query workload information.

• The next step is to load XML data into the database. Given XML data conforming

to the XML schema, the shredder obtains the corresponding relational data (based

on the mapping) and loads them into the RDBMS.

• Given an XML query, the query translator obtains an equivalent SQL query based

on the mapping. This query is executed by the relational query processor. The

resulting relational results are converted into XML by the query translator and

returned to the user.

There has been a lot of research in the last few years on developing efficient algorithms

for both the shredding and the query translation components. A description of the various

published solutions and the support present in current commercial relational database

systems is given in Chapter 2. While a lot of forward progress has been made in this

5

direction, we see that some basic questions are still open. Some of the contributions of

this thesis are as follows.

• Recursive XML Schemas and Recursive XML queries: In a recent study

of real-world XML schemas [Cho02], out of the 60 schemas analyzed, more than

half (35) of them were recursive, which suggests that recursive XML schemas are

common in practice. Furthermore, recursion is ubiquitous in XML queries, as it

appears in any path expression query that uses the descendant axis (//). All these

suggest that it is important to handle recursive XML schemas and recursive XML

queries for schema-based XML storage. But, there is no published XML-to-SQL

query translation algorithm that handles recursive XML schemas.

In Chapter 3, we present a generic algorithm XML to SQL that translates path

expression queries to SQL in the presence of recursion in the XML schemas and

queries. We show how the support for linear recursion in SQL99 is sufficient for

this purpose. An interesting aspect of this algorithm is the use of the SQL99 with

construct to handle recursive queries even over non-recursive schemas.

• Quality of SQL queries produced by query translator: Translating XML

queries to SQL involves translating queries over hierarchical schemas into queries

over flat relational schemas. This turns out to be problematic — a closer look

at the queries generated by the published translation algorithms shows that the

hierarchical nature of the exported XML schema is often blindly reflected in the

generated SQL query, even when this is clearly not necessary. As a result, in

many cases even simple path expression queries result in unnecessarily complex

SQL queries. This problem is aggravated when the input XML query includes a

traversal of the descendant axis (//), because it does not have a simple equivalent

6

in SQL.

A natural question to ask next is whether the phenomenon of large, complex SQL

queries arising from simple XML queries is avoidable, or if it is intrinsic due to

the mismatch in data models. We show by example in Chapter 4 that complex

SQL is not necessary in many cases — while the SQL generated by the published

translation algorithms is complex, usually there is a much simpler equivalent SQL

query. This observation motivated us to search for techniques that make use of

readily available semantic information to improve the quality of the generated SQL.

In particular, the fact that all the relational data resulted from the shredding of

XML documents that conformed to the given XML schema allows us to use the

XML-to-Relational mapping information in an intelligent fashion. We extend the

XML to SQL algorithm from Chapter 3 to use the semantic information present

in the XML-to-Relational mapping and generate efficient SQL queries. The details

of this mapping aware algorithm are given in Chapter 4.

1.2 XML Publishing

While XML is growing into the universal data exchange format, a large fraction of existing

data is stored in relational databases. This motivates the need for publishing existing

relational data as XML (XML Publishing). Here, an XML view of the relational data set

is defined and XML queries are posed over this view. The various steps involved in this

process are shown in Figure 3. Notice how the shredder in the XML storage scenario is

replaced by a view constructor in the publishing scenario as the data is already present in

the RDBMS. A number of view definition mechanisms and query translation algorithms

have been proposed for this setting in the published literature and these are described in

7

XML−to−Relational

SQL query Relational results

XML query XML results

mapping

book1 t1
book2 t2

book1 pub1
book2 pub2

book1 author1
book1 author2

sec1 intro
sec2 functionality

XML enablement
layer

Relational Query
 Processor

Query TranslatorView Constructor

View Definition

Figure 3: Publishing Relational data as XML

Chapter 2.1.

At a high level, XML-to-SQL query translation in the XML Publishing scenario is

very similar to the corresponding problem in the schema-based XML storage scenario.

In fact, as discussed in [SSK+01], it is possible to view the latter as a subset of the

XML publishing scenario. To see this, notice that once XML data is shredded into

relations, we can view the resulting data as if it were pre-existing relational data. Now by

defining a reconstruction view that mirrors the XML-to-relational mapping used to shred

the data, the query translation algorithms in the XML publishing domain are directly

applicable for the schema-based XML storage domain. Indeed, this is the approach

adopted in commercial relational database systems such as Oracle XML DB [OXD],

Microsoft SQL Server 2000 SQLXML [SXM] and IBM DB2 XML Extender [DB2] and

also in research literature, such as [BFRS02, SSK+01].

The XML to SQL algorithm presented in Chapter 3 for handling recursive XML

schema and queries can be adapted for the XML Publishing scenario as well. The de-

tails of the algorithm will change based on the view definition language, but the main

ideas about how to handle recursive schemas, directed acyclic graph (DAG) schemas and

8

recursive queries remain the same.

On the other hand, the optimizations we propose in the mapping aware algorithm

(Chapter 4) to improve the quality of the final SQL queries use semantic information

present in the XML-to-Relational mapping. Also, in the XML storage scenario, the data

in the RDBMS originates from an XML document and there is some semantic informa-

tion associated with this. For example, every decomposition proposed in the literature

stores each XML element “exactly once” in the relational tables. The mapping aware al-

gorithm in Chapter 4 uses all this information in reasoning about equivalent SQL queries.

By contrast, in the XML publishing domain, existing relational data may be mapped to

XML in uncontrolled ways – some parts of the relational data may be exported multiple

times in the XML view, while other parts may not be exported at all. This basic difference

between the XML storage and the XML publishing scenarios makes mapping aware query

translation a far more difficult task in the XML publishing domain. One way to per-

form mapping aware translation in this case is to use the constraints on the underlying

relational data along with the mapping information. We follow this approach in this

thesis.

As we show in Chapter 5, translating path expression queries into SQL over tree XML

view definitions is closely related to the problem of relational query minimization under

bag semantics. The techniques for query minimization in the published literature rely on

algorithms for query containment or query equivalence. Unfortunately, these problems

become intractable even in simple scenarios.

In Chapter 5, we present our approach in which we identify a subset of tree XML-

to-relational mappings called bijective mappings. Bijective mappings have the desirable

property that they can be optimized using containment and equivalence algorithms under

set semantics instead of multiset semantics. By using the fact that the XML-to-Relational

9

mapping determines the class of SQL queries that are likely to be output by the XML-to-

SQL query translation algorithm, we precompute some summary information using the

relational integrity constraints. We use this information during runtime query transla-

tion to generate efficient SQL queries. Our constraint aware algorithm works correctly

even over non-bijective mappings; it identifies the bijective portions of the mapping and

performs more efficient query translation in those parts.

Roadmap

The rest of the thesis is organized as follows. In Chapter 2, we present a survey on

XML-to-SQL query translation algorithms. In Chapters 3 and 4, we look at the query

translation problem for the schema-based XML storage scenario. In Chapter 3, we present

the XML to SQL algorithm for translating path expression queries into SQL over re-

cursive XML-to-Relational mappings. We extend this algorithm in Chapter 4 to make

it mapping aware, improving the quality of the final SQL queries. In Chapter 5, we

consider the query translation problem for the XML publishing domain. We present the

constraint aware algorithm that uses relational integrity constraints to generate efficient

SQL queries. Finally, we present our conclusions and discuss future work in Chapter 6.

10

Chapter 2

Background and Current State of

the Art

Beginning in 1999, the database research literature has seen an explosion of publications

with the goal of using an RDBMS to store and/or query XML data. The problems

addressed and solved in this area are diverse. Some publications deal with using an

RDBMS to store XML data; others deal with exporting existing relational data in an

XML view. The papers use a wide variety of XML query languages, including subsets

of XQuery, XML-QL, XPath, and even “one-off” new proposals; they use a wide variety

of languages or ad-hoc constructs to map between the relational and XML schema; and

they differ widely in what they “push to SQL” and what they evaluate in middleware.

This diversity renders it difficult to know how the various results presented fit to-

gether, and even makes it hard to know what if any open problems remain. As a first

step to rectifying this situation, we present a classification of the problem space and

discuss how almost 40 papers fit into this classification. As a result of this study, we find

that some basic questions are still open. We also describe how some of these questions

are answered by the work presented in this thesis.

In this chapter, we use the classification in Figure 1 to characterize almost 40 pub-

lished solutions to the XML-to-SQL query translation problem. The various published

techniques are summarized in Table 1, where for each technique we identify the scenario

11

Table 1: Summary of various published techniques
Technique Scenario Subproblems Class of Class of

solved XML Schema XML Queries
considered handled

XPeranto XP/GAV VD,QT tree XQuery

SilkRoute XP/GAV VD,QT tree XML-QL

Rolex XP/GAV QT tree XSLT

[JMS02] XP/GAV QT tree XSLT

[BCF+02] XP/GAV VD recursive -

Oracle XML DB XP/GAV, XS/SB VD,SS,QT recursive SQL/XML
restricted XPath1

SQL Server 2000 XP/GAV, XS/SB VD,SS,QT bounded depth restricted XPath2

SQLXML recursive

DB2 XML XP/GAV, XS/SB VD,QT non-recursive SQL extensions
Extender through UDFs

Agora XP/LAV QT non-recursive XQuery

MARS XP/GAV + QT non-recursive XQuery
XP/LAV

STORED XS/SO SS,QT all STORED

Edge XS/SO SS,QT all path expressions

Monet XS/SO SS all -

XRel XS/SO SS,QT all path expressions

[TVB+02] XS/SO SS,QT all order-based
queries

Dynamic XS/SO QT all XQuery
intervals [DTCO03]

[ML03, STZ+99] XS/SB SS recursive -

[BFRS02, HSJJ02] XS/SB SS tree -
[KM00, LC00, RP02]

XP/GAV: XML Publishing, Global-as-view XP/LAV: XML Publishing, Local-as-view
XS/SO: XML Storage, schema-oblivious XS/SB: XML Storage, schema-based

QT: Query Translation VD: View Definition SS: Storage scheme

restricted XPath1: child and attribute axes

restricted XPath2: child, attribute, self and parent axes

XP

XS/SB
XS/SO

XP

XS/SB
XS/SO

XP

XS/SB
XS/SO

XP

XS/SB
XS/SO

Tree Schema Recursive Schema

Simple Queries

Complex Queries

a lot

some
none

a lot
a lot

a lot
none

none

none
some

a lot

a lot

(path expressions)

Figure 4: Focus of published solutions

12

solved and the part of the problem handled within that scenario. We will look at each

of these in more detail in the rest of this section. In addition to the characteristics from

our broad classification, the table also reports, for each solution, the class of schema con-

sidered, the class of XML queries handled, whether it uses the “global as view” or “local

as view” approach (if the XML publishing problem is addressed), and what subproblems

are solved. A summary of the focus of published solutions is given in Figure 4.

The rest of this chapter is organized as follows. We survey known algorithms in the

published literature for XML-publishing, schema-oblivious XML storage and schema-

based XML storage in Sections 2.1, 2.2, and 2.3 respectively. For each scenario, we

first survey the solutions that have been proposed in published literature, and discuss

problems that remain open. When we look at XML support in commercial RDBMS as

part of this survey, we will restrict our discussion to those features that are relevant to

XML-to-SQL query translation.

2.1 XML Publishing

The following tasks arise in the context of allowing applications to query existing rela-

tional data as if it were XML:

• Defining an XML view of relational data.

• Materializing the XML view.

• Evaluating an XML query by composing it with the view.

In XML query languages like XPath and XQuery, part of the query evaluation may

involve reconstructing the subtrees rooted at certain elements, which are identified by

other parts of the query. Notice how materializing an XML view is a special case of this

13

situation, where the entire tree (XML document) is reconstructed. In general, solutions

to materialize an XML view are used as a subroutine during query evaluation.

2.1.1 XML View Definition

In XPeranto [SKS+01, SSB+00], SilkRoute [FMS01, FTS00] and Rolex [BGK+02], the

view definition languages permit definition of tree XML views over the relational data.

In [BCF+02], XML views corresponding to recursive XML schema (recursive XML view

schema) are allowed.

In Oracle XML DB [OXD] and Microsoft SQL Server 2000 SQLXML [SXM], an

annotated XSD XML schema is used to define the XML view. Recursive XML views are

supported in XML DB. In SQLXML, along with non-recursive views, there is support for

a limited number of depths of recursion using the max-depth annotation. In IBM DB2

XML Extender [DB2], a Document Access Definition (DAD) file is used to define a non-

recursive XML view. IBM XML for Tables [XTa] provides an XML view of relational

tables and is based on the Xperanto [SSB+00] project.

In the above approaches, the XML view is defined as a view over the relational

schema. In a data integration context, Agora [MFK01] uses the local-as-view approach

(LAV), where the local source’s schema are described as views over the global schema.

Toward this purpose, they describe a generic, virtual relational schema closely modeling

the generic structure of an XML document. The local relational schema is then defined as

views over this generic, virtual schema. Contrast this with the other approaches where

the XML view (global schema) is defined as a view over the relational schema (local

schema). This is referred to as the global-as-view approach (GAV).

14

In Mars [DT03a], the authors consider the scenario where both GAV-style and LAV-

style views are present. The focus of [DT03a, MFK01] is on non-recursive XML view

schema.

2.1.2 Materializing the XML View

In XPeranto [SSB+00], the XML view is materialized by pushing down a single “outer

union” query into the relational engine, whereas in SilkRoute [FMS01], the middleware

system issues several SQL queries to materialize the view. In [BCF+02], techniques for

materializing a recursive XML view schema are discussed. They argue that since SQL

supports only linear recursion, the support for recursion in SQL is insufficient for this

purpose. Instead, the recursive materialization is performed in middleware by repeatedly

unrolling a fixed number of levels at a time. We discuss this in more detail in Section 2.1.5,

where we show that the limited support for recursion in SQL is not an obstacle in handling

recursive XML views. Later in Chapter 3.2.4, we present an algorithm to materialize

recursive XML views using a single SQL query.

2.1.3 Evaluating XML Queries

In XPeranto [SKS+01], a general framework for processing arbitrarily complex XQuery

queries over XML views is presented. They describe their XQGM query represen-

tation, an extension of a SQL internal query representation called the Query Graph

Model (QGM). The XQuery query is converted to an XQGM representation and com-

posed with the view definition. Rewrite optimizations are performed to eliminate the

construction of intermediate XML fragments and to push down predicates. The modi-

fied XQGM is translated into a single SQL query to be evaluated inside the relational

15

engine.

In SilkRoute [FMS01], a sound and complete query composition algorithm is presented

for evaluating a given XML-QL query over the XML view. An XML-QL query consists

of patterns, filters and constructors. Their composition technique evaluates the patterns

on the view definition at compile-time to obtain a modified XML view, and the filters

and constructors are evaluated at run-time using the modified XML view.

In [JMS02], the authors present an algorithm for translating XSLT programs into

efficient SQL queries. The main focus of the paper is bridging the gap between XSLT’s

functional, recursive paradigm, and SQL’s declarative paradigm. They also identify a new

class of optimizations that need to be done either by the translator or by the relational

engine, in order to optimize the kind of SQL queries that result from such a translation.

In Rolex [LBN03], a view composition algorithm for composing an XSLT stylesheet with

an XML view definition to produce a new XML view definition is presented. They

differ from [JMS02] mainly in the following ways: (1) they produce an XML view query

rather than an SQL query, (2) they address additional features of XSLT like priority and

recursive templates.

As part of the Rainbow system, in [ZPR02], the authors discuss processing and op-

timization of XQuery queries. They describe the XML Algebra Tree (XAT) algebra for

modeling XQuery expressions, propose rewriting rules to optimize XQuery queries by

canceling operators and describe a cutting algorithm that removes redundant operators

and relational columns from the XAT. However, the final XML to SQL query generation

is not discussed.

We note here that in Rolex [BGK+02], the world view is changed so that a relational

system provides a virtual DOM interface to the application. The input in this case is not

a single XML query but a series of navigation operations on the DOM tree that needs to

16

be evaluated on the underlying relational data.

The Agora [MFK01] project uses an LAV approach and provides an algorithm for

translating XQuery FLWR expressions into SQL. Their algorithm has two main steps —

translating the XML query into a SQL query on the generic, virtual relational schema,

and rewriting this SQL query into a SQL query over the real relational schema. In the

first step, they cross the language gap from XQuery to SQL, and in the second step they

use prior work on answering queries using views.

In MARS [DT03a, DT03b], a technique for translating XQuery queries into SQL is

given, when both GAV-style and LAV-style views are present. The basic idea is to compile

the queries, views and constraints from XML into the relational framework, producing

relational queries and constraints. Then, a Chase and BackChase (C&B) algorithm is used

to find all minimal reformulations of the relational queries under the relational integrity

constraints. Using a cost-estimator, the optimal query among the minimal reformulations

is obtained, which can then be executed. The MARS system also exploits integrity

constraints on both the relational and XML data. The system achieves the combined

effect of rewriting-with-views, composition-with-views, and query minimization under

integrity constraints.

Oracle XML DB [OXD] provides an implementation of the majority of the operators

that will be incorporated into the forthcoming SQL/XML standard [INC]. SQL/XML

is an extension to SQL, using functions and operators, to include processing of XML

data in relational stores. The SQL/XML operators [EM02] make it possible to query

and access XML content as part of normal SQL operations and also provide methods for

generating XML from the result of an SQL Select statement. The SQL/XML operators

allow XPath expressions to be used to access a subset of the nodes in the XML view.

In XML DB, the approach is to translate the XPath expression into an equivalent SQL

17

query through a query re-write step that uses the XML view definition. In the current

release (Oracle9i Release 2), simple path expressions with no wild cards or descendant

axes (//) get rewritten. Predicates are supported and get rewritten into SQL predicates.

The XPath axes supported are the child and attribute axis.

Microsoft SQL Server 2000 SQLXML [SXM] supports the evaluation of XPath queries

over the annotated XML Schema. The XPath query together with the annotated schema

is translated into a FOR XML explicit query that only returns the XML data that is

required by the query. Here, FOR XML is a new SQL select statement extension provided

by SQL Server. In the current release (SQLXML 3.0), the attribute, child, parent and

self axes are supported, along with predicates and XPath variables.

In IBM DB2 XML Extender [DB2], powerful user-defined functions (UDFs) are pro-

vided to store and retrieve XML documents in XML columns, as well as to extract

XML element or attribute values. Since it does not provide support for any XML query

languages, we will not discuss XML Extender any further in this discussion.

2.1.4 Open Problems

We see that a number of open problems remain. We describe them below and also point

out how some of these issues are addressed in this thesis.

1. With the exception of [BCF+02, OXD], the above work considers only non-recursive

XML views of relational data. While Oracle XML DB [OXD] supports path ex-

pression queries with the child and attribute axes over recursive views, it does not

support the descendant (//) axis. Translating XML queries (with the // axis) over

recursive view schema remains open. In [BCF+02], the problem of materializing

recursive XML view schema is considered. However, as we have mentioned, that

18

work does not use SQL support for recursion, simulating recursion in middleware

instead. The reason for this given by the authors is that the limited form of re-

cursion supported by SQL cannot handle the forms of recursion that arise in with

recursive XML schema. We return to this question at the end of this section. The

following were open questions in the context of SQL support for recursion:

• What is the class of queries/view schema for which the current support for

recursion in SQL are adequate?

• If there are cases for which SQL support for recursion is inadequate, how do

we best leverage this support? (Instead of completely simulating recursion in

middleware.)

In Chapter 3, we present an algorithm to translate path expression queries into

SQL, when the XML schema and the XML query may be recursive. We also show

how recursive XML views can be materialized using a single SQL query. This

demonstrates that SQL support for recursion is sufficient for the class of GAV-style

views considered in the published literature.

2. Any query translation algorithm can be evaluated by two metrics: its functionality,

in terms of the class of XML queries handled; and its performance, in terms of the

efficiency of the resulting SQL query. Most of the translation algorithms have not

been evaluated thoroughly by either metric, which gives rise to a number of open

research problems.

• Functionality: Among the GAV-style approaches, except XPeranto, all the

above discussed work deals with languages other than XQuery. Even in the

case of XPeranto, the class of XQuery handled is unclear from [SKS+01]. It

19

would be interesting to precisely characterize the class of XQuery queries that

can be translated by the methods currently in the literature.

• Performance: There has been almost no emphasis on the quality of the SQL

queries produced by the query translation algorithms.

In Chapter 5, we look at the quality of the SQL queries output by previously

published query translation algorithms. We see that there is a lot of scope for

improving the quality of the SQL queries and present an algorithm that translates

path expression queries into efficient SQL queries.

3. GAV vs. LAV: While for the GAV-style approaches, XML-to-SQL query transla-

tion corresponds to view composition, for the LAV-style approaches it corresponds

to answering queries with views. It is not clear for what class of XML views

the equivalent query rewriting problem has published solutions. As pointed out

in [MFK01], state-of-the-art query rewriting algorithms for SQL semantics do not

efficiently handle arbitrary levels of nesting, grouping, etc. Similarly, [DT03a] works

under set-semantics and so cannot handle certain classes of XML view schema and

aggregation in XML queries. Comparing across the three different approaches —

GAV, LAV and GAV+LAV, in terms of both functionality and performance is an

open issue.

2.1.5 Recursive XML View Schema and Linear Recursion in

SQL

In this section we return to the problem of recursive XML view schema and whether or

not they can be handled by the support for recursion currently provided by SQL.

20

Consider the problem of materializing a recursive XML view schema. In [BCF+02],

it is mentioned that even though SQL supports linear recursion, this is not sufficient for

materializing a recursive XML view. The reason for this is not elaborated in the paper.

The definition of an XML view has two main components to it: the view definition

language and the XML schema of the resulting view. Hence, it must be the case that

either the XML schema of the view or the view definition language is more complex

than what SQL linear recursion can support. Clearly, if the view definition language is

complex enough (say the parent-child relationship is defined using non-linear recursion),

linear recursion in SQL will not suffice. However, most view definition languages proposed

define parent-child relationships through much simpler conditions (such as conjunctive

queries). The question arises whether SQL linear recursion is sufficient for these view

definition languages, for arbitrary XML schema.

In [Cho02], the notion of linear and non-linear recursive DTDs is introduced. The nat-

ural question here is whether the notions of linear recursion in SQL and DTDs correspond.

It turns out that the definition of non-linear recursive schema in [Cho02] has nothing to

do with the traditional Datalog notion of linear and non-linear recursion [AHV95]. For

example, consider a classical part-subpart database. Suppose that the DTD rule for a

part element is: part → pname, part*.

According to [Cho02], this is a non-linear recursive rule as a part element can derive

multiple part sub-elements. Hence, the entire DTD is non-linear recursive. Indeed,

it can be shown that this DTD is not equivalent to any linear-recursive DTD. Now,

suppose the underlying relational schema has two relations, Part and Subpart with the

columns: (partid,pname) and (partid,subpartid) respectively. Now, the following SQL

query extracts all data necessary to materialize the XML view:

WITH RECURSIVE AllParts(partid,pname,rtolpath) as (

select partid,pname,’’

21

from Part(partid,pname)

union all

select P.partid,P.pname,rtolpath+A.partid

from AllParts A, Subpart S, Part P

where S.partid = A.partid and S.subpartid = P.partid)

select * from AllParts

In the above query, the root-to-leaf path is maintained for each part element through

the rtolpath column in order to extract the tree structure. Note however that the core

SQL query executes the following linear-recursive Datalog program.

AllParts(partid,pname) ← Part(partid,pname)

AllParts(subpartid,subpname) ←

AllParts(partid,pname) Subpart(partid,subpartid) Part(subpartid,subpname)

So, we see that a non-linear recursive rule in the DTD gets translated into a linear

recursive Datalog (SQL) rule. This implies that the notion of linear recursion in DTDs

and SQL (Datalog) do not have a direct correspondence. Hence, the class of XML

view schema/view definition languages for which SQL linear recursion is adequate to

materialize the resulting XML views needs to be examined.

2.2 Schema-Oblivious XML Storage

Recall that in this scenario, the goal is to find a relational schema that works for storing

XML documents independent of the presence or absence of a schema. The main problems

addressed in this sub-space are:

• Relational schema design: which generic relational schema for XML should be used?

• Query translation algorithms: given a decision for the relational schema, how do

22

we translate from XML queries to SQL queries.

2.2.1 Relational Schema Design

In STORED [DFS99], given a semi-structured database instance, a STORED mapping

is generated automatically using data mining techniques — STORED is a declarative

query language proposed for this purpose. This mapping has two parts: a relational

schema and an overflow graph for the data not conforming to the relational schema. We

classify STORED as a schema-oblivious technique since the data since data inserted in

the future is not required to conform to the derived schema. Thus, if an XML document

with completely different structure is added to the database, the system sticks to the

existing relational schema without any modification whatsoever.

In [FK99], several mapping schemes are proposed. According to the Edge approach,

the input XML document is viewed as a graph and each edge of the graph is repre-

sented as a tuple in a single table. In a variant known as the Attribute approach, the

edge table is horizontally partitioned on the tag name yielding a separate table for each

element/attribute. Two other alternatives, the Universal table approach and the Normal-

ized Universal approach are proposed but shown to be inferior to the other two. Hence,

we do not discuss these any further.

The binary association approach [SKWW00] is a path-based approach that stores

all elements that correspond to a given root-to-leaf path together in a single relation.

Parent-child relationships are maintained through parent and child ids.

The XRel approach [YASU01] is another path-based approach. The main difference

here is that for each element, the path id corresponding to the root-to-leaf path as well as

an interval representing the region covered by the element are stored. The latter is similar

23

to interval-based schemes for representing inverted lists proposed in [LM01, ZND+01].

In [TVB+02], the focus is on supporting order based queries over XML data. The

schema assumed is a modified Edge relation where the path id is stored as in [YASU01],

and an extra field for order is also stored. Three schemes for supporting order are

discussed.

In [DTCO03], all XML data is stored in a single table containing a tuple for each

element, attribute and text node. For an element, the element name and an interval

representing the region covered by the element is stored. Analogous information is stored

for attributes and text nodes.

There has been extensive work on using inverted lists to evaluate path expression

queries by performing containment joins [CVZ+02, JLWO03, LM01, BKS02, AKJP+02,

WJLY03, ZND+01]. In [ZND+01], the performance of containment algorithms in an

RDBMS and a native XML system are compared. All other strategies are for native

XML systems. In order to adapt these inside a relational engine, we would need to add

new containment algorithms and novel data structures. The issue of how we extend the

relational engine to identify the use of these strategies is open. In particular, the question

of how the optimizer maps SQL operations into these strategies needs to be addressed.

In [Gru02], a new database index structure called the XPath accelerator is proposed

that supports all XPath axes. The preorder and postorder ranks of an element are

used to map nodes onto a two-dimensional plane. The evaluation of the XPath axis

steps then reduces to processing region queries in this pre/post plane. In [GvKT03],

the focus is on exploiting additional properties of the pre/post plane to speedup XPath

query evaluation and the Staircase join operator is proposed for this purpose. The focus

of [Gru02, GvKT03] is on efficiently supporting the basic operations in a path expression

and is complementary to the XML-to-SQL query translation issue.

24

In Oracle XML DB [OXD] and IBM DB2 XML Extender [DB2], a schema-oblivious

way of storing XML data is provided, where the entire XML document is stored using

the CLOB data type. Since evaluating XML queries in this case is similar to XML

query processing in a native XML database and does not involve XML-to-SQL query

translation, we do not discuss this approach any further.

2.2.2 Query Translation

In STORED [DFS99], an algorithm is outlined for translating an input STORED query

into SQL. The algorithm uses inversion rules to create a single canonical data instance,

intuitively corresponding to a schema. The structural component of the STORED query

is then evaluated on this instance to obtain a set of results, for each of which a SQL

query is generated incorporating the rest of the STORED query.

In [FK99], a brief overview of how to translate the basic operations in a path expres-

sion query to SQL is provided. The operations described are (1) returning an element

with its children, (2) selections on values, (3) pattern matching, (4) optional predicates,

(5) predicates on attribute names and (6) regular path queries which can be translated

into recursive SQL queries.

The binary association method [SKWW00] deals with translating OQL-like queries

into SQL. The class of queries they consider roughly corresponds to branching path

expression queries in XQuery.

In XRel [YASU01], a core part of XPath called XPathCore is identified and a detailed

algorithm for translating such queries into SQL is provided. Since with each element, a

path id corresponding to the root-to-leaf path is stored, a simple path expression query

like book/section/title gets efficiently evaluated. Instead of performing a join for each

25

step of the path expression, all elements with a matching path id are extracted. Similar

optimizations are proposed for branching path expression queries exploiting both path ids

and the interval encoding. We examine this in more detail in Section 2.2.3.

In [TVB+02], algorithms for translating order based path expression queries into SQL

are provided. They provide translation procedures for each axis in XPath, as well as for

positional predicates. Given a path expression, the algorithm translates one axis at a

time in sequence.

The dynamic intervals approach [DTCO03] deals with a larger fragment of XQuery

with arbitrarily nested FLWR expressions, element constructors and built-in functions

including structural comparisons. The core idea is to begin with static intervals for each

element and construct dynamic intervals for XML elements constructed in the query.

Several new operators are proposed to efficiently implement the generated SQL queries

inside the relational engine. These operators are highly specialized and are similar to

operators present in a native XML engine.

2.2.3 Summary and Open Problems

The various schema-oblivious storage techniques can be broadly classified as:

1. Id-based: each element is associated with a unique id and the tree structure of the

XML document is preserved by maintaining a foreign key to the parent.

2. Interval-based: each element is associated with a region representing the subtree

under it.

3. Path-based: each element is associated with a path id representing the root-to-leaf

path in addition to an interval-based or id-based representation.

We organize the rest of the discussion by considering different classes of queries.

26

Reconstructing an XML sub-tree

This problem is largely solved. In the schema-oblivious scenario, the sub-tree correspond-

ing to an XML element could potentially span all tables in the database. Hence, while

solutions that store all the XML data in only one table need to process just that table,

other solutions will need to access all tables in the database.

For id-based solutions, a recursive SQL query can be used to reconstruct a sub-tree.

For interval-based solutions, a non-recursive query with interval predicates is sufficient.

Simple Path Expression Queries

We refer to the class of path expression queries without predicates as simple path ex-

pression queries. For interval-based solutions, evaluating simple path expressions en-

tails performing a range join for each step of the path expression. For example the

query book/author/name translates into a three-way join. For id-based solutions, each

parent-child(/) step translates into an equijoin, whereas recursion in the path expression

(through //) requires a recursive SQL query. For path-based solutions, the path id can

be used to avoid performing one join per step of the path expression.

Path Expression Queries With Predicates

Predicates can be existential path expression predicates, or positional predicates. The

latter is dealt with in [TVB+02, YASU01]. We focus on the former for the rest of the

section.

For id-based and interval-based solutions, a straightforward method for query trans-

lation is to perform one join per step in the path expression [DFS99, FK99, ZND+01].

With path ids, however, it is conceivable that certain joins can be skipped, just as they

27

can be skipped for some simple path expressions. A detailed algorithm for doing so is

proposed in [YASU01]. That algorithm is correct for nonrecursive data sets — it turns

out that it does not give the correct result when the input XML data has an ancestor

and descendant element with the same tag name.

More Complex XQuery queries

The only published work that we are aware of that deals with more general XQuery

queries is [DTCO03]. The main focus of the paper is on issues such as structural equality

in FLWR where clauses, full compositionality of XML query expressions (in particular,

the possibility of nesting FLWR expressions within functions), and the need for con-

structed XML documents representing intermediate query results. As mentioned earlier,

special purpose relational operators are proposed for better performance. We note that

without these operators, the performance of their translation is likely to be inferior even

for simple path expressions. As an example, using their technique, the path expression

/site/people is translated to an SQL query involving five temporary relations created us-

ing the With clause in SQL99, three of which involve correlated subqueries. To conclude,

excepting [DTCO03], all prior work has been on translating path expression queries

into SQL. Using the approach proposed by [DTCO03], we observe that with respect

to function, a large fragment of XQuery can be handled using dynamic intervals in a

schema-oblivious fashion. However, without modifications to the relational engine, its

performance may not be acceptable.

28

2.3 Schema-Based XML Storage

In this section, we discuss approaches to storing XML in relational systems that make

use of a schema for the XML data in order to choose a good relational schema. The main

problems to be addressed in this subspace are

1. Relational schema selection — given an XML schema (or DTD), how should we

choose a good relational schema and XML-to-relational mapping.

2. Query translation — having chosen an XML-to-relational mapping, how should we

translate XML queries into SQL.

2.3.1 Relational Schema Selection

In [STZ+99], three techniques for using a DTD to choose a relational schema are proposed

— basic inlining, shared inlining, and hybrid inlining. The main idea is to inline all

elements that occur at most once per parent element in the parent relation itself. This

is extended to handle recursive DTDs.

In [LC00], a constraint preserving algorithm for transforming an XML DTD to a rela-

tional schema is presented. The authors chose the hybrid inlining algorithm from [STZ+99]

and showed how semantic constraints can be generated.

In [BFRS02], the problem of choosing a good relational schema is viewed as an opti-

mization problem: given an XML schema, an XML query workload, and statistics over

the XML data choose the relational schema that maximizes query performance. They

give a greedy heuristic for this purpose.

In [HSJJ02, ML03], the theory of regular tree grammars is used to choose a relational

schema for a given XML schema.

29

In [CDZ02], a storage mapping that takes into account the key and foreign key con-

straints present in an XML schema is presented.

There has been some work on using object-relational DBMS to store XML documents.

In [KM00, RP02], parts of the XML document are stored using an XML ADT. The focus

of these papers is to determine which parts of the DTD must be mapped to relations and

which parts must be mapped to the XML ADT.

In Oracle XML DB [OXD], an annotated XML Schema is used to define how the

XML data is mapped into relations. If the XML Schema is not annotated, XML DB uses

a default algorithm to decide the relational schema based on the XML Schema. This

algorithm handles recursive XML schemas.

A similar approach is made in Microsoft SQL Server 2000 SQLXML [SXM] and

IBM DB2 XML Extender [DB2], but they only handle non-recursive XML schemas.

2.3.2 Query Translation

In [STZ+99], the general approach to translating XML-QL queries into SQL is illustrated

through examples without any algorithmic details.

As discussed in [SSK+01], it is possible to use techniques from the XML publishing

domain in the XML storage domain. To see this, notice that once XML data is shredded

into relations, we can view the resulting data as if it were pre-existing relational data.

Now by defining a reconstruction view that mirrors the XML-to-relational mapping used

to shred the data, the query translation algorithms in the XML publishing domain are

directly applicable. Indeed, this is the approach adopted in [BFRS02]. While this ap-

proach has the advantage that solutions for XML publishing can be directly applied to

the schema-based XML storage scenario, it has one important drawback. In the XML

30

storage scenario, the data in the RDBMS originates from an XML document and there

is some semantic information associated with this (like the tree structure of the data

and the presence of a unique parent for each element). This semantic information can

be used by the XML-to-SQL translation algorithm to generate efficient SQL queries. By

using solutions from the XML publishing scenario, we are potentially making the use

of this semantic information harder. We discuss this in more detail with an example in

Section 2.3.3.

Note that even the schema-oblivious subspace can be dealt with in an analogous

manner as mentioned in [SSK+01]. However, in this case, the reconstruction view is

fairly complex — for example, the reconstruction view for the Edge approach is an

XQuery query involving recursive functions [SSK+01]. Since there was no published

query translation algorithm for recursive XML view schemas (Section 2.1.4) prior to the

work we present in Chapter 3, this approach for the schema-oblivious scenario needs to

be explored further.

In [TVB+02], as we mentioned in Section 2.2.2, the focus is on supporting order-

based queries. The authors give an algorithm for the schema-oblivious scenario, and

briefly mention how the ideas can be applied with any existing schema-based approach.

In Oracle XML DB [OXD], Microsoft SQL Server 2000 SQLXML [SXM] and IBM DB2

XML Extender [DB2], the XML Publishing and Schema-Based XML Storage scenarios

are handled in an identical manner. So, the description of their approaches for the

XML Publishing scenario presented in Section 2.1.3 holds for the Schema-Based XML

Storage scenario. To summarize, XML DB supports branching path expression queries

with the child and attribute axes, while SQLXML supports the parent and self axes as

well. XML Extender does not support any XML query language. Instead, it provides

user-defined functions to manipulate XML data.

31

In [KCN03], the problem of finding optimal relational decompositions for XML work-

loads is considered in a formal perspective. Using three XML-to-SQL query translation

algorithms for path expression queries over a particular family of XML schemas, the inter-

action between the choice of a good relational decomposition and a good query translation

algorithm is studied. The authors showed that the query translation algorithm and the

cost model used play a vital role not just in the choice of a good decomposition, but also

in the complexity of finding the optimal choice.

2.3.3 Discussion and Open Problems

Prior to the work presented in this thesis, there was no published query translation

algorithm for the schema-based XML storage scenario. One alternative is to reduce this

problem to XML publishing (using reconstruction views). Hence, from a functionality

perspective, whatever is open in the XML publishing case is open here also. In particular,

the entire problem was open when the input XML schema is recursive. Even for non-

recursive XML schemas, a lot of interesting questions arise when the XML schema is not a

tree. For example, if there is recursion in an XPath query through //, the straightforward

approach of enumerating all satisfying paths using the schema and handling them one

at a time is no longer an efficient approach. If we wish to reduce the problem to XML

publishing, the only way to use an existing solution is to unfold the DAG schema into

an equivalent tree schema.

In this thesis, we address some of the above issues. In Chapter 3, we present a generic

algorithm to translate path expression queries into SQL that works for a large class of

XML-to-Relational mappings. This algorithm handles recursion in the XML schema and

XML query. It also addresses some of the issues that arise for recursive queries over

32

non-recursive schema.

From a performance perspective, just like in the XML Publishing scenario, there has

been no focus on the quality of the final SQL queries produced. We now examine the

translation problem from a performance perspective and show how there is a lot of scope

for improving the quality of the SQL queries.

Goals of XML-to-SQL Query Translation

When an XML document is shredded into relations, there is inherent semantic informa-

tion associated with the relation instances given that the source is XML. For example,

consider the XML schema shown in Figure 5. One candidate relational decomposition is

also shown in the figure. The mapping is illustrated through annotations on the XML

schema. Each node is annotated with the corresponding relation name. Leaf nodes are

annotated with the corresponding relational column as well. Parent-child relationships

are represented using id and parentid columns. The figure element has two potential

parents in the schema. In order to distinguish between them, a parentcode field is present

in the Figure relation. In this case, notice that there is inherent semantics associated

with the columns parentid and parentcode given that they represent the manner in which

the tree structure of the XML document is preserved.

Given this semantics, when an XML query is posed, there are several equivalent SQL

queries, which are not necessarily equivalent without the extra semantics that come from

knowing that the relations came from shredding XML. Consider the following query: find

captions for all figures in top level sections. This can be posed as an XPath query XQ =

/book/section/figure/caption. There are two equivalent ways in which we could translate

XQ into SQL. They are shown below.

33

* *

*

*

*

caption image

figure

section

book

title

4

Book1

title2 author3

Book.title

7

10

title

section Figure
top−section.title

nested−section.title

Author

e2 : parentcode = 2

e1 : parentcode = 1

Figure.caption Figure.image

top−section

e1

8

9

5 6

nested−section

e2

Book Author

top−section nested−section

titleid id parentid ...

id parentid titleid parentid title

id parentid parentcode caption image
Figure

Figure 5: Sample XML-to-Relational mapping schema

SQ1: SQ2:

select caption select caption

from figure from figure f, top-section ts, book b

where parentcode=1 where f.parentcode=1 and f.parentid=ts.id

and ts.parentid=b.id

While SQ1 merely performs a scan on the figure table, SQ2 roughly performs a join for

each step of the path expression. SQ2 is what we would obtain by adapting techniques

from XML publishing. Queries SQ1 and SQ2 are equivalent only because of the seman-

tics associated with the parentcode and parentid columns and would not be equivalent

otherwise.

Now, since the XML-to-SQL translation algorithm is aware of the semantics of the

XML-relational mapping, it is better placed than the relational optimizer to find the

best SQL translation. Hence, from a performance perspective, the problem of effectively

exploiting the XML schema and the XML-relational mapping during query translation

is an interesting direction to pursue.

In Chapter 4, we present our approach for translating path expression queries into

efficient SQL queries by making intelligent use of the additional semantic information.

34

Enhancing Schema-Based solutions with Intervals/Path-ids

All the schema-based solutions proposed in published literature have been id-based. In

the schema-oblivious scenario, it has been shown that using intervals and path-ids can be

helpful in XML-to-SQL query translation. The problem of augmenting the schema-based

solutions with some sort of intervals and/or path-ids is an interesting open problem. Note

that while any id-based storage scheme can be easily augmented by adding either a path-

id column or an interval for each element, developing query translation algorithms that

use both the schema information and the interval/path information is non-trivial.

2.4 Summary

To conclude, we refer again to the summary in Table 1. From that table, we see that

the community has made varying degrees of progress for different subproblems in the

XML to SQL query translation domain. We next summarize this progress, in terms of

functionality.

• In the XML-Publishing scenario, techniques have been proposed for handling com-

plex query languages like XQuery and XSLT over tree XML view schema. However,

very little progress has been made on handling recursive XML view schema. Even

for tree XML view schema, the subset of XQuery handled by current solutions is

not clear.

• In the schema-oblivious XML storage scenario, excepting [DTCO03], the focus has

been on path expression queries.

• In the schema-based XML storage scenario, prior to the work presented in this

thesis, there was no published query translation algorithm. The only approach

35

known to us is through a reduction to the XML publishing scenario.

In this thesis, we address some of the open issues for the schema-based XML stor-

age and XML publishing scenarios. In particular, we present an algorithm for handling

recursive XML schemas and also present techniques for using semantic information to

generate more efficient SQL queries. For the latter, we need to develop different tech-

niques for the two scenarios, as semantic information is available in different ways in the

two cases.

36

Chapter 3

Schema-based XML storage:

Recursive Schemas and Queries

In this chapter, we consider the XML-to-SQL query translation problem for schema-

based XML storage. As we saw in the previous chapter, prior to the work presented

in this chapter, there was no published XML-to-SQL query translation algorithm that

handled recursive XML schemas. Even for non-recursive schema, recursive XML queries

were handled in a simplistic fashion.

We consider the translation of path expression queries into SQL in the presence of

recursion in the schema and queries. We present an algorithm that performs this trans-

lation over a general class of XML-to-Relational mappings, which includes all techniques

proposed in literature. Some of the salient features of this algorithm are: (i) It translates

a path expression query into a single SQL query, irrespective of how complex the XML

schema is, (ii) It uses the “with” clause in SQL99 to handle recursive queries even over

non-recursive schemas, (iii) It reconstructs recursive XML subtrees with a single SQL

query and (iv) It shows that the support for linear recursion in SQL99 is sufficient for

handling path expression queries over arbitrarily complex recursive XML schema.

We first describe the class of XML-to-Relational mappings in Section 3.1. We then

present the algorithm to translate path expression queries into SQL in Section 3.2 and

discuss related work in Section 3.3.

37

* *

*

*

*

*

caption image

figure

caption image

figure

section

book

title p

4

65

Book1

title2 author3 Section
Book.title

8

12 13

ptitle9 10

section
7

11

14 15

Section Figure

Figure

Section.title

Section.title

Figure.image

Para

Author

e1

e2

e2 : parentcode = 2

e1 : parentcode = 1

Figure.caption

Para

Figure 6: Sample XML-to-Relational mapping schema

3.1 Formal Model

In order to express our translation techniques, we need a representation for XML to Re-

lational mappings. Any reasonable representation would serve our purpose; for concrete-

ness, in this section we present a formal way to represent XML to Relational mappings

that covers all the lossless mapping techniques proposed in existing literature.

3.1.1 XML Schema Graph

An XML schema can be viewed as a directed graph SG = (V,E), where V is the set of

vertices and E is the set of edges. The vertices correspond to elements and attributes

and the edges represent containment (parent-child) relationships. The vertices are labeled

with the name of the element or attribute. The edges have an additional multiplicity

label that can take a value from {?, ∗,+, ε}. A sample non-recursive schema graph is

given in Figure 6. With each schema node, we associate an integer to identify the node.

If the schema graph is a tree, then we call it a Tree schema graph. If it is acyclic, we

call it a DAG schema graph (directed acyclic graph). Otherwise, it is a recursive schema

graph.

38

3.1.2 XML to Relational Mappings

We represent the mapping between XML elements and relational columns through an-

notations on the schema graph. For example, one way of mapping the XML schema in

Figure 6 into relations results in the following relational schema.

• Book (id, title, . . .)

• Author (id, parentid, . . .)

• Section (id, parentid, parentcode, title, . . .)

• Para (id, parentid, . . .)

• Figure (id, parentid, caption, image, . . .)

The annotations on the schema graph in Figure 6 correspond to this decomposition. Each

non-leaf (internal) node in the schema is associated with a relation name (shown next

to the node). Each leaf node is associated with a column name as well. The relational

schema into which we shred the XML data is the set of relations that occur in the node

annotations. Each relation has an id field, which is the primary key. In addition, parentid

and parentcode fields are included as required to preserve document structure.

A node annotation for a leaf node n, Annot(n), is of the form R.C, where R denotes

a relation and C denotes a column in R. A node annotation for a non-leaf node n,

Annot(n), is of the form R indicating a relation name R. If a node n in the schema has

multiple in-coming edges, then each of these edges is annotated with a condition of the

form parentcode = val, indicating a code for the parent of an element matching n in the

document. For a relational column R.C, we define LeafNodes(R.C) to be the set of leaf

schema nodes annotated with R.C.

39

While the above description defines the syntax of an XML-to-Relational mapping,

we next describe the associated semantics. A shredding algorithm uses the XML-to-

Relational mapping to convert XML data into relational data. We say that the shredding

algorithm respects a mapping if it satisfies the following properties:

• The shredding algorithm actually shreds the XML data into relations based on the

annotations of the mapping.

• All the XML data is completely shredded into relations and no part of the XML

data is stored multiple times.

• No data, other than what which is present in the XML document, is inserted into

the relations mentioned in the mapping.

• Enough information is maintained in the relational data to enable reconstruction

of the original XML data.

Every decomposition scheme we have encountered in the literature satisfies the above

properties.

We say that the lossless from XML constraint is satisfied if all the relational data

was loaded by a shredding algorithm that respects the XML-to-Relational mapping.

This implies that the relational data set resulted from the lossless shredding of an XML

document that conformed to a given XML schema.

For example, consider the following shredding algorithm A that satisfies the above

properties. Given an XML documentD1 conforming to the schema in Figure 6, Algorithm

A creates (and inserts into the RDBMS) relational tuples in the following fashion. The

algorithm processes the elements in the order in which they appear in the document. For

the root book element, a tuple is inserted into the Book relation. The value of the title

column of this tuple is set to the value of the title subelement. Then for each author child

40

element, a tuple is inserted into the Author relation with the parentid column having

the value of the id field of the book tuple. Similarly, for each section child element, a

tuple is inserted into the Section relation with the parentid column having the value

of the id field of the book tuple. Also, the parentcode column’s value for the tuples

corresponding to the section elements is set to 1 to capture the edge annotation e1.

The value of the title column is set to the value of the corresponding title elements

(corresponding to schema node 5). For each child element of the section elements,

the same process is continued recursively and tuples are inserted into the corresponding

relations (Para, Section and Figure).

The above definition of the “lossless from XML” constraint is complete if we formally

define the notion of when a shredding algorithm respects a mapping. We introduce some

terminology for this purpose.

With every path p =<n1, . . . , nk>, we associate an SQL query, SQL(p) as given in

Figure 7. Intuitively, the SQL query retrieves from the relational shredding the informa-

tion that appeared in portions of the original document that match the path p. With

a leaf (schema) node l, we associate a root-to-leaf SQL query, RtoL(l) as follows. Let

the root-to-leaf paths to l be p1, . . . , pm. Then, RtoL(l) = ∪m
i=1SQL(pi). The union

operation here preserves duplicates. If the mapping schema is recursive, the number of

root-to-leaf paths will be infinite for certain leaf nodes and the RtoL query for such nodes

is the union of infinitely many queries.

For example, for the schema in Figure 6, RtoL(9) is given below.

select S2.title

from Book B, Section S1, Section S2

where B.id = S1.parentid and S1.parentcode = 1

and S1.id = S2.parentid and S2.parentcode = 2

41

procedure SQL(path p)
begin

add Annot(n1) to the From clause
for (i from 2 to k) do

Let e be the edge from ni−1 to ni

if (Annot(ni) is different from Annot(ni−1)) then
add Annot(ni) to the From clause
add Annot(ni−1).id = Annot(ni).parentid

to the Where clause
else if (Annot(e) is of the form parentcode = val) then

add Annot(ni) to the From clause
if (Annot(e) is of the form C = val) then

/* C may be parentcode */
Let the last relation added to the From clause be R
add R.C = val to the Where clause

Add Annot(nk) = R.C to the Select clause
/* if there are multiple instances of the relation R,

use the last instance */
end

Figure 7: SQL Query associated with a path p in the XML schema

Again, intuitively, RtoL(l) retrieves from the relations the information that would be

found in the original XML document by starting at the route and traversing all paths

that match l.

A shredding algorithm respects an XML-to-Relational mapping,T,if for every collec-

tion of XML documents conforming to the given XML schema, the algorithm loads data

into the relational database such that the following properties hold.

P1: For each root-to-leaf path p, SQL(p) returns the values of all elements that satisfy

p.

P2: For every relational column R.C with LeafNodes(R.C) 6= φ, let Q be the SQL query:

“select R.C from R”. Then, Q =
⋃

l∈LeafNodes(R.C) RtoL(l)

P3: For each path p ∈ T ending in a leaf node, let P denote the set of root-to-leaf

paths p′ ∈ T such that the relation names annotating the nodes in p match the

42

annotations for some suffix of p′. Then, SQL(p) ⊆
⋃

p′∈P SQL(p′).

All the above comparisons are under multiset semantics. Every shredding algorithm

we have encountered in the literature, including the shredder we presented above, satisfies

the above properties.

Notice how the shredding algorithm A needs to be validated just once to make sure

that it shreds data respecting any given XML-to-Relational mapping. Once this is done,

as long as all the data (in the relations appearing in the mapping) is loaded by the

algorithm A , the “lossless from XML” constraint is guaranteed to hold.

In general, we allow two additional features in the mapping: selection conditions as

edge annotations and presence of dummy nodes. Any edge e from n1 to n2 may have an

optional annotation of the form C = val, where C is a column in the relation Annot(n1).

In XML documents, certain elements may be introduced just to group elements that

appear beneath them. We refer to such schema nodes as dummy nodes. For example,

we could have a dummy Sections node in-between nodes 1 and 4 to group together all

the sections in a book. An algorithm that shreds this document into relations need not

take any action on finding a dummy node. We can detect that a shredding algorithm has

considered a node n to be a dummy node by the fact that (1) n is a non-leaf node, (2) n

is annotated with the same relation as its parent, (3) each in-coming edge is labeled ε

and, (4) each in-coming edge has a null annotation. For ease of exposition, we assume

that any non-leaf node that is not a dummy node has an elemid attribute that uniquely

identifies an element within an XML document.

43

3.1.3 Path Expression Queries

A simple path expression (SPE) can be denoted as “s1 l1 s2 l2 . . . sk lk,” where each of

the li is a tag name and each of the si is either / (denoting a parent-child traversal) or

// (denoting an ancestor-descendant traversal). Each si li pair is a navigation step of

the path expression and k is the number of steps in the query.

A generalized simple path expression (GSPE) can be denoted as “p1 p2 . . . pk” where

each pi is of the form p1
i |p

2
i . . . p

ki

i (ki ≥ 1). Here, each pj
i is a simple path expression.

Each pi thus denotes a disjunction of simple path expressions. Also, the special tag name

‘*’ matches any tag name in a GSPE query.

The result of a generalized path expression is the set of all nodes that match the path

expression query. This is similar to XPath semantics, where the result is an ordered list

of matching nodes. We assume an unordered data model in this paper and discuss how

our algorithm can be modified to work in an ordered model in Section 3.2.4. There are

two possible ways to return the set of matching nodes:

• Select mode: For leaf nodes, this corresponds to returning the values of the el-

ements. For non-leaf nodes, we return the value of the corresponding elemid at-

tributes.

• Reconstruct mode: For leaf nodes, this corresponds to returning the values of the

elements. For non-leaf nodes, we reconstruct the subtree rooted at the element.

3.2 Query Translation Over Recursive XML schemas

In this section, we present an XML-to-SQL query translation algorithm over recursive

mapping schemas for the class of generalized simple path expression (GSPE) queries

44

procedure XML to SQL translation(Q, S)
begin
1. Perform PathId using the mapping S and query Q.

Let SCP be the resultant cross-product schema.
2. Construct a SQL query corresponding to SCP .

Figure 8: Query Translation Algorithm handling recursion in XML schema and query

section

title

section

7
title

book
1

9

5

4

S AS SQ

section

1

4

7

book

section

5

9

section
title

title

0,0

title

0

section

1,1

4,2

5,3

title

section
4,2

5,3

book
1,1

SSQ

1

2

section

book

3

title

AQ

0

book

Q: /book/section/title Q1: /book/section//title

0

1

2

section

book

3

title

AQ ASQ1

0,0

book

section

title

section

title

1,1

7,25,3

9,3

section

title

section
4,2

7,2

9,3

title
5,3

*
4,2

book
1,1

SSQ1

1

2

section

book

3

title

AQ1 A

0,0

book

section

title

section

title

1,1

7,25,3

9,3

section

title

section
4,2

7,2

9,3

title
5,3

*
4,2

book
1,1

S

0

A

Figure 9: Example to illustrate PathId

defined in Section 3.1.3. We will assume the “Select” mode in this section and present

our solution for the “Reconstruct” mode in Section 3.2.4.

Evaluating a path expression query over an XML-to-Relational mapping can be

viewed as a two stage process: (i) use the XML query to identify the paths in the

XML schema graph that satisfy the query, and (ii) use the annotations from the XML-

to-Relational mapping to construct an equivalent relational query. We refer to these

stages as the PathId and SQLGen stages respectively. We explain the two stages in the

next two subsections.

45

section

title

section

7
title

book
1

9

5

4

S

0

1

2

*

AQ

*

section

title

AS

section

1

4

7

book

section

5

9

section
title

title

0

Q2: //section//title

0,0

section

title

section

1,0

7,1

9,2

book

5,2

title

0

1

2

* − title

* − section

section

title

4,1

title

* − title

section

title

section
4,1

7,1

9,2

title
5,2

1,0
book

AQ A
SQD D

S
SQD

4,1

section

5,2

title section

ASQ

0,0

book

section

title

section

1,0

4,0

7,1

9,2

Figure 10: Example to illustrate duplicate counting in PathId

3.2.1 PathId stage

In the PathId stage, we execute the GSPE query Q = p1 . . . pk on a schema graph and

identify the satisfying paths in the schema graph. Since the mapping schema may be

recursive, the number of paths may be infinite, so we cannot enumerate all the possible

matching paths. Even when the mapping schema is non-recursive, for DAG schema

graphs, it is possible for the number of matching paths to be exponential in the size of

the mapping schema and the query. So, we should not attempt to enumerate all complete

paths. Instead, just like the DAG schema graph represents shared information across

multiple paths in a compact fashion, we represent the matching paths as a graph. This

will allow us to handle recursive and non-recursive mapping schemas in a unified fashion.

As an added benefit, we shall see later how preserving the relationship across multiple

paths that existed in the original mapping schema will help us in the SQLGen stage.

Consider the evaluation of a query Q over a mapping schema S. We treat the mapping

schema as an automaton AS and the query as an automaton AQ. We construct the cross-

product automaton ASQ from AS and AQ. We eliminate all the dead-states in ASQ and

46

the resulting automaton has all the matching paths in it. This approach is similar to

the one proposed in [FS98] for evaluating regular path queries over graph schemas. We

illustrate the main idea with an example and explain the parts where our algorithm

differs from the one in [FS98]. The reader is referred to [FS98] for more details.

Consider the schema S given in Figure 9, which is a part of the schema in Fig-

ure 6. The corresponding automaton AS is shown next to it. Similarly, the query

Q = /book/section/title is translated into the automaton AQ, where state 3 correspond-

ing to the title element in Q is the accepting state. We construct the cross-product

automaton ASQ and remove the dead states. The resulting automaton ASQ is shown in

the figure. A state with number (i, j) in ASQ represents a combination of state i in AS

with state j in AQ. Since state 3 in AQ is an accepting state, all states with state number

(i, 3) are accepting states in ASQ (in this case just (5, 3)). Notice how ASQ has simulated

the query over the mapping schema and identified the single matching path. The state

numbers in ASQ illustrate exactly how each path matched the query. In general, AS and

AQ are non-deterministic, and as a result ASQ is also a non-deterministic automaton.

This cross-product automaton can then be viewed as a mapping schema SSQ. The node

(edge) annotations for SSQ are the same as the underlying annotations in S.

The PathId stage for the query Q1 = /book/section//title is also shown in the figure.

Notice how the // operation in the query translates into a self-loop on node 2 in AQ1.

Also, there are two matching paths in the schema for this query. So, there are two

root-to-leaf paths in the cross-product automaton ASQ1.

For purposes of exposition, we assume that all accepting states in SSQ correspond to a

leaf node in the original schema. If an accepting state s ∈ SSQ corresponds to a non-leaf

node n ∈ S, we add the state corresponding to the elemid child of n as a final state in SSQ

(instead of s). Informally, this corresponds to returning the elemid’s of non-leaf nodes as

47

the result of the query. This corresponds to the “Select” mode described in Section 3.1.3.

We will present our solution for the “Reconstruct” mode in Section 3.2.4.

Handling XPath semantics

According to XPath semantics, the result of a path expression query is a duplicate-

eliminated sequence of nodes. So, even if an element has multiple derivations with respect

to the query, it should appear in the query result only once. For example, consider the

evaluation of query Q2 = //section//title. The cross-product automaton ASQ for this

query is given in Figure 10. Notice how there are two matching paths in ASQ for the

title node under the second-level section (node 9). This is due to the fact that either

of the section nodes in S (4 or 7), can match the //section part of Q1. For both the

cases, the //title part of the query is matched by the title node (node 9) in S. As a

result, the /section/section/title path in the schema is replicated twice in ASQ. So, if we

construct a SQL query based on this cross-product automaton, we may get duplicate

results. But, according to XPath semantics, we should return each satisfying element

exactly once. In this section, we explain our approach to handling this issue.

We first examine what the primary reason for the presence of duplicate paths in ASQ

is and how we can avoid it. Going back to the above example, we see that the two paths

for book/section/section/title have the following property: the first component of the

nodes occurring in the two paths are identical, while the second component differs in (at

least) one place. In other words, a single path in the schema gets duplicated, once with

each of the two different derivations for the query. So, if the query automaton is a DFA,

then the cross-product automaton will not have any schema path duplicated.

For an SPE query with k steps, we have an algorithm to construct an equivalent

DFA with k + 1 states. We explain this algorithm using the query Q2. The resulting

48

procedure PathId(Q,S)
begin

1. Let AS be the automaton corresponding to S
2. If (Q is an SPE query) then
3. Let AQD

be the DFA corresponding to Q
4. return the cross-product automaton ASQD

5. Else // Q is a GSPE query
6. Let AQ be the NFA corresponding to Q
7. Let A2

Q be the automaton that accepts all strings with

two or more accepting paths in AQ

8. Compute the cross-product automaton ASQ2

9. If (ASQ2 is empty) then
10. return the cross-product automaton ASQ

11. Else
12. Convert AQ into a DFA AQD

13. If (AQD
does not have an exponential increase in size)

14. return the cross-product automaton ASQD

15. Else
16. return the cross-product automaton ASQ

17. // a distinct clause needs to be added in this case
18. // to the final SQL query
end

Figure 11: PathId Algorithm

deterministic automaton AQD
is shown in Figure 10. We partition the query into blocks

such that each block has a leading // and there is no occurrence of // in that block.

In this case, there are two blocks, one each for //section and //title. Then, we process

these blocks from left to right. For the first block //section, we create a start state

(state 0) and add a transition to state 1 on the label section. For any other label,

since there is a leading //, we add a transition into state 0 itself (the start state of the

current block). In general, when there are multiple steps in a block, there may be a

partial match with the current string and we may have to transition not to the start

state but to some intermediate state. This can be found by identifying the longest suffix

that matches the current set of labels and is similar to the Knuth-Morris-Pratt string

matching algorithm [CLR90]. State 1 is the final state for this block and will act as the

49

start state for the next block. We repeat the process for //title and add state 2 and a

transition from 1 to 2 on title. We also add transitions on other labels for state 1. Since

this is the last block, we also compute the transitions from state 2 and set state 2 as the

final state for AQD
.

Lemma 1 For an SPE query Q having k steps, the equivalent DFA having k + 1 states

can be computed in O(k) time.

Proof: We show the correctness of the above algorithm by induction on the number

of descendant axes k in the query. Without loss of generality, we assume that the query

starts with a // (otherwise, we remove the prefix of the query before the first occurrence

of // and add the corresponding states to the beginning of the resulting DFA). For

the case k = 1, the correctness follows from the correctness of the Knuth-Morris-Pratt

algorithm.

Assume that the result holds for a query with k descendant axes. We show that

the algorithm constructs the correct DFA for a query with k + 1 descendant axes. Let

the query be of the form Q1Q2, where Q1 is the leading block. Let the equivalent DFA

constructed by the above algorithm be AQ. Note that there is a path p from the start

state to the accepting state in AQ that matches the query Q′ obtained by replacing

all occurrences of // with /. Divide the states in path p into two subsets, p1 and p2,

corresponding to Q1 and Q2 respectively. By construction, there are no transitions from

any state in p2 to any state in p1. So, from our induction hypothesis, the part of DFA AQ

corresponding to states in p2 is correct for query Q2. Moreover, the states in p1 make

sure that any string accepted by DFA AQ has a prefix matching Q1 before it entered any

state in p2. The correctness of the DFA AQ follows from this.

The running time of the algorithm follows from the fact that the processing time for

50

each block of size ki is O(ki). 2

On the other hand, for GSPE queries, there are scenarios when the smallest equivalent

DFA is exponential in the size of the query. In this case, we use the following approach.

Let AQ denote the NFA corresponding to the query Q. We first compute an NFA A2
Q

that accepts all input strings that have two or more accepting paths in AQ. Then, we

compute the cross-product automaton ASQ2 between AS and A2
Q. If this automaton is

empty, then it means that the cross-product automaton ASQ obtained from the original

query and schema automata (AQ and AS respectively) will not have any duplicate schema

paths and we use ASQ as the output of the PathId stage. On the other hand, if ASQ2

is not empty, then we have two options: (1) convert AQ into a DFA AQD
and compute

cross-product between AS and AQD
or (2) apply a distinct clause for the query obtained

from ASQ. We choose one of these options based on whether there is a size explosion

when we convert AQ into a DFA1.

The PathId algorithm along with the above modifications to handle the semantics

of XPath is given in Figure 11.

Analysis of PathId stage

In this section, we present an analysis of the number of states in the resulting cross-

product automaton and the running time of the above algorithm.

Let s and e be the number of nodes in the schema and k be the number of steps in

the query. Then the number of states in AS is ns = s + 1 and the number of states in

AQ is nq = k + 1. For an SPE query, the number of states in AQD
= k + 1.

Lemma 2 The number of states in the cross-product automaton ASQ is no greater than

1This can be achieved by placing a bound on the number of states explored in the NFA-to-DFA
conversion

51

ns ∗ nq.

Proof: Each state in ASQ corresponds to a pair of states from the schema automaton

and the query automaton. The upper bound follows from this. 2

Lemma 3 If S is a tree schema and Q is an SPE query, then the number of states in

ASQD
is no greater than ns.

Proof: Since S is a tree schema, there is a unique path p from the start state of AS

to every state s ∈ AS. Also, the query automaton is deterministic implying that there

is at most one state in AQ matching the path p. So, every state in AS may contribute

at most one state to ASQD
. The upper bound on the number of states in ASQD

follows

from this. 2

For an SPE query Q, for every label x, let ChildOccur(x,Q) denote the number of oc-

currences of the pattern /x inQ. For example, for the query Q = /section//section//title,

ChildOccur(section,Q) = 1 and ChildOccur(title,Q) = 0. Let MaxChildOccur(Q) de-

note the maximum across all values for ChildOccur(x,Q) over all labels. In this case,

MaxChildOccur(Q) = 1.

Let DescendantSteps(Q) denote the number of // steps in Q. For the above example,

DescendantSteps(Q) = 2. Notice how DescendantSteps(Q) + MaxChildOccur(Q) ≤ nq

Lemma 4 For an SPE query Q, the number of states in the cross-product automaton

ASQD
is no greater than ns∗ (DescendantSteps(Q) + MaxChildOccur(Q)).

Proof: Consider a state s ∈ AS. Since the automaton AS is constructed from an XML

schema, all in-coming edges have the same label l (the element name of the corresponding

schema node). Suppose the schema state s creates a state in ASQD
of the form (s, q).

For this state to have an incoming edge, the corresponding query state q must have an

52

incoming edge with transition l. A query state will have such an edge if it corresponds

to a step in the query with element name l or if the corresponding axis is //. The value

(DescendantSteps(Q) + MaxChildOccur(Q) is an upper bound on the number of such

states. 2

Let us now consider the running time of the various steps in the PathId stage.

Proposition 1 The running time of the PathId stage for an SPE query is O(n2
s ∗ n

2
q),

while for a GSPE query, the running time is O(n2
s ∗ n

4
q).

Proof: From Lemma 1, we see that the DFA corresponding to a query Q can be

computed in time O(nq). Combining this with the facts that the automaton A2
Q can be

computed in O(n4
q) and that the cross-product automaton of two state machines with n1

and n2 states respectively can be computed in O(n2
1 ∗ n

2
2), the results follow. 2

From a correctness viewpoint, we have following result that the mapping schema

resulting from the PathId stage captures all the schema paths that satisfy the query.

Proposition 2 Given a mapping schema S and query Q, the output of the PathId stage,

SSQ, has exactly all the matching schema paths in it. When Q is an SPE query, each

matching path in S appears only once in SSQ.

Proof: We need to prove that every path in S that matches the query appears in SSQ

and that there are no extra accepting paths in SSQ.

We first prove the former claim. Suppose a path p ∈ S matches the query. From the

way the automaton AS is constructed, this implies that there is a corresponding path

p′ ∈ AS. Let p′ = {n1, n2, . . . , nk}. Since the path p matches the query, we argue that

there is a path q′ ∈ ASQ = {(n1, q1), (n2, q2), . . . , (nk, qk)}. This follows from the way

the cross-product automaton ASQ is constructed. Since the path p satisfies the query,

53

it means that there is an accepting path p′′ ∈ AQ such that the labels along this path

are the same as the element names along p. The path q ′ ∈ ASQ represents the path

obtained by combining the paths p′ and p′′. By construction, every path q′ ∈ ASQ has a

corresponding path q ∈ SSQ. Hence, we have shown that every path in S that matches

the query appears in SSQ.

For the latter claim, let q ∈ SSQ be a root-to-leaf path. Then, there is a corresponding

path q′ ∈ ASQ = {(n1, q1), (n2, q2), . . . , (nk, qk)} that is an accepting path. From the

way the cross-product automaton is constructed, this implies that the path p′ ∈ AS =

{n1, n2, . . . , nk} matches the query Q. This in turn implies that there is a corresponding

path in S that matches the query.

Finally, when Q is an SPE query, the query automaton is a DFA. Hence, every

matching schema path p will appear only once in ASQ. 2

3.2.2 SQLGen stage

Once we have identified all matching paths in the schema S corresponding to query Q, we

have a cross-product schema SSQ with all the matching paths encoded in it. Informally,

the union of all root-to-leaf paths in SSQ corresponds to the query result. A simple

algorithm to generate an SQL query corresponding to Q is to return RQ =
⋃
RtoL(l)

over all leaf nodes in SSQ. While this is a good algorithm when SSQ is a tree, it does

not suffice when SSQ is a DAG or is recursive. If SSQ is a DAG, then the number of

matching paths may be exponential. Moreover, by unfolding a DAG we may also be

missing shared computation in the form of common subexpressions in the final SQL

query. So, we need to somehow reflect the DAG structure of SSQ in the SQL query.

Similarly, if SSQ is recursive, then RQ is the union of infinite queries. In this section, we

54

procedure SQLGen(SSQ)
begin

1. Identify strongly connected components (SCCs) in SSQ

2. Let C be the set of SCCs
3. Merge adjacent components in C that are acyclic

if one of them dominates the other
4. foreach (c ∈ C in top-down topological order) do
5. if (c is not recursive) then
6. generate the query for c using SQLForDAG(c)
7. else
8. generate the query for c using SQLForRecursive(c)

// a relational query T (n) is associated with
// each leaf node n now

endFor
9. Let finalQ be ∪n is a leaf node “select * from T (n)”
10.If (duplicate elimination is required) then
11. Output the query “select distinct(*) from finalQ”
12.else output the query “select * from finalQ”
end

Figure 12: SQLGen Algorithm

show how using the support for linear recursion in SQL99 (with operator) along with the

outer union approach, we can construct the equivalent (finite!) SQL query for a recursive

cross-product schema.

In order to illustrate our algorithm for handling complex cross-product schema, we

use the schema graph S in Figure 13. Notice how this schema has a DAG part and a

recursive part. The edge annotations are omitted for clarity. We use the shorthand i

to denote the schema node corresponding to element Ei and refer to the elemid node

as node 11. We explain the algorithm by running through the evaluation of the query

Q = /E0//E10 on the schema graph S in Figure 13. The PathId stage will result in a

cross-product schema SSQ identical to S. Notice how since E10 is a leaf node, we add

the elemid attribute node to SSQ and make that the accepting state.

The outline of the algorithm is given in Figure 12. We first identify the components

55

E0

E1 E2

E3

E4 E5

E6

E7 E8

E9

E10

* *

* *
*

*
* *

* *

*
*

*

* *

R0

R1 R2

R10

R9
*

R8R7R4

R6

R3

R5

elemid
R10.elemid

Figure 13: Sample recursive schema to explain the SQLGen algorithm

in SSQ that are recursive. The rest of the nodes are grouped into a set of non-recursive

components. We perform this computation by first identifying the strongly connected

components in SSQ (step 1) and then merging adjacent non-recursive components wher-

ever possible (step 3). Recall that a component c1 dominates component c2 if every

path from the root to a node in c2 passes through some node in c1. After the first 3

steps in Figure 12, there are three components in C. They are c1 = {0, 1, 2, 3, 4, 5, 6},

c2 = {7, 8, 9} and c3 = {10, 11} (Here node 11 refers to the elemid node). We then process

these components in top-down topological order, namely c1 followed by c2 followed by c3.

For each component, we generate the appropriate relational queries. In the process, we

associate a temporary relation T (n) with every schema node n that is either a leaf node

or has a child node in a different component. Once we have processed all components, we

generate the final relational query in steps 10-12 using the temporary relations defined

earlier.

The algorithm for generating SQL queries corresponding to a non-recursive and a

recursive component are given in Figures 14 and 15 respectively. We discuss these in the

next two subsections.

56

procedure SQLFromDAG(c)
begin

1.Let N be the set of nodes in c with either
a parent or a child in a different component

2.Add any node in c to N if it corresponds
to a leaf node in S.

3.Add all nodes in c with > one in-coming edge to N
4.Add all nodes in c with > one out-going edge to N
5.With each node n ∈ N , associate a unique temporary

relation T (n)
6.foreach (n ∈ N in top-down topological order) do
7. //generate SQL fragment to populate T (n)
8. foreach (in-coming edge e into n) do
9. Backtrack along e till either a node m ∈ N

or a node m /∈ c is obtained.
10. Let the unique m to n path be p
11. Generate SQL(p) using T (m) as the relation

corresponding to m
12. //Other node and edge annotations in SSQ are

//same as underlying ones in the mapping S
13. Call this query SQL(e)
14. T (n) is defined as the union of all the SQL(e)
15.endFor
end

Figure 14: SQLGen Algorithm for a DAG Component

Handling a non-recursive component

For non-recursive components, a straightforward approach is to translate each path in

the DAG component into a SQL query and take the union of all these queries. However,

the number of paths can be exponential in the size of the component. The question arises

whether there is any way in which we can at least guarantee a query that is polynomial

in the size of the DAG component. We show that this is impossible if we only consider

relational queries involving the select, project, join and union operations (SPJU queries).

We formalize this claim as follows. Let C1 denote the class of relational queries whose

relational algebra expression has the select, project, join and union operators. Let the size

57

of a query SQ ∈ C1, RelInst(SQ), be the number of relation instances in the relational

algebra expression. Then we have the following result.

Proposition 3 There is a family of mapping schemas SG such that, for each schema

Si ∈ SG, there is a simple path expression query pi that has the following property. No

relational query SQ ∈ C1, whose size is polynomial in the size of Si and pi, is a correct

translation for pi.

Proof: The proof is based on the fact that there are instances of acyclic Deterministic

Finite Automata (DFA) whose minimum equivalent regular expression is superpolynomial

in length [EZ76].

In [EZ76], a half-complete graph is defined as a graph with n nodes that has a distinctly

labeled directed arc running from every node to every higher numbered node. Let N be

the size (in terms of number of alphabetic symbols) of any equivalent regular expression.

It is shown that (n− 2)(2/3)(log((1/3)log(n−2))−1) ≤ N ≤ (2n+ 1)dlogne

Given a half-complete graph G, we can construct a mapping schema SG as follows.

For each edge e ∈ G, add two vertices v1
e and v2

e to SG with the same label. Let the

relation name annotating these nodes be e. For every pair of edges e1 = <v1, v2> and e2

= <v2, v3> in G, add edges <v1
e1
, v1

e2
> and <v2

e1
, v2

e2
> in SG. Add four more nodes n0,

n1, n2 and n3 to SG with new labels (say root, subtree1, subtree2 and leaf respectively).

Annotate these nodes with corresponding relation names. The leaf node n3 is annotated

with the column name leaf.id. Add edges from n0 to n1 and n2. Let v1 and v2 be the

lowest and highest numbered vertices in G. Add edges from n1 to node v1
e , where e is an

outgoing edge from v1. Add an annotation on these edges of the form “parentcode = 1”.

Add similar outgoing edges from n2. Similarly, add edges from nodes vi
e to leaf , where e

is an incoming edge to n2.

58

Consider the path expression query /root/subtree1//leaf. This query returns all root-

to-leaf paths in the schema SG that appear in one of the two subtrees. Since each node has

a different relation name, it follows that every equivalent SPJU SQL query corresponds

to a regular expression solution for the paths in G. The proposition follows from the

bounds on N . 2

It turns out that we can use the with clause to solve this problem. Even though the

with clause was primarily introduced for supporting recursive queries, it also provides us

with a mechanism for creating temporary relations in a SQL query. So, whenever there is

some computation that can be shared by multiple paths, we create a temporary relation

corresponding to this shared computation, which can be used repeatedly in the rest of the

query. Notice how creating temporary relations in the query allows us to reduce the size

of the generated SQL query from (potentially) exponential in the size of the component

to a guaranteed polynomial bound.

Component c1 is non-recursive and an example of a DAG component. We use the

algorithm for generating the relational query corresponding to a DAG component given

in Figure 14. We associate temporary relations with any node that is either a leaf

node (part of the final query result), has a parent or child in a different component,

or represents shared computation (multiple incoming/outgoing edges). For component

c1, the set N is N = {2, 3, 6}. So, we generate SQL with clauses for three temporary

relations corresponding to T (2), T (3) and T (6) in that order. The query corresponding

to T (3) is given below.

with T3 as (

select R3.*

from R0, R1, R3

where R0.id = R1.parentid and R1.id=R3.parentid and R3.parentcode=1

union all

select R3.*

59

from T2, R3

where T2.id=R3.parentid and R3.parentcode=2

)

Notice how the query is the union of two subqueries, one corresponding to each in-coming

edge into node 3. Also note how we use T2 in the definition of T3, as node 2 ∈ N and

has a temporary relation associated with it. In a similar fashion, the query for T6 will

have T3 in it. This illustrates how shared computation can be efficiently reflected in

the relational query. We would like to point out that the use of the with clause has two

benefits. Firstly, it avoids the potential size blowup for complex DAG schema. Secondly,

it represents the shared computation across different root-to-leaf paths explicitly. The

relational optimizer can choose from the two options of either sharing computation across

different fragments in the final execution plan or unfolding the with clause into the

union of several conjunctive queries. In fact, we know of one commercial RDBMS whose

optimizer does this exploration. On the other hand, if we did not use the with clause in

the SQL query, then the relational optimizer has the additional task of finding common

subexpressions, which is known to be a difficult task.

Handling a recursive component

Let us now look at how to generate the relational query for a recursive component. This

algorithm is given in Figure 15. For each recursive component c, we associate a temporary

relation TR whose schema is the outer-union of the schemas of relations annotating some

node in TR and generate a recursive query for TR as follows. A recursive query has two

parts, an initialization part and a recursive part. The initialization part for the query

defining TR (steps 2-6) captures all incoming edges into c from a different component.

For the component c2, there are two such edges (2, 8) and (3, 7) and the initialization part

will be the union of two conjunctive queries, one for each incoming edge. The recursion

60

procedure SQLFromRecursive(c)
begin

1. Let TR be a temporary relation whose schema is the
outer union of all relations in c
//Construct the initialization query for TR

2. foreach (in-coming edge e into c from node n /∈ c) do
3. Let n′ ∈ c be the target of e
4. Let Qe be the query:

select R2.*, id(n)
from T (n) R1, Annot(n′) R2
where Annot(e) and R2.parentid = R1.id”

5. Null pad Qe appropriately to reflect outer-union schema
6. Let Qinit be ∪Qe over all in-coming edges e

//Construct the recursive part for TR

7. foreach (edge e with both end-points in c) do
8. Let e be from n1 to n2

9. if (e corresponds to a join edge) then
10. Let Qe be the query:

select R2.*, id(n2)
from TR R1, Annot(n2) R2
where R1.schemanode = id(n1) and

R2.parentid = R1.id and Annot(e)
11. else

//e corresponds to a selection or n2 is a dummy node
12. Let Qe be the query:

select R1.*, id(n2)
from TR R1
where R1.schemanode = id(n1) and Annot(e)

13. Null pad Qe appropriately
14.Let Qrec be ∪Qe where the union is taken over

edges e with both end-points in c
15.TR is a recursive query defined with Qinit as the

initialization condition and Qrec as the
recursive component

16.With each node n ∈ c we associate the query T (n):
select * from TR where schemanode = id(n)

end

Figure 15: SQLGen Algorithm for a Recursive Component

61

in the component c is captured by the recursive part of the definition of TR. Each edge

in c is translated into a query as shown in steps 8-13 and the recursive part of the query

defining TR is the union across all edges within the component. For the component c2,

there are four edges and so the recursive query Qrec is the union of four recursive queries.

In this case, all four edges are join edges. For example, the edge (8, 7) will translate to

the following query:

select R7.*, id(7)

from TR, R7

where R7.parentid=TR.id and TR.schemanode=id(8) and R7.parentcode=8

Notice how the condition TR.schemanode ensures that the parent tuple corresponds to

schema node 8 and the other conditions capture the annotations on the edge. By pro-

jecting the id of the child node, we ensure that the queries for outgoing edges from node 7

can be correctly constructed.

Returning to the example query, finally, component c3 is non-recursive and we gener-

ate the equivalent relational query using the algorithm in Figure 14. The complete SQL

query is given in Figure 16.

If SSQ has two root-to-leaf paths matching the same path in S, then duplicate elim-

ination is required and we add the distinct clause (recall discussion in previous section,

step 16 in Figure 11). In such a scenario, for each leaf node n ∈ SSQ, the id of n and the

key column of R, where Annot(n) = R.C also have to be projected along with Annot(n)

while creating the temporary relations T (n).

We now show that the SQL query output by the XML to SQL algorithm is a correct

translation of the input XML query Q.

Theorem 1 Given an XML-to-Relational mapping T, a path expression query Q and

the guarantee that the “lossless from XML” constraint is satisfied, the XML to SQL al-

gorithm outputs a correct equivalent SQL query.

62

//query for component c1
with T2 as (

select R2.*
from R0, R2
where R0.id = R2.parentid

),
with T3 as (

select R3.*
from R0, R1, R3
where R0.id = R1.parentid and
R1.id=R3.parentid and R3.parentCode=1

union all
select R3.*
from T2, R3
where T2.id=R3.parentid and R3.parentCode=2

),
with T6 as (

select R6.*
from T3, R4, R6
where T3.id = R4.parentid and
R4.id=R6.parentid and R6.parentCode=4

union all
select R6.*
from T3, R5, R6
where T3.id = R5.parentid and
R5.id=R6.parentid and R6.parentCode=5

),
// query for component c2

with TC2 as (
(

select R7.*, id(7)
from T3, R7
where T3.id=R7.parentid and R7.parentCode=3

union all
select R8.*, id(8)
from T2, R8
where T2.id=R8.parentid and R8.parentCode=2

)
union all
(

select R7.*, id(7)
from TC2, R7
where R7.parentid=TC2.id and TC2.schemanode=id(8)
and R7.parentid=8

union all
select R8.*, id(8)
from TC2, R8
where R8.parentid=TC2.id and TC2.schemanode=id(9)
and R8.parentid=9

union all
select R9.*, id(9)
from TC2, R9
where R9.parentid=TC2.id and TC2.schemanode=id(7)
and R9.parentid=7

union all
select R9.*, id(9)
from TC2, R9
where R9.parentid=TC2.id and TC2.schemanode=id(8)
and R9.parentid=8

)
),

with T7 as (
select *
from TC2
where schemanode=id(7)

),
with T8 as (

select *
from TC2
where schemanode=id(8)

),
with T9 as (

select *
from TC2
where schemanode=id(9)

),
// query for component c3

with T10 as (
select R10.*
from T6, R10
where T6.id = R10.parentid and R10.parentCode=6

union all
select R10.*
from T9, R10
where T9.id = R10.parentid and R10.parentCode=9

),
with T11 as (

select elemid
from T10

),
// the final query

select elemid
from T11

Figure 16: SQL query output by the XML to SQL algorithm for Q = /E0//E10

63

Proof: From Proposition 2, we know that the result of the PathId stage, SSQ, has all

the schema paths that match the query. Since the “lossless from XML” constraint holds,

it follows that RQ =
⋃

l is a leaf node in SSQ
RtoL(l) is a correct SQL translation for Q.

We need to show that the query RQ1 output by the SQLGen algorithm is equivalent to

RQ.

Let us first consider the case when SSQ is acyclic. In this case, notice that the only

difference between RQ and RQ1 is that the latter uses with clauses to group together

common computation as indicated by the mapping schema. In other words, if we unroll

the with clauses in RQ1 (replace all occurrences of the temporary relations Ti with their

actual definitions), we obtain RQ. Hence, the two queries are equivalent.

Consider the case when the mapping SSQ is recursive. The main difference between

RQ and RQ1 in this case is the use of the with clause in RQ1 to represent the infinite

paths in a more compact fashion. The only other difference between RQ1 and RQ is the

use of the outer-union schema for recursive components. The use of the schemanode field

takes care of the fact that only root-to-leaf paths present in the mapping are captured

by the corresponding SQL query. The equivalence between RQ and RQ1 follows directly

from the fact that recursive chain datalog programs are equivalent to the union of the

infinite conjunctive queries obtained by unrolling them. 2

We next analyse the running time of the SQLGen stage of the algorithm. For a

recursive component C, let NC denote the number of columns in the outer union schema

for C. This is the sum of the number of columns over all relations annotating some node

in C. For a mapping schema S, let Nmax
C (S) denote the maximum across all values for

NC over all recursive components in S.

Lemma 5 For a mapping schema T and query Q, let the output of the PathId stage,

64

Clique size (n) Time Taken (ms)
5 6
10 19
20 80

Table 2: Execution time of translation algorithm

ASQ have V nodes and E edges. The equivalent SQL query can be obtained using the

SQLGen algorithm in O(E ∗Nmax
C (ASQ)) time.

Proof: In the processing of a DAG component, each edge is processed a constant

number of times. The same is true for a recursive component, but there is a potential

overhead due to the outer union schema. The running time follows from this. 2

3.2.3 A Note on Query Translation Time

The reader may wonder what constants are hiding behind the asymptotic bounds on the

running time of the query translation algorithm and whether this is really practical. This

section shows that on some synthetic queries, even those constructed to be worst case,

the running time of the translation algorithm is reasonable.

We implemented the above algorithm for evaluating SPE queries over a generic XML-

to-Relational mapping. Using the XMark benchmark schema [XMa] and SPE query

fragments that appear in the associated query test suite, we evaluated the equivalent SQL

queries using the above query translation algorithm. The XML-SQL query translation

process took less than 6ms for each SPE query. The XML-to-Relational mapping schema

has 101 nodes. We also observed that in all cases, the size of the cross-product schema

was less than 100 nodes (the size of the schema).

In order to test the running time of the algorithm under extreme scenarios, when the

65

cross-product schema may have ns ∗ nq states, we used a more complex XML schema.

This mapping schema was a complete graph of n nodes and all transitions were on a

single label x. We then measured the running time of the query translation for the

query //x//x//x//x//x, which has 5 steps. The cross-product automaton has approxi-

mately 4n states and 4n2 transitions. The running time for different values of n are given

in Table 2.

Notice how while the running time shows a quadratic growth due to the quadratic

increase in the number of transitions in the schema, it is still small for reasonable clique

sizes. The size of every recursive component that we have seen in real-world DTDs has

been less than 10. So we believe that the running time of our translation algorithm will

be small in practice.

3.2.4 Extensions to the Algorithm

In this section, we describe how the above algorithm can be extended to reconstruct

XML subtrees and handle order in XPath semantics.

Reconstructing XML subtrees

In [FMS01, SSB+00], algorithms were presented for reconstructing XML subtrees when

the mapping schema is a tree. In this section, we describe how to handle the reconstruc-

tion of a recursive component and a DAG component.

Notice that the SQLGen algorithm for handling a recursive component in Figure 15

actually reconstructs the XML data corresponding to the entire recursive component.

But, what is missing in order to reconstruct the XML subtree is structural information

about the different elements. Recall that in [FMS01, SSB+00], this could be determined

statically as for a tree XML schema, the number of distinct root-to-leaf paths is fixed.

66

On the other hand, for recursive components, we need to construct the root-to-leaf path

dynamically. Notice that the schemanode column in relation TR keeps track of the schema

node corresponding to the tuple. We maintain an additional rtol column that keeps track

of the path from the root of the subtree being constructed. This is similar to the approach

proposed in [TVB+02] for constructing dewey numbers dynamically.

In order to handle a DAG component, we have two options. One option is to unroll

the DAG into a tree and apply prior techniques. If this may lead to a size explosion, we

could reconstruct a DAG directly by keeping track of the root-to-leaf path as mentioned

above.

Handling order in XPath semantics

According to XPath semantics, the results of a path expression query have to be returned

in document order. In order to support this, the schema-based shredding of XML into

relations will need to maintain the relative position among sibling XML elements in some

form. This was the primary focus of [TVB+02], where solutions were proposed to handle

order in XML for an arbitrary query translation algorithm. Hence, in particular, their

techniques can be integrated with our algorithm in a straightforward fashion.

3.3 Related Work

A detailed description of the existing published work on XML-to-SQL query translation

was given in Chapter 2. In this section, we look at related work done in a context other

than XML-to-SQL query translation.

There has been work on optimizing queries in a semi-structured framework [BDFS97,

FS98, MW99] using graph schemas. These techniques are similar to the PathId stage

67

of query translation, and we adapted the cross-product automaton technique proposed

in [FS98], for the PathId algorithm in Section 3.2.1.

The Hy+ database visualization system uses GraphLog, a novel graphical language.

In [Eig94], a GraphLog-to-SQL translation algorithm is presented that makes use of the

support for inline views and recursion in SQL. This is similar to our use of the “with”

clause in translating path expression queries into SQL (for DAG and recursive schema).

The data model and query language used in the Hy+ system are different from the XML

counterparts. So, the solutions proposed in [Eig94] are not directly applicable in the

context of XML-to-SQL query translation.

3.4 Summary

We presented a generic algorithm to translate path expression queries to SQL in the

presence of recursion in the XML schema and queries. This algorithm is applicable over

a wide class of techniques for schema-based shredding of XML into relations. We also

showed how the with clause in SQL99 is useful in XML-to-SQL query translation over

DAG XML schema and how the support for linear recursion in SQL99 is sufficient for

translating path expression queries into a single SQL query over an arbitrary (recursive)

XML-to-Relational mapping.

68

Chapter 4

Mapping-aware Query Translation

In the previous chapter, we presented an algorithm for translating path expression queries

into SQL over (non)recursive XML-to-Relational mappings. While this algorithm works

correctly and also has some optimizations to generate efficient SQL queries (like the use

of the with clause for DAG schemas), it still has one major drawback. The final SQL

query generation phase (SQLGen stage) is top-down. As a result, the XML hierarchy

gets reflected in the final SQL query causing even simple XML queries to produce fairly

complex SQL queries. This problem is aggravated when the XML query is recursive. We

briefly discussed this problem in Chapter 2.3.3. In the example we used there, SQ2 is the

SQL query that will be output by existing XML-to-SQL query translation algorithms,

including the XML to SQL algorithm we presented in Chapter 3. On the other hand,

SQ1 is a much simpler equivalent SQL query. By replacing a three-way join query with

a scan-based query a significant performance improvement can be achieved.

In the schema-based approach to shredding XML into relations, we have a simple

guarantee about the input relational data. We know that the relational data set resulted

from the lossless shredding of one or more XML documents that conformed to a given

XML schema. Notice that the “lossless from XML” constraint defined in Chapter 3.1.2

corresponds to this notion. Of the three properties that hold when the “lossless from

XML” constraint is satisfied (properties P1-P3 in Chapter 3.1.2), the XML to SQL al-

gorithm made use of just one property, namely, property P1. It did not take advantage of

69

the fact that the other two properties also hold. While property P1 suffices for correctly

translating path expression queries into SQL, we show how by exploiting the fact that

the other two properties hold, we can translate XML queries into efficient SQL.

The basic idea is that since all the three properties hold, the XML-to-Relational

mapping fully captures the entire relational schema. By using this information in an

intelligent fashion, we obtain a mapping aware translation algorithm that eliminates

computation in the relational query made redundant by the mapping information. In

this chapter, we extend the XML to SQL algorithm to illustrate how the “lossless from

XML” constraint can be fully exploited to generate efficient SQL queries.

The rest of this chapter is organized as follows. We first present some more example

scenarios in Section 4.1 to illustrate the various optimizations that can be performed in

the query translation process. We present the mapping aware algorithm in Section 4.2 for

tree schema. This algorithm is an extension of the XML to SQL algorithm and uses the

mapping information to avoid generating redundant computation in the final relational

query. We then present the algorithm for recursive XML schema in Section 4.3. Finally,

we present experimental results to show the performance improvements achieved by the

mapping aware algorithm.

4.1 Motivation for mapping aware techniques

We next illustrate how an XML-to-SQL translation algorithm can use the mapping infor-

mation and generate more efficient relational queries. We first give an example situation,

in which the query is recursive (has the wildcard //) and then present another example

where the XML schema is recursive as well.

Part of the XMark benchmark [XMa] XML schema is given in Figure 17. The XMark

70

Site
id

Item
id ...parentid parentcodecategory

InCat
id parentid parentcode name... ...

Regions

Africa Asia Australia

Site Site

..
..

Europe
87654

1 e1 : parentCode = 1

e6 : parentCode = 6

..
..

..
..

Item

Incategory

*

InCat

9

11

Item

Incategory

*

InCat

29

31

SAmericaNAmerica

.....................

Item.name

30
10

Item.name

Item Item

e1
e6

Category
InCat.category

12 Category
InCat.category

32

name

2

3

name

e3 e4 e5e2

Figure 17: XMark benchmark schema and a sample relational decomposition

benchmark models an auction site and it has been widely used in research literature

to evaluate XML data management strategies [BKTT04, CAYLS02, CJLP03, DT03a,

DTCO03, FHR+02, FSC+03, GSBS03, GST04, JLWO03, MS03, TH02]. One way of map-

ping the XML schema into relations is given in the figure. Consider the evaluation of the

following query Q1, which returns all the item categories: //Item/InCategory/Category.

Consider the following simple algorithm for handling queries with wildcards (//) [JMS02].

Identify all paths in the schema that satisfy the query. For each path, generate a rela-

tional query by joining all relations appearing in this path. The final query is the union

of the queries over all satisfying paths (six paths for Q1). This algorithm will result in

the following SQL query SQ1
1.

select C.category

from Site S, Item I, InCat C

where S.id = I.siteid and I.id = C.itemid and I.continent=’africa’

union all ... (6 queries one for each continent except Antarctica)

71

The XML to SQL algorithm presented in the previous chapter and several other

algorithms proposed in literature [FMS01, SKS+01] will also result in a similar relational

query. On the other hand, looking at the XML-to-Relational mapping, we see that there

are six nodes in the schema whose values are stored in the column InCat.Category and

the query Q1 selects all of them. Since we know that the “lossless from XML” constraint

is satisfied, we can translate Q1 into the following simpler optimized SQL query OQ1.

select category

from InCat C

Notice how we are able to replace a query SQ1 that was the union of six queries,

each with 2 joins, by a simpler scan query OQ1. The two queries SQ1 and OQ1 are

equivalent given that the “lossless from XML” constraint holds under this particular

XML-to-Relational mapping.

Let us now consider another example scenario that involves a recursive XML schema.

We saw how to translate the query Q = //E10 on the schema graph in Figure 13.

The final relational query SQ was given in Figure 16 and it is a fairly complex recursive

relational query. Even though the XML query is fairly simple, since the XML schema

is fairly complex, the final SQL query is also complex. The main reason for this is the

fact that the SQLGen stage is top-down, hence the complexity of the XML schema is

reflected in the final SQL query.

Again, by using the mapping information, we know that the relation R10 matches the

path expression “//E10”. Since the “lossless from XML” constraint holds, the following

query OQ will be equivalent to SQ under this particular mapping and, as a result, a

correct translation for Q.

select elemid

72

from R10

Notice how this SQL query is much simpler than the query output by the XML to SQL al-

gorithm and the associated performance benefits are obvious.

At this point the reader may wonder if XML query minimization will be helpful in

the above scenario. Note that the above path query is already minimal (and so will

be all the other example queries we use throughout this thesis), it is the translation

that caused the problem, not the original XML query. All the work on XML query

minimization [AYCLS01, FFM03, Ram02] and on containment and equivalence of path

expression queries [DT01, MS02, Woo02] is complementary to the focus of our work and

can be used as the first stage to minimize the input XML queries.

In both of the above examples, we saw that by using the mapping information we

can eliminate recursive sub-components in the SQL query, combine multiple query com-

ponents and eliminate redundant joins. We were able to this by exploiting the fact that

the “lossless from XML” constraint holds. To keep things simple, we gave examples

where the entire query matched a single relation. In general, only parts of the query

generated by current algorithms, including our XML to SQL algorithm may be implied

by the mapping. For example, for a XML query with //, we may be able to perform

these optimizations to varying degrees across different satisfying paths. We may be able

to eliminate some recursive sub-queries across one path (as they are implied by the map-

ping) and certain others across a different path. In the next section, we extend our

XML to SQL algorithm to use the mapping information and perform such optimizations

for the class of path expression queries over a given XML-to-Relational mapping.

73

procedure mapping aware translation(Q, S)
begin
1. Perform PathId using the mapping S and query Q.

Let SCP be the resultant cross-product schema.
2. Prune SCP making use of the “lossless from XML” constraint .
3. Translate the pruned SCP into SQL.

Figure 18: Query Translation Algorithm using the “lossless from XML” constraint

4.2 Exploiting the “lossless from XML” constraint

for Tree XML Schemas

In this section, we show how we can use the “lossless from XML” constraint while trans-

lating queries over a tree schema in order to generate a query that may be more efficient

than the corresponding naively generated query. We extend this to directed acyclic graph

(DAG) and recursive XML schema in Section 4.3.

The outline of this algorithm is given in Figure 18. The output of the PathId stage is

pruned making use of the “lossless from XML” constraint and this pruned cross-product

schema is the input to the SQLGen stage. The PathId stage remains unchanged from

the XML to SQL algorithm. We explain the pruning stage and the SQLGen stage in

this section.

4.2.1 Basic Idea behind the Algorithm

Consider the set of paths P in the schema that end in a node annotated with the col-

umn R.C. Since the XML-to-Relational mapping satisfies the “lossless from XML” con-

straint, we know that every tuple in the relation R corresponds to the value of (exactly)

one element in the XML document. In other words, each tuple in relation R will appear

in the result of the SQL query corresponding to (exactly) one root-to-leaf path in the

74

........

0

2

3

1

Incategory

category

* − Item

Item

Regions

Site Site

2,0

Africa

Item

category
InCat.category

Item

3,0

9,1

12,3

IncategoryInCat
11,2

SAmerica

Item

category
InCat.category

Item

8,0

29,1

32,3

IncategoryInCat
31,2

a1 a6

Regions

Site Site

Africa

a1

Item

category
InCat.category

Item

1,1

2,2

3,3

9,4

12,6

IncategoryInCat
11,5

1,0

CPS CPSAQ
1 1 2

Figure 19: Result of PathId stage for Q1 and Q2

XML schema. Notice that this gives us two guarantees: (i) No two root-to-leaf paths

will have a common tuple in their results and (ii) All the root-to-leaf paths combined

together correspond to a scan of the column R.C.

Let us look at some example queries to see how we can use the above information

to prune the cross-product schema. In the process, we identify two important concepts

that form the core of our algorithm. We use the mapping schema in Figure 17 in the

following discussion, and will discuss how the algorithm works informally in these specific

examples before turning to specifying the full algorithm.

Consider the example query Q2, /Site/Regions/Africa/Item/Incategory/Category.

The output of the PathId stage is the cross-product schema S2
CP given in Figure 19. We

use the first component of the node identifiers in the cross-product automaton to identify

the nodes in the following discussion. There is a single path p =<1, 2, 3, 9, 11, 12> in S2
CP

and issuing the query SQL(p) is a correct translation for Q1. Our goal in this case is to

find a shorter suffix p′ of p such that SQL(p) is an equivalent translation under the given

75

mapping.

Now, for any suffix p′ of p, SQL(p′) will certainly contain all the results for Q1. We

also know that the “lossless from XML” constraint is satisfied. So, if we ensure that

SQL(p′) does not have any results corresponding to some other path in the mapping

schema, then we are done. We do this as follows: We first start with the smallest suffix

p′ = {<12>}. The equivalent query will be a scan of the InCat.category column. We

notice that there is a path q = {<32>} in the original schema S that has the same

annotation. So, SQL(p′) will also return results corresponding to the path q. Since the

queries corresponding to the paths p′ and q have common results, we say that they are

in conflict with each other. Now, since q does not have a corresponding path in S1
CP ,

we know that it is not a part of the query result. This implies that for p′ = {<12>},

SQL(p′) will have results corresponding to this path q as well.

So, we go up one level and set p′ = {<11, 12>}. The same conflict persists with the

path q = {<31, 32>} and we have to increment p′ by another level. Repeating this, we get

to p′ = {<3, 9, 11, 12>}. Now we see that the corresponding path q = {<8, 29, 31, 32>} is

not in conflict with p′ due to the difference in the parentCode condition (edge annotations

e1 and e6). In fact, there is no other path in conflict with p′ elsewhere in the schema. So,

the query SQL(p′) will be equivalent to SQL(p) and it is a correct translation for Q1.

This query is given below:

select C.eid

from Item I, InCat C

where I.id = C.parentid and I.parentCode=1

Contrast this with SQL(p), which will be the relational query output by existing

algorithms that do not use the “lossless from XML” constraint. SQL(p) has an additional

76

join with the Site relation, which has been removed using the mapping information. This

leads us to the first important concept that we will use in developing an algorithm to

exploit the “from XML” constraint while doing path expression to SQL translation.

Concept 1: For every path p in the result automaton SCP , we need to identify a

suffix p′ that has the following property: SQL(p′) will not return results corresponding

to any path not appearing in the query result.

Now let us revisit query Q1 from Section 4.1. The output of the PathId stage is

the cross-product schema S1
CP given in Figure 19. There are six satisfying paths in the

schema (we will denote these p1 to p6). We need to find the shortest suffix for each of these

paths that will together result in a correct SQL query. While we can handle each path

independently in a fashion similar to query Q1, we perform an additional optimization

— we combine the queries for different paths whenever possible. In addition to grouping

the SQL queries for paths with similar relational joins, this optimization also allows us

to eliminate longer prefixes as we will see in this example.

Consider the path p1 =<1, 2, 3, 9, 11, 12>. We start with the suffixes p′1 = {<12>}

for this path. The path q = {<1, 2, 8, 29, 31, 32>} is in conflict with p′1. So, SQL(p′1) will

have results corresponding to the path q. But this time q appears in S1
CP , which means

that it is a part of the query result (categories of South American items are a part of the

query result). The corresponding suffix is q′1 = {<32>}. At this point, if we issue SQL

queries for the two paths p′1 and q′1 separately, then we will get duplicate results. All the

item categories will be returned twice. So, we need to go further up the tree for both

the paths. On the other hand, if we issue a common query for the two paths, then we

need not worry about the common results across these paths. In this case, since the two

paths p′1 and q′1 have the same relation sequence (scan of the InCat.Category column),

we can combine the queries for these two paths. Similarly, the other four schema nodes

77

that have the annotation InCat.category are also part of the query result. So, the suffix

p′1 = {<12>} suffices for the path p1. We reach a similar decision for the other five paths.

Finally, combining the queries for the six paths, we obtain the final relational query SQ2
1

(see Section 4.1) that is a scan of the InCat.Category column.

Notice how by using the “lossless from XML” constraint, we are able to replace a

query SQ1
1 that was the union of six queries, each with 2 joins, by a simpler scan query

SQ2
1.

Concept 2: Suppose we are considering suffixes p′ and q′ for paths p and q respec-

tively. We need not worry about the queries corresponding to the two suffixes generating

common results as long as we issue a combined single SQL query for them.

From the above discussion, we see that by making sure that the above two concepts

are satisfied we can find the required prefix for every path in the cross-product schema.

Notice that we are able to do this only because the “lossless from XML” constraint holds.

This constraint implies that there is a “one-to-one” correspondence between the relational

data and the XML data. So, if we know that for a path p and a suffix p′, SQL(p′) satisfies

concept 1, we are then guaranteed that it does not return any extra results. This holds

because the mapping completely captures the relational data, i.e., all the root-to-leaf

queries together represent the entire relational data. Similarly, concept 2 holds because

the relational data stores values corresponding to each XML element separately, i.e., the

result of no two root-to-leaf queries will have the value of the same XML element.

On the other hand, if we did not use the fact that the “lossless from XML” constraint

holds for this instance, things will be a lot different. For example, suppose the join

between Item and InCat relations was not a key foreign-key join. Then, the “lossless

from XML” constraint may no longer be valid — for example, RtoL(12) may return some

tuples in the InCat relation multiple times as they join with several tuples in the Item

78

relation. So, SQ2
1 will no longer be a correct translation for query Q1. The fact that the

“lossless from XML” constraint is satisfied makes it a lot simpler to design a good query

translation algorithm.

In the above examples, notice that we used the notions of combinability and conflict

in the context of two paths in the mapping. We formally define these notions and then

describe the pruning and SQLGen stages of the algorithm.

4.2.2 Terminology

We next introduce some terminology that will be used in the full specification of the

translation algorithm. Whenever we refer to paths, we mean paths in the schema graph

that end in leaf nodes.

Let p =<n1, . . . , nk> be a path in the schema graph, ending in a leaf node. We

refer to nk as p.last. Let RelSeq(p) denote the sequence of relations joined in SQL(p)

in a top-down order. For example, for the path p =<1, 2, 3, 9, 11, 12>, RelSeq(p) =

<Site,Item,InCat>.

We say that two paths p1 and p2 are combinable if the corresponding relation sequences

RelSeq(p1) and RelSeq(p2) are the same and Annot(p1.last) and Annot(p2.last) are the

same. Note that combinability is an equivalence relation. Combinable paths are useful

in identifying when we can rewrite a union query, say (SQL(p1) union all SQL(p2)), as

a SQL query without unions. For example, let p
′

=<1, 2, 8, 29, 31, 32>. Then the paths

p and p
′

are combinable. From the “lossless from XML” constraint we know that the

resulting query does not have to retain any duplicate results. This allows us to combine

the two queries even if they have overlapping results.

Given two paths p1 and p2, we define when the two paths are in conflict. Intuitively,

79

the two paths are in conflict if the result of SQL(p1) and SQL(p2) will have common

results. Here, by common results, we refer to the two queries returning the value of a

common element in the original XML document. For example, the paths p and p
′

are

not in conflict as they return the categories of Africa items and South America items

respectively. So, while the results of SQL(p) and SQL(p
′

) may have common values,

these will be the values of different elements in the original XML document. On the

other hand, consider p
′′

=<29, 31, 32>. The two paths p and p
′′

are in conflict as the

corresponding SQL queries overlap: the categories of africa items are common to the two

query results.

Given two paths, p1 and p2, we say that they are in conflict if the following conditions

hold.

• RelSeq(p1) is a suffix of RelSeq(p2) or vice versa.

• Without loss of generality, let RelSeq(p1) be a suffix of RelSeq(p2). Let p3 be

the longest suffix of p2 such that RelSeq(p1) = RelSeq(p3). Let RelSeq(p1) =

RelSeq(p3) =<R1, . . . , Rk>. Then,

there is no column Ri.C such that SQL(p1) has a selection Ri.C = val1, and

SQL(p3) has a selection Ri.C = val3, where val1 6= val3.

The former condition checks if the two paths differ in the sequence of relations joined.

If each sequence has a join not present in the other, they will not generate common

results. We know this from the “lossless from XML” constraint. The latter condition

checks if a conflicting edge annotation is present on any relation across the two paths; if

so they will not generate common results and are not in conflict.

If p1 is not in conflict with p2, then we say that p1 is safe from p2. In the presence

of the “lossless from XML” constraint, we know that no two root-to-leaf paths p1 and p2

80

procedure Pruning(SCP ,S)
begin

1. Let PathSet = {<n> |n is a leaf node in SCP}.
2. do
3. foreach (p ∈ PathSet)
4. Let Conflict(p) denote the set of root-to-leaf paths in S

that are in conflict with CurrPath(p)
5. If (∃p′ ∈ Conflict(p) that does not match the query)
6. Increment p by one level
7. endFor
8. while (some path was modified in the previous iteration)
9. do
10. Let p and q be two paths in PathSet that are in conflict
11. If p and q are not combinable
12. Let RelSeq(p) be no longer than RelSeq(q)
13. Increment p by one level
14. while (some path was modified in the previous iteration)
15. Return PathSet
end

Figure 20: Pruning stage for tree XML schema

have common results. In other words, root-to-leaf paths are always safe from each other.

Observe that this may not be true if the integrity constraint is not satisfied.

4.2.3 The Pruning Stage

We present the pruning algorithm for translating path expression queries in Figure 20.

Recall that the result of the PathId stage is SCP , which represents all the matching paths

in S. For each path, instead of constructing the SQL query from the root of the schema,

our goal is to start bottom-up and stop at the lowest possible level.

So, for every path p ∈ SCP , we start with just the leaf node and keep going up until

we find a suffix p′ that satisfies the following property:

For every path p′′ in conflict with p′

• p′′ appears in the cross-product schema SCP and

81

• The queries corresponding to p′ and p′′ are combinable.

For every path p, steps 2-8 make sure that conflicts with paths not in the query

result are resolved. Steps 9-14 make sure that duplicate results are not produced, i.e,

conflicts with paths appearing in the query result are resolved, if the corresponding

relation sequences are not combinable. We do the above computation for all paths in SCP

and stop when we have found the required suffixes for all of them. Since, each iteration

in both the while loops will increment the length of the path, they will terminate in at

most d iterations (combined), where d is the length of the longest path in SCP .

In the pruning stage, for each path p ∈ SCP , we have removed some prefix of p

and have the suffix path p′ in PathSet instead of p. For correctness, we need to argue

that the same results are returned if we use p′ instead of p. Since the “lossless from

XML” constraint is satisfied, it can be easily shown that every suffix p′′ of p will return

a superset of results, i.e., SQL(p) ⊆ SQL(p′′). So, we need to make sure that extra

results are not returned. In the above algorithm, through additional checks we make

sure that this does not happen, i.e., tuples corresponding to schema paths not matching

the query are not returned and tuples corresponding to schema paths matching the query

are returned exactly once. The first while loop in the algorithm takes care of the former

and the second while loop takes care of the latter. These checks make use of the fact

that the “lossless from XML” constraint is satisfied.

While incrementing a path by one level, we make the following optimization. If the

edge we traverse to go up one level has an edge annotation on it, we split the operation

of going up one level into two parts: (1) use the edge annotation to see if that suffices

and (2) go up to the parent node, if necessary. By doing this optimization, we may be

able to save a join operation. We will later show an example in Section SQLGen that

82

uses this optimization.

4.2.4 The SQLGen Stage

The result of the pruning stage is a set of paths, PathSet in the cross-product schema

SCP . We partition this set based on the relation sequence and issue a SQL query for

each equivalence class created. The final query is the union of the queries corresponding

to all the partitions.

Suppose a single equivalence class C had two paths p1 and p2 in it. Since p1 and p2

are combinable, SQL(p1) and SQL(p2) involve the same relations. Thus, the from clause

of the grouped query SQL(C) contains these relations. Let Ccommon denote the set of

conditions that are common to both SQL(p1) and SQL(p2). Let Ci denote the conditions

corresponding to pi that are not present in Ccommon. The where clause has the condition

(Ccommon and (C1 or C2)). This solution generalizes when we have to combine more than

two paths.

We have the following theorem about the correctness of the above query translation

algorithm.

Theorem 2 Given a tree XML-to-Relational mapping T , a path expression query P and

the guarantee that the “lossless from XML” constraint is satisfied, the mapping aware al-

gorithm outputs a correct equivalent SQL query.

Proof: The result of the PathId stage is a set of paths, PathSet, in the cross-product

schema SCP . From Proposition 2 in Chapter 3, we know that the set SCP has exactly

all the schema paths matching the query. So, the union of the queries corresponding to

all root-to-leaf paths in SCP is a correct SQL translation. In the pruning stage, for each

path p, we remove some prefix of p and have the suffix path p′ in PathSet instead of p.

83

For correctness, we need to show that the same results are returned if we use p′ instead

of p.

Let P1, P2, . . . , Pk be the sets of paths obtained by partitioning PathSet based on

combinability of the paths. We show that for each partition Pi = {p1
i , p

2
i , . . . , p

l
i}, the

SQL query SQL(Pi) constructed in the SQLGen stage returns the same results as

∪l
j=1RtoL(pj

i .last).

First, we show that SQL(Pi) ⊇ ∪l
j=1RtoL(pj

i .last) (under multiset semantics). Since

the “lossless from XML” constraint is satisfied, we show that every suffix p′′ of a root-

to-leaf path p will return a superset of results, i.e., SQL(p′′) ⊇ SQL(p). Let R.C be

the annotation for p.last. Note that the prefix only adds additional selection and join

conditions. So, any tuple from relation R that appears in the result of SQL(p) will also

appear in the result of SQL(p′′). Moreover, since the “lossless from XML” constraint

holds, each tuple from relation R appears at most once in the result of SQL(p). Hence

it follows that SQL(p′′) ⊇ SQL(p). Since, this holds for each path in Pi individually, we

have SQL(Pi) ⊇ ∪
l
j=1RtoL(pj

i .last).

We next show that SQL(Pi) ⊆ ∪l
j=1RtoL(pj

i .last) (under multiset semantics). Sup-

pose a tuple t from relation R appears in the result of SQL(Pi). Since the “lossless from

XML” constraint is satisfied, this tuple t will appear in the result of SQL(q) for some

path q in the XML schema ending in a node annotated with a column R.C. Depending

on whether the path q matches the query and, if so, how the pruning stage handled

the path, there are three possibilities: (i) q does not match the query, (ii) q matches

the query but the corresponding suffix does not appear in Pi (iii) q matches the query

and the corresponding suffix appears in Pi. Scenario (i) cannot happen as steps 2-8 (the

first while loop) in the algorithm in Figure 20 ensure that the results returned by every

84

suffix query are non-overlapping with all the schema paths not satisfying the query. Sim-

ilarly, scenario (ii) cannot happen as the second while loop (steps 9-14) ensure that the

results returned by every suffix query are non-overlapping with schema paths belonging

to a different partition in PathSet. So scenario (iii) is the only option that implies that

SQL(Pi) ⊆ ∪l
j=1RtoL(pj

i .last).

We have shown that for each partition Pi the SQL query constructed by the map-

ping aware algorithm is equivalent to the ∪l
j=1RtoL(pj

i .last). Since the mapping aware al-

gorithm does not perform any optimizations across partitions, the correctness of the al-

gorithm for the entire query follows. 2

In the example queries we saw earlier, the second while loop is trivially satisfied —

for Q1 all the six paths in PathSet were combinable, while for Q2 there was only one path

in PathSet. We next present an example scenario where we find two paths that appear

in the result, but are not combinable.

We use the example XML schema and mapping in Figure 21 in the following discus-

sion. All a elements are stored in relation R1. The child elements are all stored in relation

R2, with the pc column distinguishing between b,c and d children. Similarly, the children

of b elements are stored in relation R3, with the pc column distinguishing between x and

y children. The children of c and d elements are all stored in relation R3. Since all the

children are x elements in these two cases, the pc column is not specified in these cases.

An important point to note here is that since the value of the column is not specified for

tuples corresponding to schema nodes 56 and 57, any value in the corresponding domain

(including 1,2 and null) is allowed. As we will see later, this difference in the information

available about the column R3.pc needs to be handled correctly when we attempt to find

85

b c

x y

a

d

xx
R3.C1 R3.C1 R3.C1R3.C1

pc = 1

pc = 1 pc = 2

pc = 3
pc = 2

**
**

*
*

*

path from root

5352
R2

51
R2R2

57565554

50
R1

S1

c

x

d

xx
R3.C1 R3.C1R3.C1

pc = 1

pc = 3
pc = 2

**
*

*
*

5352
R2R2

575654

b c

x

d

xx
R3.C1 R3.C1R3.C1

pc = 1

pc = 1

pc = 3
pc = 2

**
*

*
*

*
5352

R2
51

R2R2

575654

PathSet PathSet1 2

Figure 21: Example mapping S1 to explain the pruning algorithm

the correct suffix for each path.

Notice that we are only concerned with the subtree rooted at element a and this

is only a portion of the entire schema. Let us assume that the element name x does

not occur anywhere else in the XML schema. Also, no other leaf node in the schema is

annotated with the column R3.C1.

Consider the evaluation of query Q3 that returns all x elements, //x. The PathId stage

will identify the three paths p1, p2 and p3 ending in nodes 54,56 and 57 respectively.

Suppose we execute the algorithm in Figure 20. After the first while loop (steps 2-8),

we observe that the suffixes are p′1 =<51, 54>, p′2 =<50, 52, 56 >, p′3 =<50, 53, 57>. The

only conflicting path p4 ends in node 55. For p1, the annotation on edge <51, 54> makes

it safe from p4. So, going up one level was sufficient. Note that the edge annotation was

sufficient in this case, and we did not need the join with relation R1 (annot(51)). For

p2 and p3, there was no annotation on the edges <52, 56> and <53, 57>. So, we had to

go up one more level till node 51. The annotation on edges <50, 52> and <50, 53> are

different from the one on edge <50, 51>. Hence by going up two levels, p′2 and p′3 become

safe from p4.

86

Let us observe what happens if we skip the next while loop. The resulting PathSet

is shown in Figure 21 as PathSet1 and the corresponding SQL query SQ1
3 is

select R3.C1

from R3

where R3.pc = 1

union all

select R3.C1

from R2,R3

where R2.id = R3.parentid and R2.pc IN {2,3}

Notice how values of x elements corresponding to schema nodes 56 and 57 may appear

twice in the query result. This happens when the pc column of these tuples has a value

of 1, which is valid as the XML-to-Relational mapping conveys no information about the

value of the pc column of these tuples. So, the above query is not a correct translation

for Q1. While it returns the correct set of results, it may return duplicates.

In order to avoid generating duplicate results, we go up the schema further (steps 9-

14 in algorithm 20) resulting in the set of paths PathSet2 shown in Figure 21. This will

result in the following correct SQL query SQ2
3:

select R3.C1

from R2,R3

where R2.id = R3.parentid and (R2.pc IN {2,3} or

(R2.pc = 1 and R3.pc = 1))

The above example illustrates the point that we should make sure that two paths

p′ and q′ that appear in the query result are not in conflict, if they are not combinable

(i.e., if we are going to construct the queries for them separately). The second while loop

(steps 9-14) in the algorithm takes care of this.

87

4.2.5 Some Alternative Solutions

We would like to point out that there are two other alternative solutions to the problem

in the above example: (i) generate and then remove duplicates or (ii) consider a different

definition of combinability that will generate more complex SQL queries. We explain

these two options next.

Generate and Eliminate Duplicates

Here, we apply a distinct clause finally when duplicate results may be generated in this

fashion. In this case, the final SQL query will be SQ3
3:

with temp(id,value) as (

select R3.id, R3.C1

from R3

where R3.pc = 1

union all

select R3,id, R3.C1

from R2,R3

where R2.id = R3.parentid and R2.pc IN {2,3}

)

select distinct(id,value)

from temp

If we follow this approach, we do not need the second while loop (steps 9-14) in the

pruning algorithm in Figure 20. However, we need to replace it with a check to see if the

distinct clause is required. This modification is shown in Figure 22.

In this approach, notice how we are generating duplicates and then eliminating them.

The assumption here is that this is likely to be a cheaper operation than following the

88

10. Let p and q be two paths in PathSet that are in conflict
11. If p and q are not combinable
12. DupEliminationRequired = true

Figure 22: Modified pruning stage

conservative approach, where additional joins are introduced. Moreover, situations when

duplicate elimination is required in the above fashion are unlikely to be common in

practice.

We can perform duplicate elimination in the XML storage scenario in a fairly simple

fashion: using the key field of the relation corresponding to the leaf nodes(id field)

suffices. If the query returns results from multiple relations, we apply a distinct clause

to each of them separately.

In contrast, a fairly complex mechanism is required to perform duplicate-elimination

in the XML publishing scenario [KKN04].

Changing the Definition of Combinability

Here, in order to handle the problem with PathSet1, we modify the definition of com-

binability of relations. Recall that according to our definition of combinability in Sec-

tion 4.2.2, we combine the queries for two paths if they are on the same relation sequence.

Suppose, we extend this to say that we will combine the queries even when one sequence

is a suffix of the other. Then, the following SQL query SQ4
3 will be produced:

select R3.id

from R3

where R3.pc = 1 or exists (

select*

from R2

89

whereR2.id = R3.parentid and R2.pc IN {2,3}

)

Notice how the common suffix appears in the main SQL query and the extra prefix

appears as a nested query. This translation works because the relational data satisfies the

“lossless from XML” constraint. As a result, we know that no tuple from relation R3 will

appear multiple times in the query result. So, using a nested subquery for the join with

relation R2 is correct. Notice how the structure of the final SQL query is considerably

modified with this definition of combinability — nested queries are introduced even for

simple path expression queries without predicates.

Discussion

From the above example, we notice that there are two important factors in designing a

mapping aware algorithm for tree schema: (i) whether we want to avoid generating dupli-

cate results (and, of course, removing them eventually) and (ii) the class of SQL queries

generated. We saw that for tree schemas there are at least three mapping aware algo-

rithms possible for simple path expression queries based on the answers to the above two

questions.

Notice how we are able to generate three different equivalent queries SQ2
3, SQ

3
3 and

SQ4
3 for the same XML query Q3. Identifying that these three queries are equivalent and

choosing among them will be non-trivial, if we did not use the additional knowledge that

the “lossless from XML” constraint is satisfied.

At this point, the reader may wonder if scenarios like the one discussed above are likely

to be common in practice. We believe the answer is “no” — in a lot of actual scenarios

the three algorithms will result in similar queries. Nevertheless, since we make minimal

90

assumptions about the XML-to-Relational mapping and do not interpret or place any

restrictions on the semantics of different relational columns (like the pc column in the

above example), the above mapping is a valid mapping. So, our algorithm has to (and

does) handle these inputs correctly.

4.3 Exploiting the “lossless from XML” constraint

for complex XML Schemas

In this section, we extend the techniques for exploiting the “lossless from XML” constraint

to more complex XML schemas: directed acyclic graph (DAG) and recursive schemas.

The outline of the algorithm remains the same as for tree XML schema (Figure 18). We

need to augment the pruning stage to address some additional challenges that arise for

complex XML schemas such as extending the notion of combinability to handle more

complex XML schemas.

4.3.1 Combinability for Complex Schema

Consider the mapping shown in Figure 23. Suppose the query result is the set of paths

shown in the figure. First of all, as shown in Chapter 3.2.1, enumerating all the match-

ing paths may be expensive, as the number of paths may be exponential in the size of

the DAG schema. So, the XML to SQL algorithm in uses the with clause in SQL99

to represent common computation present in the DAG schema. For example, the paths

<11, 14, 21, 24 >,<11, 14, 21, 25 >,<11, 15, 21, 24> and <11, 15, 21, 25> share some com-

mon computation as represented by the common schema nodes across them. So, the SQL

fragment generated will be

with temp 21 as (

91

x1 x2x1 x2 x1 x2

y1 y1 y1

z zz z

R2 R1 R2

S1 S1 S1

T1.C1 T2.C1 T1.C1 T1.C1

R1 x3 20

21 22

26 272524

23

R3R2

a1 a2 a3

R1

R0 R0 R0

one or more paths from the root

S2

1918
17

161514

11 12 13

pc = 1 pc = 2 pc = 3

a1 a2 a3 a4

Figure 23: Example mapping S2 to explain issues in defining combinability for complex
schema

selectS1.*

from R0,R1,S1

whereR0.id = R1.parentid and R0.parentcode = 1

and R1.id = S1.parentid

union all

selectS1.*

from R0,R2,S1

whereR0.id = R2.parentid and R0.parentcode = 1

and R2.id = S1.parentid

)

select T1.C1

from temp 21, T1

where temp 21.id = T1.parentid and a1

union all

select T2.C1

from temp 21, T2

92

where temp 21.id = T2.parentid and a2

Notice how the with clause is used to group together paths that have common com-

putation. In a similar fashion, the with clause is used to handle the other two subtrees

rooted at nodes 12 and 13 also. The final query result is the union of the three queries.

Let us revisit the definition of combinability of paths in this context. Suppose we want

to combine the SQL queries corresponding to the subtrees rooted at nodes 11 and 12.

This implies that we will have a single SQL query for the six paths. The following

problem arises: while the structure of the with clause (R0 ./ R1 ./ S1
⋃
R0 ./ R2 ./ S1)

is common for the two subtrees, the subtree rooted at node 11 has two suffixes, edges

<21, 24> and <21, 25>. On the other hand, the subtree rooted at node 12 has only one

suffix, edge <22, 26>. So, if we combine the with clause for the two subtrees in a simple

fashion, we will generate two spurious paths <12, 16, 22, 25> and <12, 17, 22, 25>. In

order to avoid this, we need to somehow differentiate between tuples corresponding to

nodes 21 and 22. One way to do this is to use the annotations on the incoming edges

to the nodes 11 and 12. This helps us in differentiating between tuples corresponding to

nodes 21 and 22 and the resulting query is:

with temp 21 22 as (

selectS1.*,R0.parentcode

from R0,R1,S1

whereR0.id = R1.parentid and R0.parentcode = 1

and R1.id = S1.parentid

union all

selectS1.*,R0.parentcode

from R0,R2,S1

93

whereR0.id = R2.parentid and R0.parentcode = 1

and R2.id = S1.parentid

)

select T1.C1

from temp 21 22, T1

where temp 21 22.id = T1.parentid and

((a1 and temp 21 22.parentcode = 1)

or (a3 and temp 21 22.parentcode = 2))

union all

select T2.C1

from temp 21 22, T2

where temp 21 22.id = T2.parentid and a2

and temp 21 22.parentcode = 1

Notice how if the annotations a1 and a3 are different, we again need to differentiate

between tuples corresponding to schema node 21 and 22.

Suppose we want to combine the SQL queries corresponding to the subtrees rooted

at nodes 12 and 13 instead. In this case, notice how the path <13, 20, 23, 27> has no

equivalent path in the other subtree. So, we need to be careful and ensure that we do

not create a spurious path <13, 20, 23, 26> (through the join R0 ./ R3 ./ S1 ./ T1).

To summarize, from the above discussion we observe that for DAG schemas, we have

a lot of options in defining when and how we combine the queries corresponding to

different subtrees. Notice that whenever we have subtrees that have a different set of

relation sequences (such as subtrees rooted at nodes 11,12 and 13), we have a choice:

either combine the queries by maintaining some more state information or construct the

94

queries separately. Whenever we need to maintain state information, we are also making

the where clause of the SQL query complex. More importantly the relational query

optimizer may have problems in optimizing the final SQL query efficiently, as it has no

way of interpreting the semantics of this additional state information.

In this thesis, we use a simple definition for combinability over complex schemas:

one that requires minimal additional state information. Intuitively, we combine two

subtrees if they are similar: the joins involved in each part of the resultant query are

identical (the selection conditions can be different). This definition of combinability

extends naturally to recursive schema also. Notice that this is a generalization of the

definition of combinability in Section 4.2.2 for single paths. We next define this formally

as follows.

A graph path gp corresponds to a subgraph of the schema. It is a concise way of

representing a large number (possibly infinite) paths. Let Paths(gp) denote the set of

paths represented by the graph path.

For a graph path gp, let Template(gp) denote the corresponding graph constructed

based on the relational annotations. The template graph represents the structure of

the SQL query corresponding to the subtree. For example, Template(11) will be a graph

with five nodes, one for each node in the subtree (since each edge traversal corresponds to

a join operation). Each node will be labelled with the name of the corresponding relation.

In this case, the nodes will be labelled with relation names R0,R1,R2,T1 and T2. For each

edge e ∈ gp that corresponds to a join between two relations, we add a corresponding

edge in the template graph. Note that the template graph is similar to the original

subtree; if the latter is recursive the template graph is recursive as well.

We say that two graph paths gp1 and gp2 are combinable if the corresponding tem-

plates are isomorphic.

95

procedure Pruning(SCP ,S)
begin

1. Let PathSet = {<n> |n is a leaf node in SCP}.
2. do
3. foreach (p ∈ PathSet)
4. Let Conflict(p) denote the set of root-to-leaf paths in S

that are in conflict with p
5. If (∃p′ ∈ Conflict(p) that does not match the query)
6. Increment p by one level
7. endFor
8. while (some path was modified in the previous iteration)
9. do
10. Let p and q be two (graph) paths in SCP that are not combinable
11. If ∃ path q′ ∈ q such that q′ is in conflict with p
12. Let p′ be the path ∈ p that is in conflict with q ′

13. Increment p′ by one level
14. while (some path was modified in the previous iteration)
15. Return PathSet
end

Figure 24: Pruning stage for recursive XML schema

Just like the tree schema case, the above definition makes use of the fact that as the

“lossless from XML” constraint is satisfied, we can combine any two graph paths even

if they have overlapping results. Since the result of a path expression query returns the

values of all matching XML elements (exactly once), and there is a “one-to-one” corre-

spondence between XML elements and relational tuples, this implies that no relational

tuple will appear multiple times in the result of any equivalent SQL query.

4.3.2 The Pruning Stage

The pruning algorithm for recursive mappings is shown in Figure 24. While it looks very

similar to the tree schema case, there are some important differences. These include the

definition of combinability and conflict, and how we keep track of all the matching paths

in PathSet.

96

S3
CP
4
CP
4

PSCP
4

SCP
5

PCP
5

E0

E1 E2

E3

E4 E5

E6

E7 E8

E9

E10

* *

* *
*

*
* *

* *

*
*

*

* *

R0

R1 R2

R10

R9
*

R8R7R4

R6

R3

R5

elemid
R10.elemid

E6R6

E10

elemid
R10.elemid

*
R10

E0

E1 E2

E3

E4 E5

* *

* *

*
*

* *

R0

R1

R4

R3

R5

E6R6

E10

elemid
R10.elemid

*
R10

R2

E0

E3

E4 E5

*
*

* *

R0

R4

R3

R5

E6R6

E10

elemid
R10.elemid

*
R10

E1R1

*

*

E3

E4 E5

*
*

* *

R4

R3

R5

E6R6

E10

elemid
R10.elemid

*
R10

E1R1

*

Figure 25: Examples to illustrate the mapping aware algorithm

We say that a path p is in conflict with a graph path gp if p is in conflict with some

path q ∈ Paths(gp).

Another important difference is that the set of matching paths is maintained as sub-

graphs of the cross-product schema (as there may be infinitely many of them if we

enumerate them). Contrast this with the algorithm for tree schema where we explicitly

keep track of all the paths. We describe how we increment the graph paths by one level

(steps 6 and 13) through some examples later in this section.

Also note that in order to check the condition in Steps 4-5, we need to enumerate all

the paths that do not appear in the query result. Since the query automaton for simple

path expression queries is a deterministic finite automaton, we can do this efficiently.

The SQLGen stage is similar to the original algorithm proposed in Chapter 3.2.2,

with a slight modification. We combine the queries corresponding to two different graph

paths in PathSet, if they are combinable. To do this, we partition the graph paths

based on combinability (similar to Section 4.2.4) and construct the SQL query for each

97

PCP
7SCP

7SCP
6 PCP

6

E0

E1 E2

E3

E7 E8

E9

* *

* *
*

*
*

* *

R0

R1 R2

R9
*

R8R7

R3

E10

*

R10

elemid
R10.elemid

E10

*

R10

elemid
R10.elemid

E9
R9

E7 E8

E9
*

*

* *

R9
*

R8R7

E2
R2

*

R10E10

elemid
R10.elemid

E7 E8

E9
*

*

* *

R9
*

R8R7

E2
R2

E0
R0

*

*

R10E10

elemid
R10.elemid

Figure 26: Examples to illustrate the mapping aware algorithm

equivalence class in a fashion similar to the algorithm in Chapter 3.2.2.

Theorem 3 Given an XML-to-Relational mapping T , a path expression query P and

the guarantee that the “lossless from XML” constraint is satisfied, the mapping aware al-

gorithm outputs a correct equivalent SQL query.

Proof: The proof is similar to the proof of Theorem 2 and relies on the fact that the

pruning stage only removes the prefix of a path when it is safe to do so. In particu-

lar, the algorithm makes sure that for the current suffix path under consideration there

is no overlap in results with schema paths not matching the query or with paths in

PathSet that are not combinable. Combining this with the fact that the “lossless from

XML” constraint holds, we see that the pruning stage does not alter the results. Then

the correctness of the mapping aware algorithm follows from the correctness of the orig-

inal XML to SQL algorithm (Theorem 1 from Chapter 3). 2

98

We now explain some example query evaluations over the XML schema S3 in Figure 25

(same schema we saw earlier in Figure 13 in Chapter 3).

Consider query Q4 =/E0//E6/E10/elemid. After the PathId stage, we obtain the

cross product mapping S4
CP shown in Figure 25. If we directly translate this into SQL,

we will get a complex query involving two with clauses, corresponding to elements E3

and E6. On the other hand, by using the pruning algorithm in Figure 24, we obtain the

pruned mapping P 4
CP . The corresponding SQL query is fairly simple. Let us look at how

the algorithm worked in this case. We start with the single path p = elemid in PathSet.

Since, path p1 =<E0,E2,E3,E7,E9,E10,elemid> does not appear in the query result and

is in conflict with p, we increment p by one level. The same conflict persists and so we

go up one more level. Now, p =<E6,E10,elemid> and p1 is no longer in conflict with

p (they have different relation sequences now). So, we have completed steps 2-8 of the

algorithm. Now since there is only one path left, steps 9-14 can be skipped and we return

PathSet as the result.

Let us now consider Q5 =/E0//E1//E6/E10/elemid. The result of the PathId stage,

S5
CP , is shown in the figure. Notice that there are two satisfying paths. Let us see what

happens in the pruning stage. We start with the single path p = elemid in PathSet. Just

like the previous query, we need to go two levels higher and p =<E6,E10,elemid>. Notice

how while p1 is no longer in conflict with p, the path p2 =<E0,E2,E3,E4,E6,E10,elemid>

is in conflict with p. Also, p2 is not in the query result. So, we need to increment p by

one more level. Element E6 has two parent nodes and so we go up along both paths. In

the process, a single graph path p gets split into two graph paths p′ and p′′, rooted at

nodes E4 and E5 respectively. p′ is still in conflict with p2, while p′′ is in conflict with

p3 =<E0,E2,E3,E5,E6,E10,elemid>. So, we increment the paths, p′ and p′′, by one level

each. The two paths are merged into one (say p rooted at E3), but the conflict with p2

99

and p3 persist. Finally, when we increment p by one more level to get the graph P 5
CP in

the figure. This graph path is safe from both p2 and p3 (join with relation R1, instead of

relation R2). Also, there are no other conflicting paths. Hence, P 5
CP is the result of the

pruning stage.

We now consider some example queries that match recursive parts of the schema.

Consider query Q6 = /E0//E9//E10/elemid. The set of matching paths S6
CP is shown

in Figure 26. The result of the pruning stage P 6
CP is shown in the figure. Notice how

the join between relations R9 and R10 suffices to make the path safe from all the paths

not satisfying the query.

We consider query Q7 = /E0/E2/E8//E10/elemid to illustrate what happens when

we need to go up the schema and enter a recursive component. The result of PathId S7
CP

is shown in the figure. Notice how the edge <E3,E7> does not match the query. So,

query results corresponding to all the paths that pass through this edge need to be

avoided in the final SQL query. The pruned schema P 7
CP is shown in the figure. Notice

how we have to go up the recursive component during step 6 of the algorithm. We start

with elemid and go up two levels till E9. The next time we have to increment a level,

we enter the recursive component (comprising of nodes E7,E8 and E9). Here, we use

a simple algorithm to go up the schema: include the entire recursive component in one

step. Finally, when we add the element E2, we can stop. In this particular case, we

managed to save a single join operation with relation R0.

4.3.3 Schema-Oblivious Storage

The examples in the preceding sections may give the erroneous assumption that the

optimizations discussed in this chapter depend somehow upon the relational schema into

100

Regions

Africa Asia Australia

Site

Europe
987654

3

1

Item

Incategory

*
10

12

Item

Incategory

*
35

37

SAmericaNAmerica

.....................
e6

Category14elemid13 elemid Category
38 39

36elemid
11

elemid

2
elemid

Edge

Edge
Edge.value

Edge.value

Edge.value Edge.value Edge.value Edge.value

Edge.value

Edge

Edge

Edge

Edge

Edge

Edge

a1

a1
a1

a1 : tag = (element name of destination node)

a1
a1a1

Figure 27: XMark schema mapped to the Edge relation

which the documents are shredded reflecting a good deal of the XML schema for the

document being shredded. In this section we show that this is not true — in fact, the

“lossless from XML” constraint is useful even when the relational schema is generic and

reflects nothing of the XML schema (a scenario we term “schema-oblivous storage.”)

In schema-oblivious XML storage, the relational schema is fixed independent of the

XML schema. This option may be chosen either because the XML schema may is unavail-

able during data load time or due to the fact that the XML schema changes frequently.

The Edge approach [FK99] is one example of schema-oblivious storage. Here, the

input XML document is viewed as a graph and each edge of the graph is represented as

a tuple in a single table. This Edge relation has 5 columns, id, parentid, tag, order

and value.

During query translation time, let us assume that an XML schema is either given

or has been inferred from the XML documents loaded into the system. For example, a

sample XML-to-Relational mapping is shown in Figure 27. All the nodes are annotated

101

with the same relation name Edge. All the edges have similar annotations. For example,

an edge e = u → v has the annotation “tag = element name(v)”. Notice each edge

traversal will translate into a join operation.

Since this input scenario satisfies the “lossless from XML” constraint, the query trans-

lation algorithms presented earlier in this chapter are applicable. For example, the query

Q8 =/Site//Item//Category will translate into the following two-way join query over the

Edge relation.

select E2.value

from Edge E1, Edge E2

where E1.tag = ’InCategory’ and E2.tag = ’Category’

and E1.id = E2.parentid

The above query was obtained by exploiting the “lossless from XML” constraint. In

contrast, if we use just the XML schema information, we will identify the six matching

paths and the equivalent SQL query will be the union of six queries, one corresponding to

each matching schema path (similar to query SQ1
1 in Section 4.1). Each of these queries

will be a join between six copies of the Edge relation. If we do not use the XML schema

information at all (like the algorithm proposed in [FK99]), the resulting SQL query will

be a recursive SQL query (due to the // in the XML query).

The above example illustrates how the “lossless from XML” constraint can be used

to generate efficient SQL queries in a wide spectrum of scenarios: ranging from schema-

based to schema-oblivious techniques.

102

+

body

adex

ad−instance

? ? ?

....

employment

location

... multiple paths ...

transportation

LOC

address geo−area
LOC.areaLOC.address

ADS

ADEX

ADEX

EMP
real−estateRE TRANS

Figure 28: Part of ADEX XML schema

ADEX(adid, . . .) Metadata for each advertisement
ADCONTACTS(personid, name, title, . . .) Contact People appearing in ads
ADS(id, adid, instanceno, category) Instance of a particular ad
RE(id, category, . . .) Information about real-estate ads
TRANS(id, category, . . .) Information about transportation ads
EMP(id, category, . . .) Information about employment ads
LOC(id, address, zipcode, area) Location information for all ads
JOBCAT(id, category,. . .) Category info for employment ads
JOBREF(id, reference,. . .) Reference info for employment ads

Table 3: Part of Relational Schema for ADEX dataset

SITE(id,...) Information about the auction site
ITEM(id,siteid,continent,...) Items available for auction
INCATEGORY(id, itemid, category,...) List of categories for each item
CATEGORY(id,name,...) Information about all categories
OPENAUCTION(id,itemid,...) Information about currently active auctions
BIDDER(id, auctionid, personid,...) Bidder information for open auctions

Table 4: Part of Relational Schema for XMark dataset

103

Speedup Speedup
Queries (Cold buffer) (Warm buffer)

A1 Get the number of open-house ads in the campus area 1.22 1.15
A2 Get the number of real-estate ads in the campus area 2.73 3.25
A3 Get the addresses of ads in the campus area 27.05 31.1
X1 Get the number of items in a particular category 2.69 5.56
X2 For a particular person, get categories of items for which

(s)he made a bid 5.35 13.20

Table 5: Relative performance improvement obtained by the mapping aware algorithm

4.4 Experimental Study

The examples in this chapter showed that while published algorithms often translate

XML queries into fairly complex SQL queries, often there are equivalent queries that

looks much simpler. The mapping aware algorithm we presented in the previous sections

achieve this goal. An important question to answer at this point is whether the associated

performance gains are substantial. In order to demonstrate that this improvement can be

sizable in practice, we performed an experimental study using two datasets: a synthetic

ADEX dataset conforming to a standard advertisement schema [Ade] and a dataset from

the XMark Benchmark [XMa]. Since all the prior techniques were applicable only for non-

recursive XML schema, we only consider XML queries that correspond to non-recursive

parts of the XML schema.

The ADEX dataset conforms to the standard DTD being developed by the Newspaper

Association of America Classified Advertising Standards Task Force [Ade]. This standard

is intended to pave the way for the aggregation of classified ads among publishers on the

Internet, as well as to enhance the development of classified processing systems. Part of

the ADEX schema is shown in Figure 28. We generated synthetic data conforming to

the ADEX schema. This generated data consists of 100K advertisements and 200 publi-

cations, and is approximately 150 MB. The XMark Benchmark [XMa] schema contains

information about an auction database and we used the standard 100 MB dataset defined

104

in the benchmark. A brief description of the relations in the relational schema for the

ADEX and XMark datasets is given in Tables 3 and 4 respectively. For both scenarios,

we built indexes on all columns that appeared in a query. We ran the experiments using

the IBM DB2 database on a Linux workstation with an Intel 800 MHZ Pentium processor

and 256 MB of main memory. The buffer pool was set to 32 MB.

We compare the execution times we measured for the queries in Table 5. The queries

labeled Ai are on the advertisement dataset, while those labeled Xi are on the XMark

dataset. For each XML query, we generated relational queries using prior published algo-

rithms and used the best timing for comparison with our approach, the mapping aware al-

gorithm. The speedups obtained in execution times are given in the table. The XML

queries and the SQL queries used in these experiments are given in Appendix A.

The relative improvement in performance ranges from 1.15 to 31. In general, by using

the mapping information we do no worse than any of the prior strategies; so the relative

performance is always greater than or equal to 1. We found that the actual performance

improvement depends on two main factors: (i) the number of satisfying paths that can

be merged together due to the fact that they have the same relation sequence and (ii)

the length of the prefix that can be eliminated.

For example, the wild card in query A1 had two satisfying paths, while that in A2

and A3 had seven and twenty satisfying paths respectively. The response times show

that as the number of satisfying paths for a wild card increases, the benefit obtained by

our approach also increases considerably.

Similarly, queries X1 and X2 on the XMark dataset also had significant speedups

ranging from a factor of 2.7 to a factor of 13.2. The maximum speedup was smaller in

these cases relative to the ADEX dataset as the maximum number of satisfying paths

for a wild card is six for the XMark schema.

105

To summarize, we see that using our mapping aware translation algorithm, we get

significant performance benefits. This improvement is markedly higher when the XML

query has wild cards in it.

4.5 Summary

We looked at the XML-to-SQL query translation problem from a performance perspec-

tive. We showed how due to the mismatch between the XML and relational data models,

the SQL queries produced in XML-to-SQL query translation are often unnecessarily com-

plex, even for simple input XML queries. By using the simple fact that the “lossless from

XML” constraint holds for the XML storage scenario, we presented an algorithm that

uses the mapping information in an intelligent fashion to generate efficient SQL queries.

The algorithm translates path expression queries over recursive XML-to-Relational map-

pings and the quality of the final SQL queries is significantly better than those output

by prior query translation algorithms in many cases.

106

Chapter 5

Generating Efficient SQL Queries in

the Publishing Scenario

As we discussed in Chapter 4, the SQL queries produced in XML-to-SQL query transla-

tion are often unnecessarily complex, even for simple input XML queries. In many cases,

there is a much simpler equivalent SQL query. This observation motivated us to search

for techniques that make use of readily available semantic information to improve the

quality of the generated SQL. For the XML storage scenario, we showed in Chapter 4 how

we can fully exploit the “lossless from XML” constraint to use the mapping information

in an intelligent fashion and generate efficient SQL queries.

An obvious question is whether the same techniques can be extended to the XML

Publishing scenario as well. Unfortunately, the answer is “no” as the relational data is

no longer dependent on the XML view definition. Recall that in the publishing scenario,

an XML view of pre-existing relational data is exported. As a result, the “lossless from

XML” constraint is not guaranteed to hold. So, in general, we cannot guarantee that

the optimizations in Chapter 4 are correct if applied directly to the XML Publishing

scenario.

However, in some cases, we can perform similar optimizations in the publishing sce-

nario if we are given information about what relational integrity constraints hold on the

underlying relational data. We present an example scenario in Section 5.1 to illustrate

107

SQL query Relational Query
Processor

XML Query

XML−to−Relational
mapping

XML Results

XML−to−SQL
Query Translator

Relational Results

Relational Integrity Constraints

Figure 29: Stages in using an RDBMS to evaluate an XML query

this idea. By using the relational integrity constraints, it is possible to find simpler

equivalent SQL queries during XML-to-SQL query translation. We follow this approach

in this chapter.

To understand the alternatives for how we can do this, consider the different stages

in the translation process as shown in Figure 29. Given an XML-to-Relational map-

ping, some relational integrity constraints, and an XML query, the XML-to-SQL query

translator generates an equivalent SQL query and hands it over to the relational query

processor. The relational query processor optimizes and executes the query, and returns

the results to the query translator, which adds the appropriate XML tags to the results

and returns them to the user. There are two important points to note here: (i) As the

XML-to-Relational mapping and relational integrity constraints are valid across multiple

query invocations, they are shown separately, and (ii) We have made no assumptions

about whether the XML-to-SQL query translator is inside an RDBMS or in middleware.

This is the reason for using the term Relational Query Processor instead of RDBMS for

the box on the right.

There are two logical extremes in approaches toward obtaining efficient SQL queries

for XML workloads. One could generate suboptimal SQL queries using a fairly naive

108

translation algorithm, and then optimize the resulting SQL queries (SQL Optimization);

or one could use a more intelligent query translation algorithm and attempt to generate

efficient SQL queries directly (Intelligent Query Translation).

In Section 5.3, we will show that if we take the SQL Optimization approach, then in

order to obtain efficient SQL queries we have to solve the relational query minimization

problem under bag semantics. The techniques for query minimization in the published

literature rely on algorithms for query containment or query equivalence. Unfortunately,

these problems become intractable in even simple scenarios, making the SQL Optimiza-

tion approach impractical. In view of this problem, we need to find a way to generate

good SQL queries that does not require the solution of these intractable problems during

actual query translation.

In response to this goal, we propose that Intelligent Query Translation should be used

instead of SQL Optimization, and propose a translation approach that relies upon three

main ideas. First, we identify a class of tree XML-to-relational mappings called bijective

mappings. Bijective mappings cover a large class of the mappings we have encountered in

print, and they have the desirable property that they can be optimized using containment

and equivalence algorithms under set semantics instead of multiset semantics. They

subsume the class of “lossless from XML” constraint-preserving mappings that we saw

in the XML storage scenario.

Second, we observe that for a given XML schema over a given relational schema,

the SQL queries generated from XML queries are not arbitrary. That is, the XML-to-

Relational mapping determines the class of SQL queries that are likely to be output by

the XML-to-SQL query translation algorithm, which in turn fixes the class of queries

that need to be minimized. Since the XML-to-Relational mapping and the underlying

relational integrity constraints are independent of the query being optimized, we can

109

use them to precompute some useful information, and then use this information during

the runtime query translation. This way, we can move the potentially expensive task of

reasoning about integrity constraints to the precomputation phase, keeping the run time

overhead small.

Third, the conjunctive queries produced by XML to SQL translation are mainly chain

queries of the form

R(xn) : −R1(x1, x2), R2(x2, x3), . . . , Rn−1(xn−1, xn)

As we will show, in the XML to SQL translation domain, exploiting integrity constraints

enables the minimization of such queries by removing a prefix of the relational predicates.

We refer to this as prefix elimination. This turns out to be more tractable than general

conjunctive query minimization. Notice that this is similar to the prefix-elimination

optimization we performed in the mapping aware algorithm in Chapter 4.

We show that by exploiting the above three ideas, the XML-to-SQL query transla-

tion problem can be solved in polynomial time for path expression queries over bijec-

tive tree mappings. Our proof works by presenting a query translation algorithm that

solves the problem with the required efficiency. Our algorithm works correctly even over

non-bijective mappings; it identifies the bijective portions of the mapping and performs

more efficient query translation in those parts. This translation algorithm produces SQL

queries that in many cases are far more efficient than those produced by previously

published translation algorithms.

The rest of the chapter is organized as follows. In Section 5.1, we present an ex-

ample scenario to illustrate the problems with published XML-to-Relational translation

algorithms. Next we define the query translation problem in Section 5.2. Then, in Sec-

tion 5.3, we present some of the known complexity results we bump into if we attempt

110

...

...

...itemid category

continentid

id

siteid

id

Incat

Item

Site

e1 e2 e3 e4 e5 e6

e6: Site.id = Item.siteId and Item.continent = ’samerica’

e1: Site.id = Item.siteId and Item.continent = ’africa’

...
..

Regions

Africa Asia Australia

Site Site

Europe
987654

3

1

Item

Incategory

*

InCat

10

12

Item

Incategory

*

InCat

35

37

SAmericaNAmerica

.....................

Category1413

InCat.category

Item.id

Category
38 39

InCat.id

36
11

Item.id

2

Item Item

id

id

id

id

id
Site.id

InCat.id InCat.category

* * * ** *

Figure 30: Sample relational schema and corresponding XML view

to minimize the SQL queries after generating them. We describe our strategy for more

intelligent query translation in Section 5.4. A more formal description of the various

components of this approach is presented in Section 5.5.

5.1 Motivation

In this section, we revisit the example discussed in Section 4.1 from an XML publishing

viewpoint. We show how even simple XML queries can give rise to fairly complex SQL

queries if we use published translation algorithms. On the other hand, we can identify

simpler equivalent SQL queries by making use of the relational integrity constraints on

the underlying relational data.

Part of a sample relational schema for an auction database is shown in Figure 30.

The figure also shows one way of exporting this data as XML. The example XML schema

is part of the XMark benchmark [XMa] schema. Each node in the XML schema is

annotated with a table name, to indicate the relational table that corresponds to the

element represented by the node. Each leaf node has a column name next to it, which

111

indicates the column in which the value of corresponding element is stored.

Consider the evaluation of the following query Q1, which returns all the item cate-

gories: //Item/InCategory/Category.

As described in Chapter 4.1, previously published algorithms will result in the fol-

lowing SQL query SQ1.

select C.category

from Site S, Item I, InCat C

where S.id = I.siteid and I.id = C.itemid and I.continent=‘africa’

union all ... (6 queries one for each continent except Antarctica)

Suppose furthermore that the underlying relational schema has the following domain

integrity constraint (in addition to the key and foreign key constraints shown in the

figure): the column Item.continent has only six potential values {asia, africa, australia,

europe, namerica, samerica}.

For the above query, we have found through experimentation that the optimizers in

current relational systems will use foreign key constraints to eliminate some redundant

joins. For instance, the join between Site and Item can be removed. Though the join

between Item and InCat is a key-foreign key join, it cannot be removed due to the con-

dition on Item.continent. Thus the query as rewritten by a relational optimizer becomes

the new query SQ1
1:

select C.category

from Item I, InCat C

where I.id = C.itemid and I.continent = ‘africa’

union all ... (6 queries one for each continent except Antarctica)

112

We have seen that existing commercial RDBMS optimizers convert SQ1 to SQ1
1.

A reasonable question is whether the XML to SQL translation routines proposed in

SilkRoute [FMS01] and Xperanto [SSB+00] do better. We find that by merging common

subexpressions, they generate a better initial query than SQ1. But, interestingly, if you

feed the queries that they generate to a relational optimizer, the resulting final query is

once again SQ1
1. So, no matter whether we use a naive XML to relational translation, or

these more sophisticated translation schemes, in the end the RDBMS will evaluate SQ1
1.

As we pointed out in Chapter 4.1, the XML query Q1 has no redundant parts in it,

and so XML query minimization [AYCLS01, FFM03, Ram02] will not help in this case.

Unfortunately, SQ1
1 is far from optimal, since all of these queries are equivalent to

the even simpler OQ1 given below:

select category

from InCat C

The equivalence between the queries SQ1, SQ
1
1 and OQ1 holds under the key, for-

eign key and domain constraints mentioned above. Notice how we are able to replace a

query SQ1
1, which was the union of six queries each with a join, by a single scan query

OQ1.

Notice how we were able to simplify the query SQ1 to OQ1 by using the relational

integrity constraints. This is similar to what we achieved in Chapter 4.1 for the XML

storage scenario, though by a different mechanism. Notice that there is one important

difference between the XML storage and publishing scenarios: the lack of the “lossless

from XML” guarantee in the latter case. For example, suppose the domain constraint on

the Item.continent column allowed a seventh value as well (Antarctica). In this case,

items corresponding to this continent are not present in the XML view and so OQ1 is

113

not a correct translation. The minimal equivalent SQL query is OQ1
1 given below:

select C.category

from Item I, InCat C

where I.id = C.itemid and

I.continent IN {‘africa’,‘asia’,‘australia’,‘europe’,‘namerica’,‘samerica’}

In the rest of the chapter, we look at two different ways of attempting to automatically

generate these better queries: SQL Optimization, and Intelligent Query Translation. In

the former approach, SQL queries are generated in a straightforward fashion and then

optimized using the relational integrity constraints. In the latter approach, we use the

constraint information during the XML-to-SQL query translation process itself.

5.2 Problem Definition

In this section, we present a formal description of the XML-to-SQL query translation

problem for the XML publishing scenario.

Class of XML views

For concreteness, we need to provide some mechanism for representing how an XML

schema is mapped to a relational schema. In this chapter, we use the simple approach of

defining an XML view with annotations on the XML schema nodes and edges. A non-leaf

node is annotated with a relation name, while a leaf node is annotated with the name

of a relational column. Each edge e = (u → v) is annotated with a conjunctive query,

where the relations allowed in the query are the relational annotations of nodes on the

path from the root of the graph to node v. A simple XML view is one in which each of

the edge annotations involves at most one join condition.

114

We illustrate this approach to defining views with an example. Consider the relational

schema and the corresponding XML view definition in Figure 30. Consider a top-down

traversal of this schema, which illustrates how an XML document can be constructed

from underlying relational data. The Site element is the root of the document and it

has an id child whose value is the value of Site.id attribute. A Regions child element is

created within the Site element and six subelements are created within Regions, one for

each continent. Within each continent element, the information about the items in that

continent are exported. For example, consider the element Africa. The annotation on

the outgoing edge (4, 10) indicates that for each tuple in the Item relation corresponding

to this continent and satisfying the join condition, an Item subelement is created. For

each such item, its id is exported as an id child element and the categories to which the

item belongs is represented as incategory subelements. The annotation on edge (10, 12)

is a join condition Item.id = InCategory.itemId (not shown in figure). This view definition

is an example of a simple view definition as each edge annotation has at most one join

condition.

To formally describe these schema annotations, consider the following way of defining

XML views over relational databases. In this method, proposed in [SSB+00], a default

view is defined over the relational database and the XML view is defined as a query (an

XQuery query in [SSB+00]) over the default view. The default view maps each relation

R to an element with name R. Each row of the relation R is mapped to a row element

under element R. This row element has one child element for each column of relation R.

The XQuery query (over the default view) corresponding to the annotations in Figure 30

is shown in Figure 31. Since the view might correspond to a number of XML documents,

we have added an extra root element called AuctionDocuments.

The following edge annotations are allowed in a simple XML view definition. Here R.C

115

1. create view auction data as (
2. <AuctionDocuments>
3. for $site in view(“default”)/SITE/row
4. return

5. <Site >
6. <id>$site/id < /id>
7. <Regions>
8. <Africa>
9. for $item in view(“default”)/ITEM/row
10. where $site/id = $item/siteid and $item/continent = ‘africa’
11. return

12. <Item >
13. <id>$item/id < /id>
14. for $incat in view(“default”)/InCat/row
15. where $site/id = $incat/itemid
16. return

17. <Incategory>
18. <id> $incat/id < /id>
19. <Category> $incat/category < /Category>

< /Incategory>
20. < /Item>
21. < /Africa>
22. <Asia>
...

...
</AuctionDocuments>)

Figure 31: View Definition expressed as an XQuery query over the default view

represents column C of relation R.

1. <R>: an initial annotation.

2. <R.C op value>: a selection condition on column R.C.

3. <Rp.Cp, Rc.Cc>: an equijoin between the two columns.

4. Null annotation (to allow dummy elements).

The annotation on an edge e is called annot(e). The relations in the edge annotations

are not allowed to be arbitrary. We associate a relation Rel(n) with every schema node

116

n in a top down fashion as follows. Let the (unique) in-coming edge into n be ep,n. If

annot(ep,n) is

1. an initialization condition <R>,then Rel(n) = R.

2. a selection condition involving the column R.C, then Rel(n) = R. Here, we must

have that Rel(p) = R.

3. a join condition of the form <Rp.Cp, Rc.Cc>, then Rel(n) = Rc. Here, we must

have that Rel(p′) = Rp for some ancestor p′ of node n.

4. a null annotation, then Rel(n) = Rel(p).

Node annotations are allowed only on leaf nodes. For a node n, annot(n) = R.C is

a column in the relation Rel(n) = R. This annotation indicates that the values in the

column R.C are exported (in the XML view) as values of elements corresponding to the

schema node n. We note here that we can extend the above class of mappings to allow

extra features like, for instance, internal nodes having mixed content. Our techniques

extend easily to cover such extensions.

Class of XML queries

In this chapter we focus on a simple but useful class of queries: simple path expressions.

A simple path expression can be denoted as “s1 l1 s2 l2 . . . sk lk,” where each of the li is a

tag name and each of the si is either / (denoting a parent-child traversal) or // (denoting

an ancestor-descendant traversal).

117

Class of SQL queries

For a path expression query over a tree XML view, the equivalent relational query output

by published translation algorithms can be viewed as the union of several conjunctive

queries. So, we consider this class of queries with a simple extension: a disjunction of

selection conditions is allowed for each conjunctive query.

Semantics of translation

For concreteness, we need to define what is meant by a translation of an XML query

to a SQL query. That is, we need to define when a SQL query is considered a correct

translation for a given path expression query Q under a mapping T . Our approach to

defining these semantics is to present a straightforward translation algorithm that returns

the query baseline(Q). Any SQL query SQ that is equivalent to baseline(Q) under the

given relational integrity constraints is a correct SQL translation for the XML query Q.

For a leaf node n in the schema, we define the root-to-leaf query rtol(n) as the SQL

query obtained by (conjunctively) combining the annotations on the edges of the root-

to-leaf path of n and projecting the annotation of node n. For example, rtol(14) is the

query

select C.category

from Site S, Item I, InCat C

where S.id = I.siteid and I.id = C.itemid and I.continent=’africa’

Given a tree XML-to-Relational mapping T and a simple path expression query Q,

let S = {n1, n2, . . . , nk} denote the set of nodes in T that match the query Q. Then

a baseline query translation algorithm is to return the SQL query
⋃

n∈S rtol(n). Let

baseline(Q) denote this query.

118

XML-to-SQL Query Translation Problem:

Finally, we are able to define what we mean by the XML-to-SQL translation problem:

Given an XML-to-Relational mapping T , a simple path expression query Q and integrity

constraints on the underlying relational schema, find the equivalent SQL query with

minimum cost.

The above definition is precise modulo the interpretation of the phrase “minimum

cost.” Different problems will result with different cost metrics. A reasonable cost metric

is the traditional metric for conjunctive query minimization — that is, the cost of a query

is the number of relational conjuncts. Let us denote this metric RelCount.

5.3 The SQL Optimization approach

The scenario we presented in Section 5.1 showed that query minimization is a core issue

in generating efficient SQL queries for XML workloads. For the class of path expression

queries over a tree XML-to-Relational mapping, recall that baseline(Q) is a union of

conjunctive queries. Hence, we need to minimize a union of conjunctive queries under

multiset semantics in the presence of relational integrity constraints. In this section, we

first discuss prior work on relational query minimization and then discuss the impact on

the SQL Optimization approach.

5.3.1 Previous work on Relational Query Minimization

Most, if not all, techniques in the published literature for minimizing relational queries

are based on algorithms for query containment or query equivalence. We next present

some known results about the complexity of these problems.

119

• The containment, equivalence and minimization problems for conjunctive queries

under set semantics are NP-complete [ASU79, CM77].

• The containment problem for conjunctive queries under multiset semantics is πP
2 -

hard [CV93].

• The equivalence problem for conjunctive queries under multiset semantics is same

as graph isomorphism [CV93].

• The containment and equivalence problems for monotonic relational expressions

under set semantics is πP
2 -complete [SY80].

• The containment problem for union of conjunctive queries is undecidable under

multiset semantics [IR95].

There has also been a lot of work on the use of constraints in query optimization

of relational queries [DPT99, JK82, ZO97]. In [JK82], the query containment problem

under functional dependencies and inclusion dependencies is studied. In [SO87], a scheme

for utilizing semantic integrity constraints in query optimization, using a graph theoretic

approach, is presented. In [ZO93], a necessary and sufficient condition for the IC-RFT

problem (does a conjunctive query always produce an empty result under a given set

of implication constraints) is presented and in [ZO97] the results are extended when

referential constraints are also allowed. Polynomial equivalence to other problems like

the query containment problem are also proved.

More recently, the chase and backchase algorithm was introduced in [DPT99] mo-

tivated by logical redundancy and physical independence in mediator-like components.

120

This approach brings together use of indexes, use of materialized views, semantic opti-

mization and join/scan minimization and allows non-trivial use of indexes and materi-

alized views through the use of semantic constraints. In [DT01], the authors present a

generalization of the classical chase algorithm for embedded dependencies [BV84] to a

richer class of constraints known as Disjunctive Embedded Dependencies (DEDs).

5.3.2 Impact on the SQL Optimization approach

While a lot of research has been done on relational query optimization in the presence

of constraints, there are some mismatches with what we need in the XML-to-SQL query

translation scenario.

• Most of the prior work is on reasoning under set semantics. On the other hand, we

need to optimize relational queries under multi-set semantics. We are not aware of

any published algorithm for minimizing union of conjunctive queries under multi-set

semantics (both in the absence and presence of integrity constraints).

• Even under set semantics, the running time of these algorithms are exponential

in the size of the input (relational schema, constraints and query). Incurring this

overhead on a per-query basis may be expensive in practice.

• The class of constraints handled by different approaches vary considerably and no

single technique dominates the others.

By a simple reduction, we have the following result.

Proposition 4 Solving the XML-to-SQL Query Translation problem using the SQL

Optimization approach for a tree XML view under the metric RelCount is at least as

hard as minimizing a union of conjunctive queries under multiset semantics.

121

Proof: Let Q =
⋃k

i=1Qi be the union of conjunctive queries that needs to be minimized.

We first consider the case when there is a single distinguished variable in Q. Consider

the query Q′ =
⋃k

i=1R(x)Qi, where R is a new relation and x is a new variable, neither

of which appear in the query Q. Minimizing the query Q′ is the same as minimizing

the original query Q. We construct an instance of the XML-to-SQL query translation

problem that mirrors minimizing Q′.

The XML schema graph has k+1 nodes, a root node n with k children (say n1, . . . , nk).

The root node n has label l1 and is annotated with relation name R. All the other nodes

have label l2. Each edge <n, ni> is annotated with the query Qi. The leaf node ni is

annotated with the column name corresponding to the distinguished variable in Qi. For

the input XML query /l1/l2, the baseline SQL query is Q′. The resulting XML-to-SQL

query translation problem is equivalent to minimizing Q′.

In general, if the query Q had m distinguished variables, we modify the reduction by

adding m children to each node ni. All the new nodes are given the label l3. Then the

query /l1/l2/l3 completes the reduction. 2

5.4 Intelligent Query Translation

In this section, we present our approach to generating SQL queries that are often more

efficient than those generated by existing translation algorithms. We are able to do so

by focusing on a tractable yet important subpart of the problem space. This section

is somewhat complex; we begin with an overview of our approach and then explain

the main components of our approach. A more formal description is presented in the

following section (Section 5.5).

122

5.4.1 Outline of our approach

As we saw in the previous section, the SQL Optimization approach has three main prob-

lems: (i) lack of techniques for query minimization under multi-set semantics, (ii) high

overhead for reasoning using constraints even under set semantics and (iii) variety of tech-

niques for different class of constraints. In the Intelligent Query Translation approach,

we circumvent each of these problems in the following fashion.

While reasoning about query minimization under multi-set semantics can be a lot

different from reasoning under set semantics, there are scenarios where the two notions

are similar. In our approach, we identify a class of views that, informally speaking,

have the property that the target relational data is exported exactly once in the XML

view. We refer to such views as bijective, and describe this concept in more detail in

Section 5.4.2. Such mappings have the desirable property that they can be optimized

using containment and equivalence algorithms under set semantics instead of multiset

semantics. In our approach, we identify parts of the mapping that are bijective and

apply our optimizations to those parts.

In order to address problems (ii) and (iii), we adopt the following strategy. By

observing that the XML-to-Relational mapping and the underlying relational integrity

constraints remain constant across multiple query invocations, we compute some sum-

mary information in a precomputation phase. In this precomputation phase, we make

use of an algorithm for reasoning about conjunctive query containment under set seman-

tics (say A). Then, when we need to translate an XML query into SQL, we use this

summary information in the run-time query translation phase. This way, the potentially

expensive part of reasoning using integrity constraints is moved to a (offline) phase and

the run-time overhead is kept small. In addition, we can make use of different algorithms

123

* *
(i) (ii)

(i) Book.price <= P1
(ii) Book.price > P2

* * * *
cheapbook
2 Book

costlybook
Book

books
1

sectiontitle3 4

Book.title Author
author sectiontitle7 8

Book.title Author
author

Section Section

6

5 9

Figure 32: Example view to illustrate (non)bijective mappings

for A that work for varying classes of relational integrity constraints. This is especially

useful as we can choose algorithm A based on the class of relational integrity constraints

that are applicable for the current relational schema.

Since, we are going to use some summary information during the run-time query

translation process, we need to relax the optimality metric that we hope to achieve.

As we have seen in Section 5.1, optimizing SQL generated by XML to SQL translation

frequently involves eliminating unnecessary prefixes in the SQL queries. Motivated by

this observation, we define a different notion of minimality for generated SQL queries

— one where we would like to maximize the length of the prefix eliminated for each

matching path in the schema. We define this metric, PrefixMetric in Section 5.4.3.

Using the above techniques, we developed a constraint aware approach to efficiently

translate path expression queries into SQL. We describe the main components of our ap-

proach informally in the following subsections. A more formal description of our approach

is presented in Section 5.5.

124

5.4.2 Bijective mappings

Consider the XML schema shown in Figure 32, which represents information about a

collection of books. The XML view has created a simple hierarchy, partitioning the

books into cheap and costly books by the relationship of their prices to two constants P1

and P2.

Let us now consider three possible scenarios: P1 = P2, P1 < P2 and P1 > P2. If

P1 = P2, then the XML view has information about all the books exactly once, while

if P1 < P2 the XML view has information about only certain books. On the other

hand, when P1 > P2, the XML view has information about the books in the price range

{P2 − P1} twice.

The scenario when P1 = P2 corresponds to an interesting and common class of map-

pings, one in which there is a one-to-one correspondence between the XML view data

and the underlying relational data. We refer to this class of mappings as bijective. These

mappings have the property that the query results of two root-to-leaf path queries do

not have any common results, so the corresponding SQL queries can be merged without

worrying about preserving counts of duplicates.

For example, the rtol queries for nodes 3 and 7 returning the titles of cheapbooks

and costlybooks will not have any common results when the mapping is bijective. This

simple observation makes the query minimization process a lot simpler as we can use

algorithms for query minimization under set semantics instead of multiset semantics.

Notice that whether an XML view definition is bijective or not is a property of the

view, and that one cannot determine if an XML view definition is bijective by simply

examining the relational schema without the mapping. So, while one can easily use this

information during the query translation process (where we know about the XML view),

125

in order to perform similar optimizations after the SQL query has been generated, the

appropriate module (be it the relational optimizer or some other module) needs to know

about properties of the XML view. This means that if existing relational optimizers

are to be extended to handle optimizations based upon bijective views, they need to be

extended to understand XML views, which is not very attractive.

5.4.3 Prefix Elimination Optimality

We define the cost metric PrefixMetric(SQ, T) to be the number of nodes in the XML-

to-Relational mapping T that correspond to the SQL query SQ. For example, consider

the query SQ1 in Section 5.1. The fragment of this query identifying items in Africa

corresponds to the sequence of nodes <1, 3, 4, 10, 12, 14>, and so the cost is six. Since

there are six such fragments in SQ1, the total cost PrefixMetric(SQ1, T) is 36. Similarly,

the cost for each fragment of query SQ1
1 is four and the total cost PrefixMetric(SQ1

1, T)

is 24. For query OQ1, the total cost PrefixMetric(OQ1, T) is six.

By definition, the cost of any SQL query that does not correspond to a path in the

mapping is undefined.

Notice that the definition of the PrefixMetric metric restricts the class of equivalent

SQL queries considered. For example, we are only interested in finding equivalent queries

that are in some sense “syntactically” contained in some conjunctive query fragment in

baseline(Q). While this misses opportunities to find equivalent queries that involve ma-

terialized views or cached query results or eliminating intermediate relations in the con-

junctive query, it is still general enough to cover a large number of interesting scenarios.

126

5.4.4 The query translation algorithm

In this section, we briefly explain the main components of our query translation algorithm

using examples. The algorithm has two parts: an (offline) precomputation phase, in

which summary information is computed; and a run time phase when the actual query

translation occurs.

Precomputation Phase

Here, we make use of the fact that the XML-to-Relational mapping and the relational

integrity constraints are valid across multiple queries and use them to precompute some

summary information. The information that we precompute is related to properties of

the root-to-leaf queries we discussed in connection with the semantics of translation in

Section 5.2.

For a given node in the XML schema, it may be possible to eliminate a prefix of its

corresponding root to leaf query. The actual prefix that can be eliminated for a leaf node

varies depending on the subset of schema nodes selected by the query. We define the

notion of Least Distinguishing Ancestors (LDAs) to capture this. For each pair of leaf

nodes (u, v), we compute LDA(u, v) = w. Intuitively, w is the lowest ancestor of u such

that if node u matches a given XML query, it is sufficient to issue the query from w− u

(instead of the root to leaf query for u) without returning any results corresponding to

node v. In order to create the query for a node u, it suffices to pick the highest ancestor

among LDA(u, v) over all leaf nodes v not matching the query.

For example, for the schema in Figure 30, LDA(14, 39) = 4 and LDA(39, 14) = 9.

In other words, if node 14 matches a query and node 39 does not, then it suffices to

issue the query corresponding to the path {4, 10, 12, 14} in order to return the results

127

corresponding to node 14. This query is shown below.

select IC.category

from Item I, Incat IC

where I.id = IC.itemid and I.continent = ’africa’

In our precomputation phase, for every pair of non-leaf nodes u, v that have the same

annotation, we compute LDA(u, v). In addition, we identify the parts of the XML view

definition that are bijective. In our running example, the entire XML view is bijective.

Run-time Query Translation

We use the following query on the mapping schema in Figure 30 to illustrate the trans-

lation algorithm.

Q: //Item/InCategory/Category

We first execute Q on the schema graph and identify the satisfying nodes: S =

{14, 19, 24, 29, 34, 39}. For each node n ∈ S, issuing rtol(n) is a correct translation. Our

goal is to find the smallest suffix of each such query. Consider the leaf node n1 = 14. We

need to identify the lowest ancestor a1 of n1 such that it suffices to output the query for

the path <a1, . . . , n1>. In order to find a1, we look at the other nodes with the same

annotation, namely C = {19, 24, 29, 34, 39} and compute LDA(14, x), ∀x ∈ (C−S). The

highest node among these corresponds to a1. In this particular case, (C − S) is empty,

so we do not have to look at the LDA values. As a result, for node 14 it suffices to issue

the scan query corresponding to the leaf node. We obtain a similar scan query for the

other five schema nodes in S. Since the six scan queries are on the same relation, we

merge them and issue a single query OQ given below:

select C.eid from InCat C

128

On the other hand, using existing algorithms we would have obtained a relational

query SQ that is the union of six queries, each with two joins (similar to the example

query SQ1 in Section 5.1).

Analysis

In this section, we show that the constraint aware algorithm always outputs a correct

equivalent SQL query. In addition, for bijective tree XML views, it outputs the op-

timal SQL query under metric PrefixMetric. We give the proofs of these theorems in

Section 5.5.4 after formally describing the complete algorithm.

Theorem 4 Given a tree XML-to-Relational mapping T along with the integrity con-

straints that hold on the underlying relational schema, and a path expression query P , the

constraint aware algorithm outputs a correct equivalent SQL query in polynomial time.

We would like to point out that our algorithm performs XML-to-SQL query trans-

lation correctly even when part of the mapping is not bijective or when the conjunctive

query containment algorithm A is sound but not complete for the class of relational con-

straints that are applicable. Note that the running time of algorithm A does not impact

the complexity of the translation algorithm, since A is run once as a precomputation

step, not on a per-query basis during translation.

Let Q1 be a conjunctive query and Q2 be a union of conjunctive queries. Let UQC

denote the problem: is Q1 ⊆ Q2 under set semantics? and DUP denote the problem:

Are the results of Q1 duplicate-free?

Suppose C is the class of integrity constraints that hold on the relational schema and

A and A′ are sound and complete algorithms for the UQC and DUP problems over this

class of constraints. Examples of such algorithms and a description of the corresponding

129

class of integrity constraints can be found in [DPT99, ZO97]. See Section 5.5.2 for a

summary of the techniques in [DPT99] and how we use them in our approach. In such

cases, our algorithm actually outputs the optimal query under metric PrefixMetric.

Theorem 5 Given sound and complete algorithms A and A′ for the UQC and DUP

problems over the class C, the XML-to-SQL Query Translation problem for a bijective

tree XML view under metric PrefixMetric can be solved in polynomial time.

5.5 The constraint aware approach

In this section, we formally describe the various components of our approach. We start by

describing some terminology used in the formalization followed by the actual description

of the two main components: precomputation phase and run-time query translation

phase.

5.5.1 Terminology

Most of the properties we talk about address leaf nodes in the schema that are annotated

with the same relational column. We define nodes(R.C) to be the set of leaf nodes

annotated with R.C. We call two leaf nodes column-compatible if they are annotated

with the same relational column. We refer to the annotation of node n as annot(n).

Recall that we defined rtol(n) to be the root-to-leaf query for a node n. We generalize

this notion to an arbitrary sequence of nodes as follows. A node sequence NS =<

n1, n2, . . . , nk > is a sequence of nodes in the schema graph that corresponds to a path

starting from the node n1 = NS.first and terminating in the leaf node nk = NS.last.

The relational query Query(NS) is obtained by combining the conditions on the edges

of the sequence and projecting annot(nk). The relational query keyQuery(NS) is the

130

same as Query(NS), except that the key column(s) of Rel(nk) is (are) also projected.

Query(NS) and keyQuery(NS) are always conjunctive queries. Just like Query(NS)

corresponds to rtol(n), we refer to keyQuery(NS) as keyrtol(n).

Let RelSeq(NS) denote the sequence of relations joined in Query(NS), in a bottom-

up order. For example, for NS =<1, 3, 4, 10, 12>, RelSeq(NS) = <Site,Item,InCat>.

Two node sequences NS1 and NS2 are said to be combinable if the corresponding

relation sequences RelSeq(NS1) and RelSeq(NS2) are the same, the join conditions are

on the same set of columns for each pair of relations, and NS1.last and NS2.last are

column-compatible. In other words, the two relation sequences are identical modulo the

selection conditions.

5.5.2 Precomputation Phase

Recall that, in the precomputation phase we identify the parts of the XML-to-Relational

mapping that are bijective and also compute LDA information. We formally define

these two notions in the next two subsections and then describe how we compute this

information.

Bijective column mappings

For a relational column R.C, let KeyProject(R.C) denote the query “select R.key, R.C

from R” and NodeKeyProject(R.C) denote the query
⋃

n∈nodes(R.C) keyrtol(n). Here,

R.key denotes the key column(s) of R. We will make use of the following definitions:

Definition 1 For a relational column R.C,

• If KeyProject(R.C) ⊆ NodeKeyProject(R.C), then R.C is At-least-once mapped

• If KeyProject(R.C) ⊇ NodeKeyProject(R.C), then R.C is At-most-once mapped

131

• If KeyProject(R.C) = NodeKeyProject(R.C), then R.C is bijectively mapped

In the preceding definition, the containment operations are under multi-set semantics.

Informally, if all the values in the column R.C appear in the XML view “exactly

once”, then the relational column is bijectively mapped. In order to check this under

multi-set semantics, we use the key field(s) of the relation R.

An XML-to-Relational mapping T is bijectively mapped if each of the relational

columns annotating some leaf node in T is bijectively mapped.

Notice how the definition of when a relational column is bijectively mapped corre-

sponds to the properties P1 and P2 that hold when the “lossless from XML” constraint

is satisfied (Chapter 3.1.2). This implies that all mappings that satisfy the “lossless from

XML” constraint are bijectively mapped.

Lowest Distinguishing Ancestor

Let u and v be two column-compatible leaf nodes in the schema. Let node sequence

NS =< n1, n2, . . . , nk >, where n1 = root(T) and nk = u, represent the root-to-leaf path

in to u.

Definition 2 The node nj is a distinguishing ancestor for u with respect to v if the

intersection of the results of the two queries, keyQuery(< nj, . . . , nk >) and keyrtol(v),

is empty.

If nj is a distinguishing ancestor for u with respect to v, then we write u |nj v. Thus,

for the above example, 4 is a distinguishing ancestor of 14 with respect to every other

column-compatible node. In other words, issuing the query from 4 to 14, we will obtain

all the results corresponding to node 14 and no result corresponding to any other column-

compatible node (such as node 39).

132

Observe that the distinguishing ancestor relation is not a symmetric relation. For

example, in the annotated schema graph shown in Figure 30, consider schema nodes 14

and 39, which are column-compatible. Now, 14 |4 39 is true. Notice that node 4 is an

ancestor of node 14 but not an ancestor of node 39. So, 39 |4 14 is false.

Definition 3 The lowest distinguishing ancestor for u with respect to v, u || v, is the

lowest ancestor w of u such that u |w v.

We represent this as w = lda(u, v) or w = u || v. The lda relation is not symmetric. For

example, 14 || 39 = 4 6= 39 || 14.

Using these definitions, and our previously defined notion of a bijective column map-

ping, we have the following lemma that aids in the identification of lowest distinguishing

ancestors:

Lemma 6 Let u and v be two column-compatible nodes in the schema graph T , where

annot(u) = annot(v) = R.C and R.C is bijectively mapped. Then u |root(T) v holds.

Proof: For u |root(T) v to hold, we need to show that the intersection of the results

of keyQuery(<root(T),. . . ,u>) and keyrtol(v) is empty. Note that the former query is

exactly the query keyrtol(u). Since R.C is bijectively mapped, it satisfies the At-most-

once property. So we have that the interesection of the results of keyrtol(u) and keyrtol(v)

is empty. 2

Notice how the notion of conflict used in the mapping aware algorithm in Chapter 4

is similar to the notion of distinguishing ancestors. In the case of XML storage, we

had the additional guarantee that the mapping completely described the relational data

(follows from property P3 in Chapter 3.1.2). So, we are able to use a simple technique

during run-time query translation to decide when two schema paths were in conflict.

133

In contrast, for the XML publishing scenario, we have to use the relational integrity

constraints to check if two schema paths are in conflict. Since this can be an expensive

operation, we move this to a precomputation stage. The resulting summary information

is the lda information.

Computing Summary Information from the Constraints

Given an XML-to-Relational mapping T and the integrity constraints that hold on the

underlying relational schema, we precompute the following information

• For each relational column R.C, is R.C bijective?

• For every pair of column-compatible nodes (u, v),

u || v and v || u.

In this computation, we use procedures for solving the following problems on con-

junctive queries in the presence of constraints.

UQC: Given a conjunctive query Q1 and a union of conjunctive queries Q2, is Q1 ⊆ Q2

under set semantics?

EQI: Is the intersection of two given conjunctive queries empty?

DUP: Are the results of a given conjunctive query duplicate-free?

We first describe how we compute the summary information given solutions for the

above three problems. We then describe one way of developing procedures for these three

problems using the techniques proposed in [DT01].

Identifying Bijective Column Mappings:

To check if a relational column R.C is bijectively mapped, we need to check if R.C is

both At-least-once and At-most-once mapped.

134

procedure IsColumnBijective(R.C)
begin

Let S ← nodes(R.C)
For each node u ∈ S,

If keyrtol(u) can have duplicates
return false

For each pair of nodes u, v ∈ S
If keyrtol(u) ∩ keyrtol(v) 6= φ

return false
If keyProject(R.C) ⊆ NodeKeyProject(R.C)

return false
return true

end

Figure 33: Algorithm to check if a relational column is bijectively mapped

Let us first look at the At-least-once property. Recall from Definition 1 that for this we

need to check if KeyProject(R.C) ⊆ NodeKeyProject(R.C) under multiset semantics.

Since the key columns are also projected, the left hand side query has no duplicates. So,

performing conjunctive query containment under set semantics will suffice.

Similarly, to check whether the At-most-once property is satisfied by R.C, we need to

check if KeyProject(R.C) ⊇ NodeKeyProject(R.C) under multiset semantics. Notice

that this containment holds trivially under set semantics. Moreover, since the left hand

side query has no duplicates, it suffices to check if the right hand side query also has no

duplicates. Recall that NodeKeyProject(R.C) =
⋃

u∈nodes(R.C) keyrtol(u). Duplicates

can be produced either in a single component of the union or across two different com-

ponents. For the former case, we check if, for each u ∈ nodes(R.C), any result tuple in

keyrtol(u) has two or more valuations. For the latter case, we need to check if keyrtol(u)

and keyrtol(v) have a non-null intersection, for all node pairs u, v ∈ nodes(R.C).

The algorithm to determine if a relational column is bijectively mapped is given in

Figure 33.

135

procedure ldaComputation(u,v)
begin

Let currAncestor = u
while (true) do

Let NS =<nj, . . . , nk = u>
If keyQuery(NS) ∩ keyrtol(v) = φ

return currAncestor
If (currAncestor = root(T))

return null
// this occurs if At-most-once condition is violated

currAncestor = parent(currAncestor)
end

Figure 34: Algorithm to compute lda information

Computing least distinguishing ancestor information: The other summary infor-

mation that we compute is the lda information. If we have a subroutine that verifies

whether or not u |w v holds, then we can process the ancestors of u in a bottom-up

fashion, and obtain u || v. By definition, to check if u |w v is true we need to check if the

intersection of the results of the queries keyQuery(<nj , . . . , nk = u>) and keyrtol(v) is

empty, where nj = w. The algorithm is given in Figure 34.

Solutions to the UQC,EQI and DUP problems: One way of developing procedures

for these three problems is to adapt the chase and query containment algorithms proposed

in [DT01] to design procedures for the UQC, EQI and DUP problems. We describe this

approach below. In general, any algorithm for conjunctive query containment under set

semantics can be used to develop procedures for the above three problems.

In [DT01], the authors present an algorithm for conjunctive query containment (under

set semantics) in the presence of a class of constraints known as Disjunctive Embedded

Dependencies (DEDs). We first review their results.

Definition 4 The general form of Disjunctive Embedded Dependencies (DEDs) is the

following

136

∀x1 . . . xn[φ(x1, . . . , xn)→

∨l
i=1 ∃zi,1, . . . , zi,ki

ψi(x1, . . . , xn, zi,1, . . . , zi,ki
)]

where φ, ψi are conjunctions of relational atoms of the form R(w1, . . . , wl) and equality

atoms of the form w = w
′

, where w1, . . . , wl, w, w
′

are variables.

The class of DEDs covers a rich set of constraints including functional dependen-

cies, inclusion dependencies, multi-relational inclusion dependencies and uniqueness con-

straints, and a restricted class of domain constraints. For example, the key condition on

the ITEM relation in our example in Section 5.1, can be expressed as

∀x1, x2, x3, x4, x5[Item(x1, x2, x3) ∧ Item(x1, x4, x5)

→ (x2 = x4) ∧ (x3 = x5)]

The paper [DT01] presents the following results:

1. They present a generalization of the classical chase algorithm for embedded de-

pendencies [BV84] to the class of DEDs. While the result of the classical chase

procedure is a chase sequence, in the presence of DEDs, the result is a chase tree.

More details can be found in [DT01].

2. Given conjunctive queries Q1, Q2, and the set D of DEDs, assume that the chase

of Q1 with D terminates. Then we have (1) Q1 is equivalent to the union of the

leaves of the chase tree, and (2) Q1 is contained in Q2 under D if and only if there

is a containment mapping from Q2 into every leaf L ∈ chaseD(Q1).

We now briefly explain our procedures for the UQC, EQI and DUP problems.

UQC: We need to verify whether Q1 ⊆ Q2, where Q1 is a conjunctive query and Q2 =

⋃
Qi

2. We then have the following result: assume that the chase of Q1 with D terminates.

137

Then we have that Q1 is contained in Q2 under D if for every leaf L ∈ chaseD(Q1), there

is a containment mapping from some Qi
2 into L.

EQI: In order to check if the intersection of two conjunctive queries Q1 and Q2 is empty,

we need to check if the query Q = Q1 ∧Q2 has an empty result, i.e., Q1 ∧Q2 ⊆ φ. Here

the distinguished (i.e., the projected) variables of Q1 and Q2 are equated and become

the distinguished variables of Q.

DUP: In order to check whether a conjunctive query Q produces duplicate results, we

take two copies of Q, Q1 and Q2 and construct the query Q
′

= Q1 ∧ Q2. As above,

the distinguished (i.e., the projected) variables of Q1 and Q2 are equated and become

the distinguished variables of Q
′

. Then we compute chase(Q
′

) and check if for every

conjunct in Q
′

that was originally from Q1, the values in the key columns are the same

as the values in the corresponding conjunct from Q2. If so, multiple evaluations for a

single tuple are not possible.

5.5.3 Run-Time Query Translation Algorithm

The run-time query translation algorithm is outlined in Figure 35. Given a path ex-

pression query Q, we first identify the parts of the schema that match the query. Let S

denote the set of matching schema nodes. For purposes of exposition, we assume that S

consists only of leaf nodes, leaving the handling of non-leaf nodes to Section 5.6.1.

We then partition the set S into two sets based on whether the corresponding rela-

tional column is bijectively mapped. For the set Snonbij, we construct the root-to-leaf

queries just like prior algorithms. On the other hand, for the set Sbij we utilize the sum-

mary information to eliminate parts of the query that are redundant. This is a two stage

process: first we find the longest prefix that can be eliminated for each node n ∈ Sbij

138

procedure constraint aware(Q)
begin

Let S ← PathId(Q)
Partition S into Sbij and Snonbij

based on whether annot(n) is bijective
SQLnonbij =

⋃
n∈Snonbij

rtol(n)

Prefix-Elimination(Sbij)
SQLbij = SQLGen(Sbij)
Return SQLbij

⋃
SQLnonbij

end

Figure 35: constraint aware query translation algorithm for path expression queries

(Prefix-Elimination); then we construct the SQL query using the prefix-eliminated set

of nodes (SQLGen). Finally, we union the queries corresponding to the bijective and

non-bijective nodes.

We next describe the prefix-elimination and SQLGen stages.

Eliminating Redundant Prefixes

The Prefix-Elimination algorithm is given in Figure 36. We use the pre-computed infor-

mation about least distinguishing ancestors in this computation. Instead of taking the

naive approach of issuing the full query for each of these nodes and taking their union,

we wish, at the very least, to be able to issue a smaller query for each node n ∈ S. Thus,

we want to find the lowest ancestor a such that Query(< a, . . . , n >) returns the correct

answer, that is, where the prefix of rtol(n) from root(T) to a can be safely eliminated.

There are two conditions to check here:

• amust distinguish n from all column-compatible nodes not in S. This computation

corresponds to the for loop in Figure 36.

• For each column-compatible node n1 ∈ S, either the two queries are combinable or

139

procedure Prefix-Elimination(S)
begin
1. for each node n ∈ S do
2. Let Schema(n) denote the set of schema nodes

mapped to the same column as n
3. Let Conflict(n)← Schema(n)− S
4. Let LDA Set(n) denote set of n || x for

every node x in Conflict(n)
5. C lda(n) = highest node in LDA Set(n)
6. While true do
7. If (∃n, n1 ∈ S), such that

RelSeq(C lda(n),n) and RelSeq(C lda(n1),n1)
are not combinable and
n || n1 is a strict ancestor of C lda(n)

8. Then
9. Increment C lda(n) by one node
10. Else
11. Break
end

Figure 36: Prefix-Elimination phase

a distinguishes n from n1. This corresponds to the while loop in Figure 36.

The while loop is an iterative process that will terminate in at most (k ∗d) iterations,

where k = |S| and d is the maximum depth (in the XML schema) among all nodes in S.

At the end of this process we have the prefix eliminated node sequence for every node in

S.

In the while loop, if there are multiple pairs of nodes satisfying the condition in

step 7, we choose the pair <n, n1> such that RelSeq(C lda(n),n) is the shortest relation

sequence. This way, we keep all the relation sequences corresponding to nodes still being

processed of roughly the same length. This is necessary for proving the optimality of this

algorithm under the metric, PrefixMetric.

140

SQLGen Stage

We next construct the optimized SQL query by taking the prefix-eliminated set of nodes

and grouping multiple paths that involve the same sequence of relations. Let NS =

{<C lda(n),. . . ,n >: n ∈ PathId(Q)}. Recall that combinability of node sequences is

an equivalence relation. We partition NS based on combinability and construct a SQL

query for each equivalence class created. The final SQL query is the union of the queries

across all equivalence classes. Notice that all the queries in an equivalence class have

the same relation sequence and differ only in the selection conditions. This operation is

correct under multi-set semantics because it is only applied to columns that are bijectively

mapped.

5.5.4 Analysis

Theorem 4 Given a tree XML-to-Relational mapping T along with the integrity con-

straints that hold on the underlying relational schema, and a path expression query P , the

constraint aware approach outputs a correct equivalent SQL query. The running time of

the query translation algorithm is polynomial in the size of the input, while the running

time of the precomputation stage may be exponential in the size of the input.

Proof: For a given path expression query Q, let Q1 be the SQL query obtained by

applying the constraint aware-translation algorithm. Let Q2 be the SQL query obtained

by applying the baseline query translation algorithm. Recall that Q2 =
⋃

n∈S rtol(n),

where S = PathId(Q). We show that Q1 = Q2 under multiset semantics, which proves

that the constraint aware approach always outputs a correct equivalent SQL query.

From the algorithm in Figure 35, we have

Q1 = SQLbij

⋃
SQLnonbij

141

Similarly, Q2 can be written as

Q2 =
⋃

n∈Sbij

rtol(n)
⋃ ⋃

n∈Snonbij

rtol(n)

By definition, we have

SQLnonbij =
⋃

n∈Snonbij

rtol(n)

So, we need to show that

SQLbij =
⋃

n∈Sbij

rtol(n)

Since each relational column being projected in these two queries is bijectively mapped,

it suffices if we prove that

keySQLbij =
⋃

n∈Sbij

keyrtol(n)

Here keySQLbij refers to the query SQLbij augmented with the appropriate key column(s)

in the projection clause. We show this equality by proving containment in both the

directions. In the following discussion, we assume that no two nodes in S are annotated

with different column names from the same relation. Otherwise, we partition S based on

the annotations and the following proof shows that the equality holds for each partition.

1. keySQLbij ⊇
⋃

n∈Sbij
keyrtol(n): If we show that every tuple t appearing in the

result of the RHS query also appears in the result of the LHS query, the containment

result holds under set semantics. We first show this to be true. Let t belong to

relation R and R.C be the bijective column being projected. Let n1 be the schema

node, such that, t occurs in the result of keyrtol(n1). The existence of a unique

schema node n1 follows from the fact that R.C is bijectively mapped. Consider

the same node n1 in the LHS query, keySQLbij . Since node n1 ∈ Sbij , at the

end of the Prefix-Elimination stage in the constraint aware algorithm, we have

142

a node sequence NS =< Conflict lda(n1), . . . , n1 > corresponding to node n1.

In the Grouping phase, we create a basic SQL query (say Q3) corresponding to

RelSeq(NS). It can be seen that tuple t occurs in the result of query Q3. This

is due to the fact that the relation sequence corresponding to Q3 is a suffix of the

relation sequence corresponding to keyrtol(n1). Moreover, the where clause in Q3

is of the form CNS or (conditions corresponding to other nodes with same relation

sequence as n1). Notice that CNS is a subset of the where clause of keyrtol(n1).

As a result, tuple t occurs in the result of query Q3. This implies that t occurs in

the result of keySQLbij . Hence, we have the required containment result under set

semantics.

Since R.C is bijectively mapped, t appears exactly once in the result of the RHS

query. So, we have the containment result under multiset semantics.

2. keySQLbij ⊆
⋃

n∈Sbij
keyrtol(n): Here, if we show that every tuple t occuring in

the result of the LHS query also occurs in the result of the RHS query, we prove

the containment under set semantics. Since the column under consideration is

bijectively mapped, there are no duplicates in the result of the RHS query. So, if we

also show that no tuple will appear multiple times in the result of the LHS query,

we prove the containment under multiset semantics.

We first show that if a tuple t occurs in the result of the LHS query, it also occurs in

the result of the RHS query. Since the corresponding column is bijectively mapped,

there is some schema node n, such that, keyrtol(n) has t in its result set. We next

show that n ∈ Sbij, i.e., the root-to-leaf path corresponding to n matches the query.

Assume that the tuple is produced by a basic SQL query Q4 in keySQLbij . Let

the where clause of Q4 be of the form Ccommon and (Cn1
or Cn2

or . . . or or Cnk
).

143

There is a condition Cni
that was satisfied by some evaluation making tuple t

appear in the result. Let ni be the corresponding schema node. Now t appears

in the results of both the prefix-eliminated query for ni and keyrtol(n). This

implies that either (i) ni = n or (ii) n ∈ Sbij and the prefix-eliminated queries of

ni and n are combineable. Otherwise, the lda for ni would have been a higher

ancestor (steps 1-5 of the prefix-elimination algorithm (Figure 36). In either case,

we have that n ∈ Sbij . Combining this with the fact that t appears in the result of

keyrtol(n), we have that t appears in the result of
⋃

n∈Sbij
keyrtol(n).

We next show that no tuple appears multiple times in the result of the LHS query.

Assume the contrary. Suppose a tuple t appears more than once in the result.

Since the relational column being projected is bijectively mapped, a single basic

SQL query in keySQLbij will not produce duplicates. So, there are two basic SQL

queries in keySQLbij that have t in their result set. Let these queries be Q5 and

Q6. As in the previous case, we can find the corresponding schema nodes n5 and n6

that cause t to appear in the result of Q5 and Q6 respectively. Let NS5 and NS6 be

the corresponding prefix-eliminated node sequences. Since the column is bijectively

mapped, there is some schema node n, such that, keyrtol(n) has t in its result set.

Using the same argument as in the previous case, we see that n ∈ Sbij. Let NS be

the prefix-eliminated node sequence for n. The two node sequences NS and NS5

are combineable, as otherwise this pair violates the condition in step 7 of the prefix-

elimination algorithm (Figure 36). Similarly, the node sequences NS and NS6 are

also combineable. Since combinability is an equivalence relation, this implies that

NS5 and NS6 are also combineable. This contradicts the assumption that n5 and

n6 belong to two different basic SQL queries. So, there are no duplicates in the

144

LHS query.

We have shown that Q1 = Q2 under multiset semantics, which proves that the con-

straint aware approach always outputs a correct equivalent SQL query.

The running time of the algorithm is polynomial as the while loop terminates in a

polynomial number of iterations and the cost of each step in the algorithm is polynomial.

The precomputation phase may have an exponential cost since the subroutines for the

UQC, EQI and DUP problems may have exponential running times. 2

Theorem 5 Given sound and complete algorithms A and A′ for the UQC and DUP

problems over the class C, the XML-to-SQL Query Translation problem for a bijective

tree XML view under metric PrefixMetric can be solved in polynomial time.

Proof: We need to show that the SQL query output by the constraint aware algorithm

is optimal under metric PrefixMetric. In other words, if we show that for each node n ∈ S,

the constraint aware algorithm identifies the lowest ancestor till which we need to go

up, we have proved the optimality of the algorithm.

Since we have sound and complete algorithms for UQC and DUP, the lda compu-

tation is also complete. Consider a node n ∈ S. Let C lda(n) be the final ancestor

chosen by the constraint aware algorithm. Let Q1 be a correct SQL query and Qn
1 be

the corresponding fragment that returns results corresponding to the root-to-leaf path

ending in n. Suppose Qn
1 corresponds to stopping at the ancestor n1. We argue that n1

is not a proper descendant of C lda(n). Otherwise, Qn
1 will return results corresponding

to some leaf node /∈ S or not combinable with RelSeq(C lda(n),n). The former implies

that Q1 does not return the correct result and the latter implies that Q1 returns du-

plicate results. This contradicts the assumption that Q1 is a correct equivalent SQL

145

query. Hence, n1 is at least as high as C lda(n), implying that the query output by the

constraint aware algorithm is optimal under metric PrefixMetric. 2

5.6 Extensions to More General Cases

In this section, we discuss how the methods discussed to up to this point extend to more

general situations. Note that our optimization techniques will never generate an incorrect

query — they will either not apply (in which case we will generate the naive query) or

they will apply and will generate a query expected to be more efficient than the naive

query. Hence the discussion here outlines techniques that allow us to apply optimizations

to more queries.

5.6.1 Path Expression Queries Involving Non-Leaf Nodes

In our discussion in Section 5.5.3 on translating path expression queries, we assumed that

the query matches a set of leaf nodes in the schema. If the result includes non-leaf nodes

as well, then there are two alternative ways of returning the resulting XML elements

corresponding to the non-leaf nodes.

1. For each non-leaf element, we can return an identifier or representative subelement.

In this case, each non-leaf node n in the schema is associated with a child leaf node

nc. If n appears in a query result, then the corresponding nc elements are re-

turned instead. For example, we can associate the key field(s) of the corresponding

relations with each non-leaf node.

2. For each non-leaf element, we can return the entire subtree rooted at this element.

The problem of efficiently constructing entire subtrees of XML documents has been

146

considered in [FMS01, SSB+00]. We leave the interesting problem of combining our

algorithm with one of these algorithms for future work.

5.6.2 Beyond Path Expressions

Our techniques can be extended in a straightforward way to handle branching path

expression queries; because that extension does not provide any additional insight, we

do not discuss that extension here.

We now briefly describe how to extend constraint aware translation to more general

queries. A path expression query corresponds to a single For clause in XQuery. Consider

an XQuery that has several of these For clauses and (optional) Where clauses. A natural

way of applying our techniques is to perform constraint aware translation for each of the

individual path expressions, and then combine the resulting queries with appropriate join

conditions. For example, consider a query XQ involving two path expressions p1 and p2

with a join condition between them. We apply our constraint aware translation on p1

and p2 individually to obtain relational queries Q1 and Q2 respectively. Note that Q1 and

Q2 are the union of k1 and k2 queries respectively. We generate the query Q = Q1 1 Q2 as

the SQL query corresponding to XQ. If k1 > 1 or k2 > 1, then we could have generated

the final SQL query in a number of other ways. For example, we could have distributed

the unions over the join and generated the query Q′ that is the union of k1 ∗ k2 queries.

Choosing the best query from amongst these (possibly exponential) alternatives is also

an interesting area for future work.

147

5.6.3 Beyond Bijective Mappings

Recall that our technique optimizes the SQL query corresponding to bijective parts of

the mapping. It constructs the baseline query for the non-bijective parts of the map-

ping. While we expect bijectively mapped columns to be common, we have extended

our algorithm to perform efficient XML to SQL query translation when the At-least-once

condition is violated but the At-most-once condition is satisfied. We outline the main

idea here with an example.

Let us look at the scenario when a relational column R.C satisfies the At-most-once

condition but violates the At-least-once condition. For example, consider the example in

Figure 30. While the XMark XML schema contains information about items in six conti-

nents, in reality, there is actually a seventh continent (Antarctica). So, it is reasonable to

assume that the relational schema has an integrity constraint on Item.continent allowing

seven potential values. In this case, parts of the relational data are not present in the

XML view, namely the items corresponding to Antarctica. Now while SQ1 and SQ1
1 are

correct SQL queries for Q1, OQ1 is not. The best query in this scenario as discussed in

Section 5.1 is a variation of SQ1
1 that combines all the six queries into one, since they

are on the same sequence of relations. This query is given below.

select C.category

from Item I, InCat C

where I.id = C.itemid and

I.continent IN {‘africa’,‘asia’,‘australia’,‘europe’,‘namerica’,‘samerica’}

Notice how we were able to group together the six paths corresponding to different

148

continents. This was possible due to the fact that InCat.category satisfied the At-most-

Once condition. As a result, the rtol queries corresponding to any two column-compatible

schema nodes mapped to InCat.category will not have any common results. So, we can

translate the unions to a disjunction. In other words, we can perform the SQLGen phase

without any change.

On the other hand, we need to be careful in the prefix-elimination stage. We cannot

eliminate any prefix below the continent nodes due to one missing continent in the XML

schema. To account for this fact, we have to augment the prefix-elimination stage. We do

this as follows: S = nodes(InCat.category) = {14, 19, 24, 29, 34, 39}. For each schema

node n ∈ S, we compute the lowest schema node below which the prefix cannot be

eliminated (since the column is not completely exported). Let us call this lowest required

ancestor (lra(n)). For example, lra(14) = 4 and lra(39) = 9. This ensures that the

selection condition on Item.continent is always present in the query.

The lra computation is another summary information that we precompute for schema

nodes corresponding to relational columns that violate the At-least-once condition. The

prefix-elimination algorithm in Figure 36 has to be modified so that in the for loop, for

each node n ∈ S, lra(n) is added to LDA Set(n). No other change needs to be made to

the rest of the algorithm.

5.7 Summary

We have considered the problem of generating efficient SQL queries for XML workloads

and showed that published translation algorithms can generate SQL queries that are

suboptimal. We consider the problem of where to add the intelligence in order to obtain

optimized SQL queries using integrity constraint information. Our results argue that

149

the quality of the resulting SQL should be a concern of the translation algorithm itself,

rather being left in the hands of a traditional relational optimizer. This is because many

“easy” opportunities for optimization are apparent only when the XML view definition

and relational integrity constraints are considered simultaneously. These opportunities

vanish by the time the relational optimizer is presented with SQL.

150

Chapter 6

Conclusions and Future Work

In this thesis, we looked at the XML-to-SQL query translation problem that arises when

queries are posed over an (logical) XML view of data stored (physically) in an RDBMS.

The main contributions of this thesis are:

• We presented the XML to SQL algorithm for translating path expression queries

into SQL, even in the presence of recursion in the XML schema and XML query.

This algorithm demonstrates that a path expression query can be translated into

a single SQL query, irrespective of how complex the XML schema is.

• We showed how the quality of the final SQL queries can be improved if we make use

of the “lossless from XML” constraint, i.e., the entire relational data resulted from

the lossless shredding of XML documents conforming to the given XML schema.

We extended the above algorithm to exploit the presence of this constraint in the

XML storage scenario and generate efficient SQL queries.

• For the XML publishing scenario, we showed how relational integrity constraints

can be used to generate efficient SQL queries. Since using these constraints at

query translation time requires solutions to intractable problems, we proposed an

approach that relies on precomputation. The associated query translation algo-

rithm translates path expression queries over tree XML schema into efficient SQL

queries.

151

Future Work

The following issues are open for future work.

• Extending our algorithms to translate more complex FLWOR XQuery queries is an

interesting open problem. In particular, extending the mapping aware algorithm

for XML storage and the constraint aware algorithm for XML publishing to more

complex XML queries is an interesting avenue for future research.

• For the XML publishing scenario, the constraint aware algorithm uses the con-

straint information to optimize queries over bijective parts of the XML view. It

also handles the scenario where the At-least-once condition is violated. But, if the

At-most-once condition is violated, then the algorithm does not perform any opti-

mizations during query translation. Extending the algorithm to use the constraint

information even in this case is future work.

• As we saw in Chapter 2, three different techniques are used while designing re-

lational decompositions to capture the hierarchical nature of the XML data —

id-based, interval-based and path-based. In this thesis, we focussed on the id-

based techniques. Investigating the XML-to-SQL query translation problem in the

presence of all three techniques is open.

• For the XML storage scenario, we presented an approach that generates efficient

SQL queries without resorting to the use of relational integrity constraints. An

alternative approach is to generate complex SQL queries and then minimize them

using the relational integrity constraints. Identifying the right combination of the

class of relational integrity constraints generated in this scenario, the class of re-

lational queries that need to be minimized and efficient algorithms for doing the

same is another interesting direction to pursue.

152

Bibliography

[Ade] Naa classified advertising standards task force.

http://www.naa.org/technology/clsstdtf/.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.

Addison-Wesley, 1995.

[AKJP+02] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick

Koudas, and Divesh Srivastava. Structural Joins: A Primitive For Efficient

XML Query Pattern Matching. In Proceedings of the 18th International

Conference on Data Engineering, 2002.

[ASU79] Alfred V. Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. Equivalence among

relational expressions. SIAM Journal of Computing, 8(2):218–246, 1979.

[AYCLS01] Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan, and Divesh

Srivastava. Minimization of tree pattern queries. In Proceedings of the 2001

ACM SIGMOD international conference on Management of data, pages 497–

508, 2001.

[BCF+02] Michael Benedikt, Chee Yong Chan, Wenfei Fan, Rajeev Rastogi, Shihui

Zheng, and Aoying Zhou. DTD-Directed Publishing with Attribute Trans-

lation Grammars. In Very Large Data Bases (VLDB) Conference, pages

838–849, 2002.

[BDFS97] Peter Buneman, Susan B. Davidson, Mary F. Fernandez, and Dan Suciu.

Adding Structure to Unstructured Data. In Proceedings of 6th International

Conference on Database Theory, volume 1186 of Lecture Notes in Computer

Science, pages 336–350, 1997.

[BFRS02] Philip Bohannon, Juliana Freire, Prasan Roy, and Jerome Simeon. From

XML Schema to Relations: A Cost-based Approach to XML Storage. In

Proceedings of the 18th International Conference on Data Engineering, pages

64–75, 2002.

153

[BGK+02] Philip Bohannon, Sumit Ganguly, Henry F. Korth, P. P. S. Narayan, and

Pradeep Shenoy. Optimizing View Queries in ROLEX to Support Navigable

Tree Results. In Very Large Data Bases (VLDB) Conference, pages 119–130,

2002.

[BKS02] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic Twig Joins:

Optimal XML Pattern Matching. In Proceedings of the 2002 ACM SIGMOD

International Conference on Management of Data, pages 310–321, 2002.

[BKTT04] Peter Buneman, Sanjeev Khanna, Keishi Tajima, and Wang-Chiew Tan.

Archiving scientific data. ACM Transactions on Database Systems, 29(1):2–

42, 2004.

[BV84] Catriel Beeri and Moshe Vardi. A Proof Procedure for data dependencies.

Journal of the ACM, 31(4):718–741, 1984.

[CAYLS02] SungRan Cho, Sihem Amer-Yahia, Laks V. S. Lakshmanan, and Divesh Sri-

vastava. Optimizing the Secure Evaluation of Twig Queries. In Proceedings

of 28th International Conference on Very Large Data Bases (VLDB), pages

490–501, 2002.

[CDZ02] Yi Chen, Susan B. Davidson, and Yifeng Zheng. Constraint preserving XML

Storage in Relations. In Proceedings of the Fifth International Workshop on

the Web and Databases (WebDB), pages 7–12, 2002.

[Cho02] Byron. Choi. What Are Real DTDs Like. In Proceedings of the Fifth In-

ternational Workshop on the Web and Databases (WebDB), pages 43–48,

2002.

[CJLP03] Zhimin Chen, H. V. Jagadish, Laks V. S. Lakshmanan, and Stelios Paparizos.

From Tree Patterns to Generalized Tree Patterns: On Efficient Evaluation

of XQuery. In Proceedings of 29th International Conference on Very Large

Data Bases (VLDB), pages 237–248, 2003.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-

tion to Algorithms. MIT Press, 1990.

154

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal Implementation of Con-

junctive Queries in Relational Databases. In Proceedings of the ninth annual

ACM symposium on Theory of computing, pages 77–90. ACM Press, 1977.

[CV93] Surajit Chaudhuri and Moshe Y. Vardi. Optimization of Real Conjunctive

Queries. In Proceedings of the twelfth ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database systems, pages 59–70, 1993.

[CVZ+02] Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras,

and Carlo Zaniolo. Efficient Structural Joins on Indexed XML Documents.

In Proceedings of 28th International Conference on Very Large Data Bases

(VLDB), pages 263–274, 2002.

[DB2] DB2 XML Extender.

http://www.ibm.com/software/data/db2/extenders/xmlext.

[DFS99] Alin Deutsch, Mary Fernandez, and Dan Suciu. Storing semistructured data

with STORED. In Proceedings of the 1999 ACM SIGMOD international

conference on Management of data, pages 431–442, 1999.

[DPT99] Alin Deutsch, Lucian Popa, and Val Tannen. Physical Data Independence,

Constraints, and Optimization with Universal Plans. In Proceedings of 25th

International Conference on Very Large Data Bases, pages 459–470, 1999.

[DT01] Alin Deutsch and Val Tannen. Containment and Integrity Constraints for

XPath Fragments. In Proceedings of the 8th International Workshop on

Knowledge Representation meets Databases (KRDB 2001), volume 45 of

CEUR Workshop Proceedings. Technical University of Aachen (RWTH),

2001.

[DT03a] Alin Deutsch and Val Tannen. MARS: A System for Publishing XML from

Mixed and Redundant Storage. In Proceedings of 29th International Con-

ference on Very Large Data Bases (VLDB), pages 201–212, 2003.

[DT03b] Alin Deutsch and Val Tannen. Reformulation of XML Queries and Con-

straints. In Proceedings of 9th International Conference on Database Theory,

volume 2572 of Lecture Notes in Computer Science, pages 225–241, 2003.

155

[DTCO03] David DeHaan, David Toman, Mariano P. Consens, and M. Tamer Ozsu. A

Comprehensive XQuery to SQL Translation using Dynamic Interval Encod-

ing. In Proceedings of the 2003 ACM SIGMOD international conference on

on Management of data, pages 623–634, 2003.

[Eig94] Frank Ch. Eigler. Translating GraphLog to SQL. In Proceedings of the 1994

conference of the Centre for Advanced Studies on Collaborative research. IBM

Press, 1994.

[EM02] Andrew Eisenberg and Jim Melton. SQL/XML is Making Good Progress.

SIGMOD Record, 31(2):101–108, 2002.

[EZ76] Andrzej Ehrenfeucht and Paul Zeiger. Complexity Measures for Regular

Expressions. Journal of Computer and System Sciences (JCSS), 12(2):134–

146, 1976.

[FFM03] Sergio Flesca, Filippo Furfaro, and Elio Masciari. On the minimization of

Xpath queries. In Proceedings of 29th International Conference on Very

Large Data Bases (VLDB), pages 153–164, 2003.

[FHR+02] Juliana Freire, Jayant R. Haritsa, Maya Ramanath, Prasan Roy, and Jerome

Simeon. StatiX: making XML count. In Proceedings of the 2002 ACM

SIGMOD international conference on Management of data, pages 181–191,

2002.

[FK99] Daniela Florescu and Donald Kossmann. Storing and Querying XML Data

using an RDMBS. IEEE Data Engineering Bulletin, 22(3):27–34, 1999.

[FMS01] Mary F. Fernandez, Atsuyuki Morishima, and Dan Suciu. Efficient Evalua-

tion of XML Middle-ware Queries. In Proceedings of the 2001 ACM SIGMOD

international conference on Management of data, pages 103–114, 2001.

[FS98] Mary F. Fernandez and Dan Suciu. Optimizing Regular Path Expressions

Using Graph Schemas. In Proceedings of the Fourteenth International Con-

ference on Data Engineering, pages 14–23, 1998.

[FSC+03] Mary F. Fernandez, Jerome Simeon, Byron Choi, Amelie Marian, and Gargi

Sur. Implementing Xquery 1.0: The Galax Experience. In Proceedings of

156

29th International Conference on Very Large Data Bases (VLDB), pages

1077–1080, 2003.

[FTS00] Mary Fernandez, Wang-Chiew Tan, and Dan Suciu. SilkRoute: Trading

between Relations and XML. In Proceedings of the 9th international World

Wide Web conference on Computer networks : the international journal of

computer and telecommunications networking, pages 723–745. North-Holland

Publishing Co., 2000.

[Gru02] Torsten Grust. Accelerating XPath location steps. In Proceedings of the 2002

ACM SIGMOD international conference on Management of data, pages 109–

120, 2002.

[GSBS03] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram.

XRANK: Ranked Keyword Search over XML Documents. In Proceedings

of the 2003 ACM SIGMOD international conference on on Management of

data, pages 16–27, 2003.

[GST04] Torsten Grust, Sherif Sakr, and Jens Teubner. XQuery on SQL Hosts.

In Proceedings of 30th International Conference on Very Large Data Bases

(VLDB), 2004.

[GvKT03] Torsten Grust, Maurice van Keulen, and Jens Teubner. Staircase Join: Teach

a Relational DBMS to Watch its (Axis) Steps. In Proceedings of 29th In-

ternational Conference on Very Large Data Bases (VLDB), pages 524–535,

2003.

[HSJJ02] Sun Hongwei, Zhang Shusheng, Zhou Jingtao, and Wang Jing. Constraints-

Preserving Mapping Algorithm from XML-Schema to Relational Schema. In

Engineering and Deployment of Cooperative Information Systems: First In-

ternational Conference (EDCIS), volume 2480 of Lecture Notes in Computer

Science, 2002.

[INC] INCITS H2.3 Task Group. http://www.sqlx.org.

[IR95] Yannis E. Ioannidis and Raghu Ramakrishnan. Containment of conjunctive

queries: Beyond relations as sets. ACM Transactions on Database Systems,

20(3):288–324, 1995.

157

[JK82] David S. Johnson and Anthony C. Klug. Testing containment of conjunctive

queries under functional and inclusion dependencies. In Proceedings of the

1st ACM SIGACT-SIGMOD symposium on Principles of database systems,

pages 164–169, 1982.

[JLWO03] Haifeng Jiang, Hongjun Lu, Wei Wang, and Beng Chin Ooi. XR-Tree: In-

dexing XML Data for Efficient Structural Joins. In Proceedings of the 19th

International Conference on Data Engineering, pages 253–263, 2003.

[JMS02] Sushant Jain, Ratul Mahajan, and Dan Suciu. Translating XSLT programs

to Efficient SQL queries. In Proceedings of the eleventh international confer-

ence on World Wide Web, pages 616–626, 2002.

[KCN03] Rajasekar Krishnamurthy, Venkatesan T. Chakaravarthy, and Jeffrey F.

Naughton. On the Difficulty of Finding Optimal Relational Decompositions

for XML Workloads: A Complexity Theoretic Perspective. In Proceedings of

the 9th International Conference on Database Theory (ICDT), pages 267–

281, 2003.

[KKN04] Rajasekar Krishnamurthy, Raghav Kaushik, and Jeffrey F. Naughton. Un-

raveling the Duplicate-Elimination Problem in XML-to-SQL Query Transla-

tion. In Proceedings of the Seventh International Workshop on the Web and

Databases (WebDB), 2004.

[KM00] Meike Klettke and Holger Meyer. XML and Object-Relational Database Sys-

tems - Enhancing Structural Mappings Based on Statistics. In Proceedings

of the Third International Workshop on the Web and Databases (WebDB),

pages 63–68, 2000.

[LBN03] Chengkai Li, Philip Bohannon, and P. P. S. Narayan. Composing XSL trans-

formations with XML publishing views. In Proceedings of the 2003 ACM

SIGMOD international conference on on Management of data, pages 515–

526, 2003.

[LC00] Dongwon Lee and Wesley W. Chu. Constraints-preserving Transformation

from XML Document Type Definition to Relational Schema. In In Proceed-

ings of the 19th International Conference on Conceptual Modeling, volume

1920 of Lecture Notes in Computer Science, pages 323–338, 2000.

158

[LM01] Quanzhong Li and Bongki Moon. Indexing and Querying XML Data for

Regular Path Expressions. In Proceedings of 27th International Conference

on Very Large Data Bases (VLDB), pages 361–370, 2001.

[MFK01] Ioana Manolescu, Daniela Florescu, and Donald Kossmann. Answering XML

Queries on Heterogeneous Data Sources. In Proceedings of 27th International

Conference on Very Large Data Bases (VLDB), pages 241–250, 2001.

[ML03] Murali Mani and Dongwon Lee. XML to Relational Conversion Using Theory

of Regular Tree Grammars. In Efficiency and Effectiveness of XML Tools

and Techniques and Data Integration over the Web, VLDB 2002 Workshop

EEXTT and CAiSE 2002 Workshop DTWeb. Revised Papers, volume 2590

of Lecture Notes in Computer Science, pages 81–103, 2003.

[MS02] Gerome Miklau and Dan Suciu. Containment and Equivalence for an XPath

Fragment. In Proceedings of the Twenty-first ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems (PODS), pages 65–

76, 2002.

[MS03] Amelie Marian and Jerome Simeon. Projecting XML Documents. In Proceed-

ings of 29th International Conference on Very Large Data Bases (VLDB),

pages 213–224, 2003.

[MW99] Jason McHugh and Jennifer Widom. Compile-Time Path Expansion in

Lore. In Workshop on Query Processing for SemiStructured Data and Non-

Standard Data Formats, 1999.

[OXD] Oracle XML DB. http://otn.oracle.com/tech/xml/xmldb.

[Ram02] Prakash Ramanan. Efficient algorithms for minimizing tree pattern queries.

In SIGMOD, 2002.

[RP02] Kanda Runapongsa and Jignesh M. Patel. Storing and Querying XML Data

in Object-Relational DBMSs. In XML-Based Data Management and Multi-

media Engineering - EDBT 2002 Workshops XMLDM, MDDE, and YRWS,

Revised Papers, volume 2490 of Lecture Notes in Computer Science, pages

266–285, 2002.

159

[SKS+01] Jayavel Shanmugasundaram, Jerry Kiernan, Eugene J. Shekita, Catalina

Fan, and John Funderburk. Querying XML Views of Relational Data. In

Proceedings of 27th International Conference on Very Large Data Bases

(VLDB), pages 261–270, 2001.

[SKWW00] Albrecht Schmidt, Martin L. Kersten, Menzo Windhouwer, and Florian

Waas. Efficient Relational Storage and Retrieval of XML Documents. In

Proceedings of the Third International Workshop on the Web and Databases

(WebDB), pages 47–52, 2000.

[SO87] Sreekumar T. Shenoy and Z. Meral Ozsoyoglu. A System for Semantic Query

Optimization. In Proceedings of the Association for Computing Machinery

Special Interest Group on Management of Data 1987 Annual Conference

(SIGMOD), pages 181–195, 1987.

[SSB+00] Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr, Michael J.

Carey, Bruce G. Lindsay, Hamid Pirahesh, and Berthold Reinwald. Effi-

ciently Publishing Relational Data as XML Documents. In Proceedings of

26th International Conference on Very Large Data Bases (VLDB), pages

65–76, 2000.

[SSK+01] Jayavel Shanmugasundaram, Eugene J. Shekita, Jerry Kiernan, Rajasekar

Krishnamurthy, Stratis Viglas, Jeffrey F. Naughton, and Igor Tatarinov.

A General Technique for Querying XML Documents using a Relational

Database System. SIGMOD Record, 30(3):20–26, 2001.

[STZ+99] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J.

DeWitt, and Jeffrey F. Naughton. Relational Databases for Querying XML

Documents: Limitations and Opportunities. In Proceedings of 25th Interna-

tional Conference on Very Large Data Bases (VLDB), pages 302–314, 1999.

[SXM] SQLXML and XML Mapping Technologies.

http://msdn.microsoft.com/sqlxml/default.asp.

[SY80] Yehoshua Sagiv and Mihalis Yannakakis. Equivalences among relational

expressions with the union and difference operators. Journal of the ACM

(JACM), 27(4):633–655, 1980.

160

[TH02] Pankaj M. Tolani and Jayant R. Haritsa. XGRIND: A Query-Friendly XML

Compressor. In Proceedings of the 18th International Conference on Data

Engineering, pages 225–234, 2002.

[TVB+02] Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasundaram,

Eugene J. Shekita, and Chun Zhang. Storing and querying ordered XML us-

ing a relational database system. In Proceedings of the 2002 ACM SIGMOD

International Conference on Management of Data, pages 204–215, 2002.

[W3C] W3c: World wide web consortium. http://www.w3.org/.

[WJLY03] Wei Wang, Haifeng Jiang, Hongjun Lu, and Jeffrey Xu Yu. PBiTree Coding

and Efficient Processing of Containment Joins. In Proceedings of the 19th

International Conference on Data Engineering (ICDE), pages 391–402, 2003.

[Woo02] Peter T. Wood. Containment for XPath Fragments under DTD Constraints.

In Proceedings of the 9th International Conference on Database Theory

(ICDT 2003), volume 2572 of Lecture Notes in Computer Science, pages

300–314, 2002.

[XMa] Xmark: The XML benchmark project. http://monetdb.cwi.nl/xml.

[XTa] XML for Tables. http://www.alphaworks.ibm.com/tech/xtable.

[YASU01] Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura, and Shunsuke

Uemura. XRel: a path-based approach to storage and retrieval of XML docu-

ments using relational databases. ACM Transactions on Internet Technology

(TOIT), 1(1):110–141, 2001.

[ZND+01] Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and Guy M.

Lohman. On Supporting Containment Queries in Relational Database Man-

agement Systems. In SIGMOD 2001 Electronic Proceedings, 2001.

[ZO93] Xubo Zhang and Z. Meral Ozsoyoglu. On Efficient Reasoning with Impli-

cation Constraints. In Proceedings of Third International Conference on

Deductive and Object-Oriented Databases, volume 760 of Lecture Notes in

Computer Science, pages 236–252, 1993.

161

[ZO97] Xubo Zhang and Z. Meral Ozsoyoglu. Implication and Referential Con-

straints: A New Formal Reasoning. IEEE Transactions on Knowledge and

Data Engineering (TKDE), 9(6):894–910, 1997.

[ZPR02] Xin Zhang, Bradford Pielech, and Elke A. Rundensteiner. Honey, I Shrunk

the XQuery! – An XML Algebra Optimization Approach. In Fourth ACM

CIKM International Workshop on Web Information and Data Management

(WIDM), pages 15–22, 2002.

162

Appendix A

Queries used in the experiments in

Chapter 4.4

In this section, we present the details for the queries used in the experiments in Chap-

ter 4.4. For each query Q, we give the XML query (XQ), the SQL query generated by

exploiting the “lossless from XML” constraint (OQ) and the SQL query generated if the

“lossless from XML” constraint is not used (NQ).

Query A1: Get the number of open-house ads in the campus area

XA1: count(//ad-instance//open-house/location[geo-area=‘area1’])

OA1: select count(*) from RE, LOC where (RE.category = 2 or RE.category = 3) and LOC.id

= RE.id and LOC.area = ’area1’

NA1: select count(*) from RE, LOC, ADS, ADEX where RE.category = 2 and LOC.id =

RE.id and LOC.area = ’area1’ and RE.id = ADS.id and ADS.adid = ADEX.adid UNION ALL

select count(*) from RE, LOC, ADS, ADINSTANCE where RE.category = 3 and LOC.id =

RE.id and LOC.area = ’area1’ and RE.id = ADS.id and ADS.adid = ADEX.adid

Query A2: Get the number of real-estate ads in the campus area

XA2: count(//ad-instance//real-estate//location[geo-area=‘area1’])

OA2: select count(*) from RE, LOC where LOC.id = RE.id and LOC.area = ’area1’

163

NA2: select count(*) from RE, LOC, ADS, ADEX where RE.category = 1 and LOC.id =

RE.id and LOC.area = ’area1’ and RE.id = ADS.id and ADS.adid = ADEX.adid UNION

ALL select count(*) from RE, LOC, ADS, ADEX where RE.category = 2 and LOC.id =

RE.id and LOC.area = ’area1’ and RE.id = ADS.id and ADS.adid = ADEX.adid UNION

ALL select count(*) from RE, LOC, ADS, ADEX where RE.category = 3 and LOC.id =

RE.id and LOC.area = ’area1’ and RE.id = ADS.id and ADS.adid = ADEX.adid UNION

ALL select count(*) from RE, LOC, ADS, ADEX where RE.category = 4 and LOC.id =

RE.id and LOC.area = ’area1’ and RE.id = ADS.id and ADS.adid = ADEX.adid UNION

ALL select count(*) from RE, LOC, ADS, ADEX where RE.category = 5 and LOC.id =

RE.id and LOC.area = ’area1’ and RE.id = ADS.id and ADS.adid = ADEX.adid UNION

ALL select count(*) from RE, LOC, ADS, ADEX where RE.category = 6 and LOC.id =

RE.id and LOC.area = ’area1’ and RE.id = ADS.id and ADS.adid = ADEX.adid UNION ALL

select count(*) from RE, LOC, ADS, ADEX where RE.category = 7 and LOC.id = RE.id and

LOC.area = ’area1’ and RE.id = ADS.id and ADS.adid = ADEX.adid

Query A3: Get the addresses of ads in the campus area

XA3: //ad-instance//location[geo-area=‘area1’]/address

OA3: select address from LOC where area = ’area1’

NA3: with TEMP(address) as (LOC.address from RE, LOC, ADS, ADEX where RE.category

= 1 and LOC.id = RE.id and RE.id = ADS.id and ADS.adid = ADEX.adid and LOC.area

= ’area1’ UNION ALL LOC.address from RE, LOC, ADS, ADEX where RE.category = 2

and LOC.id = RE.id and RE.id = ADS.id and ADS.adid = ADEX.adid and LOC.area =

’area1’ UNION ALL LOC.address from RE, LOC, ADS, ADEX where RE.category = 3 and

LOC.id = RE.id and RE.id = ADS.id and ADS.adid = ADEX.adid and LOC.area = ’area1’

UNION ALL LOC.address from RE, LOC, ADS, ADEX where RE.category = 4 and LOC.id

= RE.id and RE.id = ADS.id and ADS.adid = ADEX.adid and LOC.area = ’area1’ UNION

164

ALL LOC.address from RE, LOC, ADS, ADEX where RE.category = 5 and LOC.id = RE.id

and RE.id = ADS.id and ADS.adid = ADEX.adid and LOC.area = ’area1’ UNION ALL

LOC.address from RE, LOC, ADS, ADEX where RE.category = 6 and LOC.id = RE.id

and RE.id = ADS.id and ADS.adid = ADEX.adid and LOC.area = ’area1’ UNION ALL

LOC.address from RE, LOC, ADS, ADEX where RE.category = 7 and LOC.id = RE.id

and RE.id = ADS.id and ADS.adid = ADEX.adid and LOC.area = ’area1’ UNION ALL

LOC.address from TRANS, LOC, ADS, ADEX where TRANS.category = 9 and LOC.id =

TRANS.id and TRANS.id = ADS.id and ADS.adid = ADEX.adid and LOC.area = ’area1’

UNION ALL LOC.address from EMP, LOC, ADS, ADEX where EMP.category = 1 and LOC.id

= EMP.id and EMP.id = ADS.id and ADS.adid = ADEX.adid and LOC.area = ’area1’ UNION

ALL LOC.address from EMP, LOC, ADS, ADEX where EMP.category = 2 and LOC.id =

EMP.id and EMP.id = ADS.id and ADS.adid = ADEX.adid and LOC.area = ’area1’ UNION

ALL LOC.address from EMP, LOC, ADS, ADEX where EMP.category = 3 and LOC.id =

EMP.id and EMP.id = ADS.id and ADS.adid = ADEX.adid and LOC.area = ’area1’ UNION

ALL LOC.address from EMP, LOC, ADS, ADEX where EMP.category = 4 and LOC.id =

EMP.id and EMP.id = ADS.id and ADS.adid = ADEX.adid and LOC.area = ’area1’) select

address from TEMP

Query X1: Get the number of items in a particular category

XX1:

let $cat := //categories/category[name = ‘pie’],

$item := /site//item/Incategory[category = $cat/id]

return count($item)

OX1: select count(*) from INCATEGORY, CATEGORY where INCATEGORY.category =

CATEGORY.id and CATEGORY.name = ’pie’

165

NX11: select count(*) from SITE, ITEM, INCATEGORY, CATEGORY where SITE.id =

ITEM.siteid and ITEM.id = INCATEGORY.itemid and INCATEGORY.category = CATE-

GORY.id and CATEGORY.name = ’pie’ and ITEM.continent = ’africa’ UNION ALL select

count(*) from SITE, ITEM, INCATEGORY, CATEGORY where SITE.id = ITEM.siteid and

ITEM.id = INCATEGORY.itemid and INCATEGORY.category = CATEGORY.id and CAT-

EGORY.name = ’pie’ and ITEM.continent = ’asia’ UNION ALL select count(*) from SITE,

ITEM, INCATEGORY, CATEGORY where SITE.id = ITEM.siteid and ITEM.id = INCATE-

GORY.itemid and INCATEGORY.category = CATEGORY.id and CATEGORY.name = ’pie’

and ITEM.continent = ’australia’ UNION ALL select count(*) from SITE, ITEM, INCATE-

GORY, CATEGORY where SITE.id = ITEM.siteid and ITEM.id = INCATEGORY.itemid and

INCATEGORY.category = CATEGORY.id and CATEGORY.name = ’pie’ and ITEM.continent

= ’europe’ UNION ALL select count(*) from SITE, ITEM, INCATEGORY, CATEGORY where

SITE.id = ITEM.siteid and ITEM.id = INCATEGORY.itemid and INCATEGORY.category =

CATEGORY.id and CATEGORY.name = ’pie’ and ITEM.continent = ’namerica’ UNION ALL

select count(*) from SITE, ITEM, INCATEGORY, CATEGORY where SITE.id = ITEM.siteid

and ITEM.id = INCATEGORY.itemid and INCATEGORY.category = CATEGORY.id and

CATEGORY.name = ’pie’ and ITEM.continent = ’samerica’

NX12: with TEMP(category) as (select INCATEGORY.category from SITE, ITEM, INCATE-

GORY, CATEGORY where SITE.id = ITEM.siteid and ITEM.id = INCATEGORY.itemid and

ITEM.continent = ’africa’ UNION ALL select INCATEGORY.category from SITE, ITEM, IN-

CATEGORY, CATEGORY where SITE.id = ITEM.siteid and ITEM.id = INCATEGORY.item-

id and ITEM.continent = ’asia’ UNION ALL select INCATEGORY.category from SITE, ITEM,

INCATEGORY, CATEGORY where SITE.id = ITEM.siteid and ITEM.id = INCATEGORY.-

itemid and ITEM.continent = ’australia’ UNION ALL select INCATEGORY.category from

SITE, ITEM, INCATEGORY, CATEGORY where SITE.id = ITEM.siteid and ITEM.id = IN-

CATEGORY.itemid and ITEM.continent = ’europe’ UNION ALL select INCATEGORY.category

166

from SITE, ITEM, INCATEGORY, CATEGORY where SITE.id = ITEM.siteid and ITEM.id

= INCATEGORY.itemid and ITEM.continent = ’namerica’ UNION ALL select INCATE-

GORY.category from SITE, ITEM, INCATEGORY, CATEGORY where SITE.id = ITEM.siteid

and ITEM.id = INCATEGORY.itemid and ITEM.continent = ’samerica’) select count(*) from

TEMP, CATEGORY where TEMP.category = CATEGORY.id and CATEGORY.name = ’pie’

Query X2: For a particular person, get categories of items for which (s)he made a bid

XX2:

let $bids := /site/open auctions/open auction/bidder[personref=‘person4892’],

$itemcat := //item[id=$bids/itemref/@item]/incategory/category,

$cat := distinct-values(//categories/category[id=$itemcat]/name)

return $cat

OX2: select distinct(CATEGORY.name) from OPENAUCTION, BIDDER, ITEM, INCATE-

GORY, CATEGORY where BIDDER.auctionid = OPENAUCTION.id and OPENAUCTION.-

itemid = ITEM.id and ITEM.id = INCATEGORY.itemid and INCATEGORY.category =

CATEGORY.id and BIDDER.personref = ’person4892’

NX21: with TEMP(name) as (select distinct(CATEGORY.name) from OPENAUCTION,

BIDDER, SITE, ITEM, INCATEGORY, CATEGORY where SITE.id = ITEM.siteid and BID-

DER.auctionid = OPENAUCTION.id and OPENAUCTION.itemid = ITEM.id and ITEM.id =

INCATEGORY.itemid and INCATEGORY.category = CATEGORY.id and BIDDER.personref

= ’person4892’ and ITEM.continent = ’africa’ UNION ALL select distinct(CATEGORY.name)

from OPENAUCTION, BIDDER, SITE, ITEM, INCATEGORY, CATEGORY where SITE.id

= ITEM.siteid and BIDDER.auctionid = OPENAUCTION.id and OPENAUCTION.itemid

167

= ITEM.id and ITEM.id = INCATEGORY.itemid and INCATEGORY.category = CATE-

GORY.id and BIDDER.personref = ’person4892’ and ITEM.continent = ’asia’ UNION ALL

select distinct(CATEGORY.name) from OPENAUCTION, BIDDER, SITE, ITEM, INCAT-

EGORY, CATEGORY where SITE.id = ITEM.siteid and BIDDER.auctionid = OPENAUC-

TION.id and OPENAUCTION.itemid = ITEM.id and ITEM.id = INCATEGORY.itemid and

INCATEGORY.category = CATEGORY.id and BIDDER.personref = ’person4892’ and ITEM.-

continent = ’australia’ UNION ALL select distinct(CATEGORY.name) from OPENAUCTION,

BIDDER, SITE, ITEM, INCATEGORY, CATEGORY where SITE.id = ITEM.siteid and BID-

DER.auctionid = OPENAUCTION.id and OPENAUCTION.itemid = ITEM.id and ITEM.id =

INCATEGORY.itemid and INCATEGORY.category = CATEGORY.id and BIDDER.personref

= ’person4892’ and ITEM.continent = ’europe’ UNION ALL select distinct(CATEGORY.name)

from OPENAUCTION, BIDDER, SITE, ITEM, INCATEGORY, CATEGORY where SITE.id

= ITEM.siteid and BIDDER.auctionid = OPENAUCTION.id and OPENAUCTION.itemid

= ITEM.id and ITEM.id = INCATEGORY.itemid and INCATEGORY.category = CATE-

GORY.id and BIDDER.personref = ’person4892’ and ITEM.continent = ’namerica’ UNION

ALL select distinct(CATEGORY.name) from OPENAUCTION, BIDDER, SITE, ITEM, IN-

CATEGORY, CATEGORY where SITE.id = ITEM.siteid and BIDDER.auctionid = OPE-

NAUCTION.id and OPENAUCTION.itemid = ITEM.id and ITEM.id = INCATEGORY.itemid

and INCATEGORY.category = CATEGORY.id and BIDDER.personref = ’person4892’ and

ITEM.continent = ’samerica’) select distinct(name) from TEMP

NX22: with TEMP(category,id) as (select INCATEGORY.category, ITEM.id from SITE,

ITEM, INCATEGORY where SITE.id = ITEM.siteid and ITEM.id = INCATEGORY.itemid

and ITEM.continent = ’africa’ UNION ALL select INCATEGORY.category, ITEM.id from

SITE, ITEM, INCATEGORY where SITE.id = ITEM.siteid and ITEM.id = INCATEGORY.-

itemid and ITEM.continent = ’asia’ UNION ALL select INCATEGORY.category, ITEM.id

168

from SITE, ITEM, INCATEGORY where SITE.id = ITEM.siteid and ITEM.id = INCATE-

GORY.itemid and ITEM.continent = ’australia’ UNION ALL select INCATEGORY.category,

ITEM.id from SITE, ITEM, INCATEGORY where SITE.id = ITEM.siteid and ITEM.id = IN-

CATEGORY.itemid and ITEM.continent = ’europe’ UNION ALL select INCATEGORY.cate-

gory, ITEM.id from SITE, ITEM, INCATEGORY where SITE.id = ITEM.siteid and ITEM.id

= INCATEGORY.itemid and ITEM.continent = ’namerica’ UNION ALL select INCATE-

GORY.category, ITEM.id from SITE, ITEM, INCATEGORY where SITE.id = ITEM.siteid

and ITEM.id = INCATEGORY.itemid and ITEM.continent = ’samerica’) select distinct(CATE-

GORY.name) from OPENAUCTION, BIDDER, TEMP, CATEGORY where BIDDER.auctionid

= OPENAUCTION.id and OPENAUCTION.itemid = TEMP.id and TEMP.category = CAT-

EGORY.id and BIDDER.personref = ’person4892’

