
The Problem of Context Sensitive String

Matching

Venkatesan T. Chakaravarthy and Rajasekar Krishnamurthy

Computer Science Department,
University of Wisconsin, Madison, WI 53706, USA,

{venkat,sekar}@cs.wisc.edu,
WWW home page: http://www.cs.wisc.edu/∼{venkat,sekar}

Abstract. In the context sensitive string matching problem, we are
given a pattern and a text. The pattern is a string over variables and
constants and the text is a string of constants. The goal is to find if there
is a mapping from variables to strings of constants so that on applying
this mapping to the pattern we get the given text. Languages like Perl
and Python support such a sophisticated string matching. The problem
is known to be NP-Complete. In this paper, we consider a weighted ver-
sion of this problem that checks how close the pattern can be matched
with the text. We show that this variation is MAXSNP-Complete and
cannot be approximated within a factor of 3313/3312. We show that
even the restriction, where the pattern consists of variables only, is NP-
Complete and MAXSNP-Complete. When the alphabet is bounded, we
give an approximation algorithm for this restriction.

1 Introduction

String matching is a well studied problem and has applications in a wide vari-
ety of fields. Recently, various modifications of the exact string matching prob-
lem have been considered. Applications in computational biology and computer
vision have motivated the study of approximate string matching [5, 6], where
different matching relations like swapped matching [2], “don’t cares” [8] and
overlap matching [3] have been proposed.

There is another interesting variation of exact string matching, which we call
context sensitive string matching. Here, the pattern is allowed to have variables
and the goal is to map variables to strings, such that, when the variables in the
pattern are replaced by the corresponding strings, we get the text. This kind of
string matching is supported by languages like Perl and Python. Moreover, some
of the complex list processing capabilities of languages like Prolog and Lisp are
captured by this problem. The problem was first considered by Angluin [4] in
the context of finding patterns common to a set of strings. We next define the
problem formally.
Problem Definition: The input consists of a set of constants Σ, a set of
variables V , a pattern P ∈ (V + Σ)+ and a text T ∈ Σ+. An assignment σ
is a mapping σ : V → Σ+. σ(P) denotes the string obtained by replacing each

II

occurrence of a variable X in P , by σ(X). If the strings σ(P) and T are the same,
σ is a matching assignment. The goal of the problem is to determine whether
such a matching assignment exists. If so, then P matches T .

For example, let Σ = {a, b, c, d, e}, V = {X, Y }, P = XaXY and T =
“abaabcde”. Let σ be an assignment that maps X to “ab” and Y to “cde”. Then
σ(P) is same as the text and σ is a matching assignment. On the other hand,
if P = XX and T = “aaa”, then it is easy to see that there cannot be any
matching assignment. Note that each occurrence of a variable X in the pattern
has to be replaced by the same string1 and no variable can be mapped to the
null string.

The context sensitive string matching problem was shown to be NP-Complete,
even over a binary alphabet, by Angluin [4]. Just like how exact string match-
ing was extended to approximate string matching, we extend context sensitive
string matching to a weighted version. When there is no matching assignment
between the pattern and the text, we want to find how close the pattern can
be matched with the text. To explore this possibility of approximate matching,
we generalize the problem to a weighted version. We show that this problem is
MAXSNP-Complete and cannot be approximated within a factor of 3313/3312.
We also consider various restrictions of the problem. When the pattern consists of
variables only, we show that the problem remains NP-Complete and MAXSNP-
Complete. We also give a simple approximation algorithm for this restriction,
when the alphabet is bounded.

We refer to the set of constants Σ as the alphabet. We represent the con-
stants by small letters and special symbols, and the variables by capital letters.
Throughout the paper, we refer to the context sensitive string matching problem
simply as CS-Matching.

Related Work

The concept of pattern, in the above sense, has been considered in many sce-
narios. In [4], the problem of finding a “good” pattern that matches a given set
of strings was considered. In that context, the language L(P) of a pattern P is
defined to be the set of all strings that can be matched (under some assignment)
to P . Given a text T and a pattern P , then the CS-Matching problem is mem-
bership testing of T in L(P). This was shown to be NP-Complete in [4]. In this
paper, we consider the weighted version of the problem, where we attempt to
find an assignment that matches the pattern to the text as close as possible.

In our definitions, we required that each variable is assigned to a non-null
string. Such patterns are called non-erasing in literature. If we allow null-string
assignments also, the patterns are called erasing. Decidability problems about
the equivalence and inclusion among patterns, in both these settings, was studied
in [4, 11, 15]. The generative power of pattern languages were considered in [7,
14], from a formal language theoretic perspective. While we allow a variable
to be mapped to any string (from Σ+), they consider the power of pattern

1 This has been referred to as uniform substitution in literature.

III

languages when this mapping is restricted to specific languages (like regular and
context-free languages).

CS-Matching has also been considered in the context of unavoidability testing
of a pattern. An infinite text T is said to avoid a pattern P , if P does not match
any substring of T . A pattern is unavoidable if no infinite text avoids it. Prior
work like [10, 13, 17] deals with identifying necessary and sufficient conditions
for a pattern to be unavoidable. Our problem differs in that the goal here is to
check how close the pattern matches a given text of finite length.

When each variable occurs only once in the pattern, the pattern can be
treated as a regular expression. Thus, CS-Matching is a generalization of the
well known regular expression string matching problem.

2 Weighted Context Sensitive String Matching

For a pattern P and a text T , there may not be any matching assignment. In this
case, we want to see how close the pattern can be matched to the text. Towards
that end, we first define a weighted version of the problem. We then show that
this weighted version is MAXSNP-Complete.

There is a natural way to extend the CS-Matching problem to a weighted
version. Here, apart from the usual Σ, V, P and T , the input also includes two
positive numbers α, the matching-cost, and β, the mismatch-cost, with β > α.
We call an assignment σ to be a feasible assignment if |σ(P)| = |T |. The cost of
a feasible assignment σ is the distance between σ(P) and T . Let T = a1a2 . . . an

and σ(P) = b1b2 . . . bn. The distance is given by Σd(ai, bi), where d(ai, bi) is α,
if ai = bi and β otherwise. If σ is not a feasible assignment then its cost is ∞.
We require that the input instances have at least one feasible assignment2. Then
the weighted CS-Matching problem is to find the optimal assignment.

As CS-Matching is known to be NP-Complete [4], we consider approximation
algorithms for the weighted version. If α and β are allowed to be arbitrary, we
cannot have any constant factor approximation algorithm, unless NP = P . This
is due to the fact that, one can reduce CS-Matching to the weighted version, by
setting α = 0 and β = 1. Now, any constant factor approximation algorithm can
be used to solve the NP-Complete CS-Matching problem in polynomial time.
Similarly, if we set α = 1 and β to be a large value (like n2), we would get the
same result. So, it is interesting to consider the case when α and β are constants,
with β > α > 0. We discuss the case where α = 1 and β = 2. Our results can
be generalized for any constants α and β and the inapproximability bound will
vary accordingly.

1,2-Matching is defined to be the weighted CS-Matching problem, where the
matching cost is 1 and the mismatch cost is 2. We can define α, β-Matching
similarly, for any constants, β > α > 0. Let the length of the input text be
|T | = n. Then any feasible assignment has a cost between n and 2n. As we
require that the input instance should have at least one feasible assignment, the

2 In Section 3, we give a polynomial time algorithm to check whether a given instance
of the problem has some feasible assignment.

IV

optimal cost lies between n and 2n. We define the difference between the cost of
an assignment and n to be the extra-cost for that assignment.

We next prove that the 1,2-Matching problem is MAXSNP-Complete. We
first prove the result when the size of the alphabet is allowed to be arbitrary.
Then we adapt the proof to get the same result, even over a binary alphabet. Note
that over a unary alphabet, any feasible assignment is optimal. As a corollary,
we get that the α, β-Matching problem is MAXSNP-Complete.

Theorem 1 The 1,2-Matching problem is MAXSNP-Complete.

Proof : In Section 3, we will give a 2-approximation algorithm for the 1,2-
Matching problem. It is known that a problem is in MAXSNP iff it has some
constant factor approximation algorithm [16]. So the problem is in MAXSNP
and we proceed to prove that it is MAXSNP-Hard.

The vertex cover problem on 3-regular graphs is known to be MAXSNP-
Complete [1]. We give an L-reduction from the vertex cover problem on 3-regular
graphs to our problem. As the first step, we present an algorithm that given
a 3-regular graph produces an instance of our problem. Let G be the input
graph with n vertices v1, v2, . . . , vn and m edges e1, e2, . . . , em. Note that, as the
graph is 3-regular, m = 1.5n. We use the alphabet Σ = {$1, $2, . . . , $n, t, f}.
For each vertex vi of the graph, we add a variable Vi to V , the variable set.
We then add m + 1 dummy variables D0, D1, D2, . . . , Dm to V . A dummy vari-
able is one that occurs exactly once in the pattern. The output pattern P has
three parts, P = P1P2P3. Here, P1 = V1V2 . . . Vn, P2 = “$1$2 . . . $n” and
P3 = D0s1D1s2D2 . . . Dm−1smDm are called the vertex, dollar and edge seg-
ments respectively. In the edge-segment, si encodes the ith edge. For example,
if the ith edge ei = (vj , vk), then si = VjVk. The text T = T1T2T3 is also
made of three segments. T1 is the string “fff...f” of length n. T2 is the same
as P2 = “$1$2 . . . $n”. T3 is made up of m blocks of the string “tfttft”. This
completes the construction. Refer to Figure 1 for an example, where the input
graph is K4, the complete graph on four nodes.

Let V C∗ be an optimal vertex cover of G. We first have to show that the
optimal assignment has cost, at most, α|V C∗|, for some constant α. First note
that the length of the text is |T | = 11n. We exhibit an assignment σ∗ with cost
11n + |V C∗|. For each vertex vi ∈ V C∗, map the variable Vi to “t”. For each
vertex vi 6∈ V C∗, map the variable Vi to “f”. With this mapping the vertex
segments of P and T , namely P1 and T1 get aligned with an extra-cost of |V C∗|.
The dollar-segments P2 and T2 align with no extra-cost. We show how to map
the dummy variables to strings so that there is no extra-cost in aligning the
edge segments P3 and T3. Since the mapping is based on a vertex cover, for any
edge ei = (vj , vk), the corresponding string VjVk has been mapped to one of
“tt”, “tf” or “ft”. All these are available as substrings in “fttf” which occurs
in each block of T3. So we can make VjVk align with the text without any extra-
cost, by making the dummies “eat” the “left-over” text in each block. Since
the variables for each edge get mapped within “fttf” of a block “tfttft”, each
dummy variable will get mapped to a string of positive length. We exhibit this
idea in Figure 1.

V

1 432 2 23 34 41 30 5 61 1

Text

Pattern

T T T

P P P
1

1

2

2

3

3

412
V V V V $ $ $ $ D VV D VV D VV D VV D VV D VV D

2 3 4

2 41 3

2 41 3

 f f f f $ $ $ $ t f t t f t t f t t f t t f t t f t t f t t f t t f t t f t t f t t f t

σ(V1) = σ(V2) = σ(V3) = “t”; σ(V4) = “f”; σ(D0) = “tf”; σ(D1) = “fttf”;

σ(D2) = “fttft”; σ(D3) = “ttf”; σ(D4) = “fttft”; σ(D5) = “ttft”; σ(D6) = “t”

Fig. 1. Constructing an assignment for the vertex cover {V1, V2, V3} of the graph K4

The extra-cost for this assignment σ∗ is |V C∗| (the cost incurred in matching
P1 with T1). We want to find a constant α such that, cost(σ∗) ≤ α|V C∗|. As G
is a 3-regular graph, each vertex can cover at most 3 edges. Thus, |V C∗| ≥ n/2.
We already showed that cost(σ∗) = 11n + |V C∗|. Using these facts, with some
simple arithmetic, we get that cost(σ∗) ≤ 23|V C∗|.

We next give an algorithm that takes as input an assignment σ and outputs
a vertex cover VC, with the property that, |V C| − |V C∗| ≤ cost(σ) − cost(σ∗),
where V C∗ is an optimal vertex cover and σ∗ is an optimal assignment. To find
V C, we first make certain transformations to σ to attain a feasible assignment
with the following two properties:-

Property 1 : For each Vi, σ(Vi) = “t” or σ(Vi) = “f”.
Property 2: For each edge ei = (vj , vk), σ(Vj) or σ(Vk) is “t”.

We also ensure that we do not increase the cost of σ, in doing this transfor-
mation. Then, we include all the vertices that got mapped to “t” to V C.

If |σ(Vi)| > 1, P2 will not align with T2, incurring a minimum extra-cost of
n. We can get an equally good assignment, by mapping each variable Vi to “t”.
The mappings for the dummy variables can be changed appropriately so that
P3 exactly matches T3. The extra cost for this assignment is n and we can take
this to be σ.

We can now assume that, for all Vi, |σ(Vi)| = 1. If for some Vi, σ(Vi) = $j ,
then an extra-cost of 3 will be incurred for this variable. This is because, Vi

appears three times in the edge-segment P3 and the $’s do not appears in T3.
So we can change σ(Vi) to be “t” or “f”, by taking majority of the three text
symbols to which Vi is aligned in the edge-segment. This change in mapping will
actually decrease the cost. So, we can now assume that σ satisfies Property 1.

Next we convert σ to be block-respecting. In other words, for each edge
ei = (vj , vk), the string si = VjVk is aligned within the substring “fttf” of the
ith block of T3. Let us consider the first edge ei = (vj , vk) that violates this
condition. By shortening σ(Di−1) and lengthening σ(Di) appropriately, we can
make ei to be block-respecting. This idea is expressed in Figure 2.

VI

i-1
..D X Y D....

i

..t t f t t f t t f t t f t t f t t f t t f t....

i-1
..D X Y D....

i

..t t f t t f t t f t t f t t f t t f t t f t....

block i block i block i+2block i+1block i+2 block i+1

i i ii
......

....

......

Fig. 2. Making the ith edge block respecting.

By repeating this process, we can convert σ to be block-respecting without
any additional cost.

Next we ensure that for each edge ei = (vj , vk), at least one of Vj or Vk

is mapped to “t”. If Vj and Vk are both mapped to “f”, we pick one of them
arbitrarily, say Vj , and map it to “t”. This would increase the cost by 1, due
to the mismatch in the vertex segment. We then change σ(Di−1) appropriately,
so that, VjVk is aligned to “tf” in the text. Previously, VjVk was mapped to
“ff”. Since T3 does not contain the substring “ff”, this would have caused a
mismatch. By aligning VjVk to “tf”, we remove this mismatch and reduce the
cost by 1. This compensates the increase in cost in the vertex segment. We need
to handle the other two places in the edge-segment where Vj occurs, without
increasing the cost. As Vj is mapped to “t” now, the strings that we need to
match can only be “tt”, “tf” or “ft”. All these are substrings of “fttf”. They
can be accommodated by adjusting the mapping to the appropriate dummy
variable so that there is no increase in cost. So the total change in cost is 0.

We can now assume that σ satisfies Property 1 and Property 2. We construct
a set V C, by adding the vertex vi to it iff σ(Vi) = “t”. This would be a vertex
cover. cost(σ) = 11n + |V C|. Cost of σ∗ is, at least, 11n + V C∗. Otherwise, we
can use the above mentioned procedure to get a vertex cover smaller than V C∗.
This proves that, |V C| − |V C∗| ≤ cost(σ) − cost(σ∗). We have proved that our
reduction is an L-reduction. ♣

Corollary 1 The 1,2-Matching problem cannot be approximated within a fac-
tor of 3313/3312.

Proof: It is known that the vertex cover problem is not approximable within
a factor of 145/144, even on graphs with maximum degree at most three [12].
For ease of exposition, we gave the L-reduction from 3-regular graphs. The same
proof works even for graphs with maximum degree at most three. In the above
L-reduction we ensured that the cost of the optimal solution for the output
instance is no more than 23 times the optimal vertex cover of the input graph.
We also gave a way to translate a given solution σ of the matching problem into
a vertex cover V C, such that |V C|−|V C∗| ≤ cost(σ)−cost(σ∗), where V C∗ and
σ∗ are the corresponding optimal solutions. Using these, we can get the required
inapproximability bound. ♣

We next adapt the above proof to show that even when the alphabet is
restricted to be binary, the problem is MAXSNP-Complete.

VII

Theorem 2 The 1,2-Matching problem is MAXSNP-Complete, even if the al-
phabet is binary.

Proof: We adapt the proof of Theorem 1 here. We use the same L-reduction
with some changes. Our alphabet is now {t, f}. The pattern is P = P1P2P3,
where P1 and P3 are same as in the original L-reduction. P2 is now a string
“ff . . . f” of length 1.5n. The text T = T1T2T̂2T3 is now made of four segments.
T1 and T3 are as in the original proof. T2 is the string “ff . . . f” of length 1.5n.
T̂2 = “tt . . . t”, a string of length n.

By adapting the original proof, we can translate an optimal vertex cover V C∗

into an assignment with an extra-cost of |V C∗| (note that D0 can be mapped
appropriately to match T̂2 also). As the length of the text is now 12.5n, we can
show that the cost of the optimal assignment is, at most, 26|V C∗|.

We next modify the algorithm that converts a given assignment σ to a vertex
cover V C. The main issue is that |σ(Vi)| could be more than 1, for some Vi. We
cannot use the argument given in the previous proof to address this issue, as we
no longer have n different special symbols. We make a series of transformations
to σ, so that ∀i, |σ(Vi)| = 1, without increasing the cost of σ.

We shall first transform σ so that the first “f” of P2 is matched within T2.
If σ does not have this property, P2 is matched completely within T̂2 and T3.
Notice that any substring of T̂2T3 of length l has, at least, 2/3 ∗ l “t”’s. So, P2

will incur an extra-cost of at least, |P2| ∗ 2/3 = n. By mapping all Vi’s to “t”,
we can get an equally good assignment (with extra-cost of n).

We can now assume that the first “f” of P2 is matched within T2. Now, if
a suffix of P2 is matched to a prefix of T3, then the entire T̂2 will be matched
within P2, incurring an extra cost of n. So we can assume that P2 is matched
within T2 and T̂2.

We shall now transform σ so that |σ(Vi)| = 1, for all Vi. Suppose |σ(Vi)| > 1,
for some Vi. Let σ(Vi) = ayb, where a, b ∈ {t, f} and y ∈ (t + f)∗. Vi occurs in
three places in P3, as the first variable or as the second (this would depend on how
the edge was represented; as (vi,) or as (, vi)). If the majority is the first place,
we map Vi to “b”, else we map it to “a”. Such a change in the mapping has to
be accounted for in four places, once in P1 and thrice in P3. First let us consider
its occurrence in the vertex-segment P1. We have shrunk σ(Vi). The substring
Vi+1 . . . Vn of P1 will slide to the left over T1 and T2 that are made of f ’s only. So,
there is no change in cost for P1. The sliding also causes one or more f ’s of P2,
which were originally matched with a prefix of T̂2, to now match with a suffix of
T2. As T̂2 is a string of t’s and T2 is a string of f ’s, the cost decreases by at least
1. To avoid “disturbing” the alignments in the edge-segments, we increase the
length of σ(D0) by |y|+1 and the sliding has no effect in P3. Now let us consider
the three occurrences of Vi in P3. Let us assume that Vi occurs a majority number
of times as the first variable (the other case is handled similarly). Consider each
of the three places where Vi occurs in the edge-segment. Let er be the edge
in consideration. Then, we set σ(Dr−1) ← σ(Dr−1)ay. This does not change
the cost. If Vi is the second variable of er, we set σ(Dr)← ybσ(Dr). This could
increase the cost by one, as a and b may be different. The latter case will occur at

VIII

most once, as we took majority. So we have made |σ(Vi)| = 1, without increasing
the cost.

Repeating the above procedure for each variable, we have managed to change
σ so that each Vi is either mapped to “t” or to “f”. σ now satisfies Property 1 of
the original proof. We can continue as in the original proof to satisfy Property 2
and get the required result. ♣

Corollary 2 The 1,2-Matching problem cannot be approximated within a fac-
tor of 3313/3312, even when the alphabet is binary.

Proof: A straightforward adaptation of Corollary 1 to the above theorem would
yield a bound of 3745/3744. This can be improved to 3313/3312 if we could
reduce the length of the text from 12.5n to 11n. We do this by using the block
“tfttf” instead of “tfttft” in T3 and adding a single constant t at the end of
the text. The proof of the above theorem has to be modified slightly to handle
this. ♣

Corollary 3 The α, β-Matching problem is MAXSNP-Complete and cannot
be approximated within a factor of 1 + 1

144(β+21α)(β−α) .

3 Restrictions to Weighted CS-Matching

We showed that the 1,2-Matching problem is MAXSNP-Complete. In this sec-
tion, we give a 2-approximation algorithm for the problem. We also consider
whether restrictions of the problem have better upper bounds. The first restric-
tion we consider is when the number of variables is bounded by a constant. We
show that this problem can be solved in polynomial time. In the second restric-
tion, we require that the pattern be a string made of variables only. We show
that this problem is NP-Complete and also MAXSNP-Complete. We give an
approximation algorithm for this problem, when the alphabet is bounded. The
following lemma is useful in analyzing the two restrictions.

Lemma 1 We can verify whether a given instance of the weighted CS-Matching
problem has a feasible assignment or not in polynomial time.

Proof: Let the input pattern contain k variables, X1, X2, . . . , Xk, each occur-
ring a1, a2, . . . , ak times respectively. Let the length of the text be n, the total
length of constants in the pattern be c and set n′ = n− c. It can be seen that a
feasible assignment exists iff the equation

a1 ∗ x1 + a2 ∗ x2 + · · ·+ ak ∗ xk = n′

has positive integer solutions in the unknowns x1, . . . xk.
We give a simple algorithm based on dynamic programming to solve the

above equation. We compute a n′ × n′ boolean array A, where Ap,q is true iff
there exists an assignment of positive integers to the xi’s, such that

∑
xi = p

and
∑

aixi = q. We set Ak,l to true, where l =
∑

ai. We set all other entries of

IX

the first k rows to false. To compute the rest of the array, we use the recurrence
relation,

Ap,q =

k∨

i=1

Ap−1,q−ai

Finally, there exists a positive integer solution to the equation iff for some p,
Ap,n′ is true. ♣

The above algorithm can be modified to find a feasible assignment. Any
feasible assignment has cost at most 2n, where n is the length of the text. The
optimal assignment has cost at least n. So we have a 2-approximation algorithm.

Corollary 4 There is a 2-approximation algorithm for the 1,2-Matching prob-
lem.

We next discuss a problem that occurs in the analysis of the restricted ver-
sions that we consider below.
Fixed Length Weighted CS-Matching Problem: As usual, the input con-
sists of a text T of length n and a pattern P over k variables V1, V2, . . . , Vk,
where the variable Vi occurs ai times in P . We are also given a sequence of k
integers l1, l2, . . . , lk satisfying the equation,

∑
ai ∗ li = n−c, where c is the total

length of the constants in P . Among all assignments σ that satisfy the condition,
∀i |σ(Vi)| = li, the goal is to find an assignment with the least cost.

The above problem can be solved in polynomial time. We can compute the
required mapping for each variable Vi as follows. As the lengths of all variables
are fixed, the substrings in the text that align with each occurrence of Vi are also
fixed. Let these be y1, y2, . . . , yai

, each of length li. We set σ(Vi) to a1a2 . . . ali ,
where aj is a constant that occurs the maximum number of times in the jth

position of the strings y1, y2, . . . , yai
. It can be seen that this assignment has the

least cost of all assignments that satisfy the specified lengths.

3.1 Restriction 1: Bounded Number of Variables

Theorem 3 If the number of variables is bounded by a constant K, an optimal
assignment can be found in polynomial time.

Proof: Finding the assignment σ can be viewed as a two stage process. We first
fix the length of the mapping for each variable and then fix the actual mapping.
Once we fix the lengths for σ(Vi)’s, we get an instance of the fixed length weighted
CS-Matching problem, which was shown to be solvable in polynomial time. As
each variable can only have length between 1 and n, the number of ways in which
we can fix the lengths is bounded by nK . So, when K is a constant, the problem
can be solved in polynomial time. ♣

3.2 Restriction 2: Variable-Only Patterns

Theorem 4 The CS-Matching problem is NP-Complete even when the pattern
is restricted to be a string of variables only and the alphabet is restricted to be
binary.

X

Proof: We give a reduction from 1in3SAT. In the 1in3SAT problem, given
a 3SAT formula, we need to check if there is a truth assignment that satisfies
exactly one literal in each clause. This problem is known to be NP-Complete [9].

Let the input formula for the 1in3SAT problem be over n boolean variables
x1, x2, . . . xn and contain m clauses. Our reduction outputs an instance of the
matching problem over the alphabet Σ = {$, a} and the variable set V . For each
boolean variable xi, we add two variables Xi and Xi to V . We also add another
variable Z to V . We output the pattern

ZX1X1ZX2X2Z . . . ZXnXnZs1Zs2Z . . . ZSmZ

where sj is a string that encodes the jth clause. For example, if the jth clause
is (x1 ∨ x2 ∨ x3) then sj would be the string X1X2X3. The text is the string
$(aaa$)n(aaaa$)m. This defines the polynomial reduction. We next show that
the formula has a 1in3 satisfying assignment iff the pattern matches the text.

First, if the input formula has a 1in3 satisfying assignment φ, we find a
matching assignment σ as follows:

– Set σ(Z) = $.
– If φ(Xi) is true, then set σ(Xi) =“aa” and σ(Xi) = “a”.
– If φ(Xi) is false, then set σ(Xi) = “a” and σ(Xi) = “aa”.

It can be seen that σ is a matching assignment.
Next, let us assume that the pattern matches the text via a matching as-

signment σ. Then σ(Z) has to start and end with $. As the number of Z’s in
the pattern is same as the number of $’s in the text, Z has to be mapped to
$. So, for any pair of variables Xi and Xi either Xi is mapped to “aa” and Xi

to “a” or vice versa. We then exhibit a 1in3 satisfying assignment for the input
formula. We set xi to true, if Xi is mapped to “aa”, and to false, otherwise. As
the pattern and the text are matched, any string sj is aligned with the string
“aaaa”. Thus, of the three variables in sj , exactly one is mapped to “aa” and
the other two are mapped to “a”. This implies that the truth assignment we
constructed is a 1in3 satisfying assignment. ♣

Theorem 5 The 1,2-Matching problem is MAXSNP-Complete even when the
over Variable-Only patterns and binary alphabet.

Proof: We shall adapt the proof of Theorem 2 to achieve this result. The
only changes we require in the original L-reduction are that, P2 = ZZ . . . Z and
T2 = ff . . . f , where both are of length 11n. The same proof can be used to show
that we can construct an assignment whose cost is, at most, 45 times |V C∗|. For
the other direction of the L-reduction, we can use the same proof, if we can
first ensure that Z is mapped to “f”. In any feasible assignment, Z cannot be
mapped to a string of length greater than 1, because Z occurs 11n times and
the text is of length 22n. Every substring of the text of length l has at least
l/3 f ’s. So, if Z is mapped to “t”, there is an extra-cost of 11n/3. But, we can
easily construct an assignment of extra-cost n. Hence we can assume that Z is
mapped to “f” and proceed with the original proof. ♣

XI

Theorem 6 For Variable-Only patterns, when the alphabet size is bounded by
a constant D, we can approximate the 1,2-Matching problem within a factor of
1 + D−1

D
.

Proof: We first use the algorithm given in Lemma 1 to check if there is some
feasible assignment. The algorithm can be modified to return the lengths of
the assignment for each variable. We now have an instance of the fixed length
weighted CS-Matching problem. We use the algorithm given for the latter prob-
lem to find the best assignment with these lengths. Since we use the majority rule
in fixing the assignment, we are guaranteed to have at least one match for every
(D − 1) mismatches. As the pattern has variables only, the constructed assign-
ment has cost at most n(1 + D−1

D
). Hence we have the required approximation

bound. ♣

4 Conclusions and Open Problems

The problem of context sensitive string matching, which has practical applica-
tions, is known to be NP-Complete. We presented a weighted version of the
problem and showed it to be MAXSNP-Complete, even over a binary alphabet.
We also showed that the problem cannot be approximated within a factor of
3313/3312. We considered an interesting restriction where the pattern is made
of variables only and showed that even under this restriction, the problem is NP-
Complete and MAXSNP-Complete. We also gave an approximation algorithm
for this case, when the alphabet size is bounded.

There are several open problems in this area. We gave an approximation al-
gorithm in the case where the pattern is void of constants and the alphabet is
bounded. Finding an approximation algorithm without either or both of these
restrictions could be the next step. Designing improved approximation algo-
rithms even with both the restrictions is another avenue for research. Obtaining
better inapproximability bounds is another interesting area. Studying the prob-
lem where the pattern can be matched to a substring of the text has practical
ramifications.

Acknowledgments

We thank Jin-Yi Cai and Christine Heitsch for useful discussions and comments.

References

1. P. Alimonti and V. Kann. Hardness of approximating problems on cubic graphs. In
Proc. 3rd Italian Conf. on Algorithms and Complexity, Lecture Notes in Computer
Science, 1203, pages 288–298. Springer-Verlag, 1997.

2. A. Amir, Y. Aumann, G. Landau, M. Lewenstein, and N. Lewenstein. Pattern
matching with swaps. In Proc. 38th IEEE Conf. on Foundations of Computer
Science (FOCS), pages 144–153, 1997.

XII

3. A. Amir, R. Cole, R. Hariharan, M. Lewenstein, and E. Porat. Overlap matching.
In Proceeding of the Twelfth Annual Symposium on Discrete algorithms (SODA),
pages 279–288, 2001.

4. D. Angluin. Finding patterns common to a set of strings. In Journal of Computer
and Systems Sciences, volume 21, pages 46–62, 1980.

5. A. Apostolico and Z. Galil (eds.). Pattern Matching Algorithms. Oxford Univ.
Press, 1997.

6. M. Crochemore and W. Rytter. Text Algorithms. Oxford Univ. Press, 1994.
7. J. Dassow, Gh. Paun, and A. Salomaa. Grammars based on patterns. In Intl.

Journal on Foundations of Computer Science, volume 4, pages 1–14, 1993.
8. M.J. Fischer and M.S. Paterson. String matching and other products. In Com-

plexity of Computation, SIAM-AMS Proceedings, pages 7:113–125, 1974.
9. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, San Francisco, 1979.
10. C. Heitsch. Computational Complexity of Generalized Pattern Matching. Ph.D

thesis, Dept. of Math., Univ. of California at Berkeley, 2000.
11. T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Decision problems for patterns. In

Journal of Computer and Systems Sciences, volume 50, pages 53–63, 1995.
12. M. Karpinski. Approximating bounded degree instances of NP-Hard problems.

In Electronic Colloquium on Computational Complexity, ECCC Report TR01-042,
2001.

13. M. Lothaire. Combinatorics on Words. Addison-Wesley, 1983.
14. V. Mitrana, Gh. Paun, G. Rozenberg, and A. Salomaa. Patttern systems. In

Theoretical Computer Science, volume 154, pages 183–201, 1996.
15. E. Ohlebusch and E. Ukkonen. On the equivalence problem for e-pattern languages.

In Theoretical Computer Science, volume 186, pages 231–248, 1997.
16. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
17. A. I. Zimin. Blocking sets of terms. In Math. Sbornik, volume 119, pages 363–375,

1982.

