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Abstract

We establish the first polynomial-strength time-space lower bounds for problems in the linear-
time hierarchy on randomized machines with two-sided error. We show that for any integer ℓ > 1
and constant c < ℓ, there exists a positive constant d such that QSATℓ cannot be computed
by such machines in time nc and space nd, where QSATℓ denotes the problem of deciding the
validity of a quantified Boolean formula with at most ℓ − 1 quantifier alternations. Moreover,
d approaches 1/2 from below as c approaches 1 from above for ℓ = 2, and d approaches 1 from
below as c approaches 1 from above for ℓ ≥ 3. In fact, we establish the stronger result that for
any constants a ≤ 1 and c < 1+(ℓ−1)a, there exists a positive constant d such that linear-time
alternating machines using space na and ℓ− 1 alternations cannot be simulated by randomized
machines with two-sided error running in time nc and space nd, where d approaches a/2 from
below as c approaches 1 from above for ℓ = 2 and d approaches a from below as c approaches 1
from above for ℓ ≥ 3.

Corresponding to ℓ = 1, we prove that there exists a positive constant d such that the set
of Boolean tautologies cannot be decided by a randomized machine with one-sided error in
time n1.759 and space nd. As a corollary, this gives the same lower bound for satisfiability on
deterministic machines, improving on the previously best known such result.

1 Introduction

Satisfiability, the problem of deciding if a propositional formula has at least one satisfying assign-
ment, is among the most fundamental NP-complete problems. Proving lower bounds for satisfia-
bility remains an open problem of paramount importance to the field of computational complexity.
Although it is widely conjectured that any deterministic algorithm requires exponential time to
solve satisfiability, a proof of this belief seems far out of reach. The trivial linear-time lower bound,
which follows from the observation that the machine must look at its entire input formula in the
worst case, is the state-of-the-art bound for random-access machines. Despite several decades of
effort, there has been no success in proving super-linear time lower bounds for satisfiability.

∗A preliminary version of this work appeared as an extended abstract in the Proceedings of the 32nd International
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A few years ago, Fortnow [8] established nontrivial time lower bounds for satisfiability on
machines which are restricted to use a small amount of workspace. Fortnow’s technique has its
roots in earlier work by Kannan [14] and has been further developed in recent years [17, 19, 24].
For example, for machines using a subpolynomial amount of space, Fortnow and Van Melkebeek [9]
derived a time lower bound of nφ−o(1), where φ ≈ 1.618 denotes the golden ratio. Recently, Williams
[24] improved this lower bound to n1.732, and we can further boost it to n1.759 as a corollary to one
of our results.

However, the main focus of this paper is not on lower bounds for deterministic machines, but
rather on lower bounds for randomized machines with two-sided error (bounded away from 1/2).
While it is conjectured that satisfiability requires exponential time even on such machines, proving
lower bounds in the presence of randomness becomes a more difficult task than in the deterministic
setting. No nontrivial lower bounds for satisfiability have been established on randomized random-
access machines with two-sided error, even when the workspace of such machines is restricted to
be logarithmic. In fact, previous to this work, no nontrivial time-space lower bounds have been
shown for any complete problems in the polynomial-time hierarchy on randomized random-access
machines with two-sided error.

1.1 Results

In this paper, we establish such time-space lower bounds. We consider the problem QSATℓ of
deciding the validity of a given quantified Boolean formula with at most ℓ−1 quantifier alternations
(beginning with existential). For any integer ℓ ≥ 1, QSATℓ is complete for the ℓth level of the
polynomial-time hierarchy. These problems are generalizations of satisfiability — for ℓ = 1, QSATℓ

is precisely the satisfiability problem. Time-space lower bounds for QSATℓ have been previously
considered for deterministic machines. For example, Fortnow and Van Melkebeek show an nℓ−o(1)

time lower bound for deterministic machines solving QSATℓ in subpolynomial space, for ℓ ≥ 2. We
match these bounds for randomized machines running in subpolynomial space, and a more careful
analysis yields lower bounds for small polynomial space bounds:

Theorem 1 (Main Theorem). For any integer ℓ ≥ 2 and constant c < ℓ, there exists a positive
constant d such that QSATℓ cannot be solved by randomized random-access machines with two-sided
error running in time nc and space nd. Moreover, d approaches 1/2 from below as c approaches 1
from above for ℓ = 2, and d approaches 1 from below as c approaches 1 from above for ℓ ≥ 3.

The randomized machines in Theorem 1 and in the rest of this paper refer to the natural coin
flip model, in which the machine has one-way read-only access to a tape with random bits. Viola
[23] recently extended Theorem 1 to the model in which the randomized machines have two-way
access to the random bit tape, although his approach yields weaker lower bounds and only works
for ℓ ≥ 3.

We note that Theorem 1 establishes the first polynomial-strength time-space lower bounds for
problems in the polynomial-time hierarchy on two-sided error randomized machines. By time-
space lower bounds of “polynomial strength” we mean time lower bounds of the form Ω(nc) for
some constant c > 1 under nontrivial space upper bounds. Previous works establish randomized
time-space lower bounds but they either consider problems believed not to be in the polynomial-
time hierarchy, or the time lower bounds involved are only slightly super-linear. Allender et al.’s
[1] time-space lower bounds for problems in the counting hierarchy on probabilistic machines with
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unbounded error fall within the first category. On the other hand, Beame et al.’s [3] nonuniform
time-space lower bound for a binary quadratic form problem in P falls within the second category.

Because of the tight connection between QSATℓ and the ℓth level of the linear-time hierarchy,
Theorem 1 can be stated equivalently as a time-space lower bound for simulations of the ℓth level of
the linear-time hierarchy on randomized machines with two-sided error. In fact, we can strengthen
Theorem 1 and establish time-space lower bounds for simulations of linear-time alternating ma-
chines which only use space na for constant a ≤ 1.

Theorem 2. For any integer ℓ ≥ 2 and any constants a ≤ 1 and c < 1 + (ℓ − 1)a, there exists a
positive constant d such that linear-time alternating machines using space na and ℓ−1 alternations
cannot be simulated by randomized random-access machines with two-sided error running in time
nc and space nd. Moreover, d approaches a/2 from below as c approaches 1 from above for ℓ = 2,
and d approaches a from below as c approaches 1 from above for ℓ ≥ 3.

Note that when a = 1, the space restriction on the alternating machines disappears and Theorem
2 becomes Theorem 1.

The ℓ ≥ 2 restriction in Theorem 1 implies that it does not give any bounds for the first level of
the polynomial-time hierarchy, i.e., for satisfiability or its complement, tautology, the problem of
deciding if a propositional formula is true under all assignments. However, we are able to strengthen
the known lower bounds for tautology on randomized machines with one-sided error. Previously,
Fortnow and Van Melkebeek showed a lower bound of n

√
2−o(1) for the tautology problem on

nondeterministic machines using subpolynomial space. Since randomized machines with one-sided
error (on the “yes” side) are special cases of nondeterministic machines, these bounds also apply
to this setting. Using ideas from the proof of our main result, we manage to take advantage of
the extra structure provided by the randomized machine and improve the known lower bounds for
tautology on randomized machines with one-sided error.

Theorem 3. There exists a positive constant d such that tautology cannot be solved by randomized
random-access machines with one-sided error running in time n1.759 and space nd.

Notice that the lower bound of Theorem 3 applies to deterministic machines as a special case.
Therefore, by the closure of deterministic classes under complement, Theorem 3 implies the im-
proved lower bound for satisfiability on deterministic machines mentioned earlier.

Corollary 4. There exists a positive constant d such that satisfiability cannot be solved by deter-
ministic random-access machines running in time n1.759 and space nd.

1.2 Techniques

Our proofs follow the paradigm of indirect diagonalization. This technique establishes a desired
separation by contradiction – assuming the separation does not hold, we derive a sequence of
progressively unlikely inclusions of complexity classes until we reach one that contradicts a known
diagonalization result. Kannan [14] used the paradigm avant la lettre to investigate the relationship
between deterministic linear time and nondeterministic linear time. All of the recent work on time-
space lower bounds for satisfiability and problems higher up in the polynomial-time hierarchy
[8, 17, 9, 19, 24] follow it as well. Allender et al. [1] employed the technique to establish time-space
lower bounds for problems in the counting hierarchy.
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At first glance, it might seem that current techniques from space-bounded derandomization let
us derive time-space lower bounds on randomized machines as immediate corollaries to time-space
lower bounds on deterministic machines. In particular, assuming that we can solve satisfiability on
a randomized machine in logarithmic space and time nc, Nisan’s deterministic simulation [21] yields
a deterministic algorithm for satisfiability that runs in polylogarithmic space and polynomial time.
However, even for c = 1, the degree of the latter polynomial is far too large for this simulation to
yield a contradiction with known time-space lower bounds for deterministic machines. Thus, we
need a more delicate approach for the randomized setting.

The critical ingredient in this approach is a time- and space-efficient simulation of randomized
computations in the second level of the polynomial-time hierarchy with very few guess bits. The
latter follows from a careful combination of Nisan’s partial space-bounded derandomization [20],
deterministic amplification by a random walk on an expander [5, 13], and a version of Lautemann’s
proof that randomized machines with two-sided error can be simulated by an alternating machine
at a polynomial time-overhead [15]. It gives us (i) an unconditional way to speed up small-space
randomized computations with two-sided error in higher levels of the polynomial-time hierarchy, and
(ii) a conditional efficient complementation of computations within the ℓth level of the polynomial-
time hierarchy for ℓ ≥ 2. The condition on the latter is the hypothesis of the indirect diagonalization
argument that the ℓth level of the linear-time hierarchy can be simulated by randomized machines
with two-sided error that run in time nc and small space. Combining that hypothesis with (i)
and (ii), we conclude that computations in the ℓth level of the polynomial-time hierarchy that run
in time T (where T is some sufficiently large polynomial), can be complemented in time g(T ),
where g is some function depending on c. For sufficiently small values of c, g(T ) becomes o(T ),
which yields a contradiction with a known diagonalization result. For somewhat larger values of
c, we do not obtain a contradiction right away but we obtain a more efficient complementation
within the ℓth level of the polynomial-time hierarchy for larger polynomials T . We then run the
argument again using the new efficient complementation in step (ii), yielding an even more efficient
complementation. This allows us to rule out larger values of c, and further improve the efficiency
of complementation. Bootstrapping this way leads to Theorem 1.

A careful analysis shows that we can handle space bounds of the form nd, where d is a positive
constant depending on c. For ℓ = 2, the above argument yields a constant d approaching 1/2
from below when c approaches 1 from above. For ℓ ≥ 3, we achieve a better value of d for such
small values of c by deriving a more efficient simulation of randomized computations in the third
level of the polynomial-time hierarchy.1 This follows by exploiting the structure of the second-level
simulation described above and adding an alternation to reduce the time overhead. The savings
in time are more substantial for large values of d. When c approaches 1 from above, the modified
argument can handle values of d approaching 1 from below. For larger values of c, the cost of the
additional alternation obviates the savings in running time and makes the earlier argument the
better one. By paying close attention to the space used by the simulations involved, we obtain the
strengthening given in Theorem 2.

For our tautology lower bounds, we extend Williams’ recent lower bounds for deterministic
machines [24] to nondeterministic machines with few guess bits, and add a new component to the
argument. The proof in [24] contains two ingredients. The first one is a bootstrapping argument
similar to the one we just described. Instead of yielding more and more efficient complementations
within the ℓth level of the polynomial-time hierarchy for some fixed ℓ at larger and larger poly-

1Viola [23] independently obtained the same simulation using a somewhat more complicated argument.
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nomial time bounds T , it gives more and more efficient complementations of linear time within
higher and higher levels of the polynomial-time hierarchy. The second ingredient is an improved
starting point for the bootstrapping argument. This involves using the hypothesis to obtain a —
conditional — better speedup of small-space deterministic computations in the second level of the
polynomial-time hierarchy. To obtain the quantitative improvement stated in Corollary 4, we take
the idea of exploiting the hypothesis of the indirect diagonalization argument further and show
how to improve the conditional speedup of small-space deterministic computations in higher levels
of the polynomial-time hierarchy. In order to establish the lower bounds on randomized machines
with one-sided error (as in Theorem 3), we show that the above argument extends from deter-
ministic machines to nondeterministic machines that use few guess bits. We exploit Nisan’s partial
derandomization again, this time to transform one-sided error randomized machines into equivalent
nondeterministic machines with few guess bits at a marginal cost in time and space.

1.3 Organization

Section 2 introduces the notation and machine models we use for this paper. Additionally, we state
some useful complexity results which are fundamental to our techniques.

In Section 3, we describe the general framework of our proofs. This includes a tight connection
between QSATℓ and linear time on an alternating machine with ℓ− 1 alternations, which allows us
to focus on proving lower bounds for the latter from there on. We also describe the paradigm of
indirect diagonalization which our lower bound proofs follow, and give a concrete example.

Section 4 shows how we can leverage Nisan’s space-bounded derandomization, deterministic
amplification, and Lautemann’s proof that randomized machines with two-sided error can be sim-
ulated by alternating machines with one alternation at a polynomial time-overhead. Specifically,
we obtain simulations of space-bounded randomized machines by alternating machines which use
few guess bits and only marginally more time and space than the randomized machine. We exploit
these simulations in Section 5 to establish the lower bounds given by Theorem 1.

Section 6 contains our other results. Specifically, we show the more general time-space lower
bounds for space-bounded linear-time alternating machines given by Theorem 2, as well as the time-
space lower bounds for tautology on randomized machines with one-sided error given by Theorem
3.

Finally, we conclude in Section 7 by discussing some open problems that remain directions for
further research. We also include an appendix proving some results regarding the running time of
Nisan’s generator and of deterministic amplification based on a random walk on the Gabber-Galil
expander. We could not find these results in the literature and they may be of independent interest.

2 Preliminaries

While much of the notation we use is standard [2, 22], we introduce some conventions and additional
notation in this section. We also state a few results which we use throughout the rest of the paper.

2.1 Machine Model

Our lower bounds are robust with respect to the choice of machine model. In particular, they hold
for random-access machines. We refer to [19] for the details of the specific model we use for our
derivations.
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We convene that the time and space bounds of these machines are constructible functions from
natural numbers to natural numbers which are at least logarithmic, and refer to them as time and
space functions. We often discuss “subpolynomial” space functions, which refer to space functions in
no(1). Our results ultimately apply to computations with polynomial time and space bounds which
certainly meet the required constructibility conditions. Note that machines running in sublinear
time or sublogarithmic space trivially cannot solve problems like satisfiability where the answer can
depend on the entire input.

2.2 Notation

We introduce some additional terminology to reason about randomized computation. In particular,
we use the notation BPTISP[T, S] to refer to the class of languages recognized by randomized
machines using time T and space S with error bounded by 1

3 on both sides. Similarly, RTISP[T, S]
refers to randomized machines with one-sided error on the membership side bounded by 1

2 .
As is standard, we assume that the random bits are presented to such machines on a one-way

read-only worktape. If the machine wishes to re-read random bits, it must copy them down on a
worktape at the cost of space, as opposed to the more powerful model which has two-way access
to the random tape. Except where stated otherwise, our results about randomized machines hold
only for the former machine model.

Our arguments involve alternating computations in which the numbers of bits guessed at each
stage are bounded by explicitly given small functions. To this end, we use the following notation
to describe such computations:

Definition. Given a complexity class C and a function f , we define the class ∃fC to be the set of
languages that can be described as

{x|∃y ∈ {0, 1}O(f(|x|))P (x, y)},

where P is a predicate accepting a language in the class C when its complexity is measured in terms
of |x| (not |x|+ |y|). We analogously define ∀fC.

For example, ∃fDTIME[n] and ∀fDTIME[n] are subsets of NP and coNP for f(n) = nO(1). The
requirement that the complexity of P be measured in terms of |x| allows us to express the running
times in terms of the original input length, which is a more natural convention for our arguments.

A subtlety arises when we consider space-bounded classes C. Computations corresponding
to ∃fC and ∀fC explicitly write down their guess bits y and then run a space-bounded machine
on the combined input consisting of the original input x and the guess bits y. Thus, the space-
bounded machine effectively has two-way access to the guess bits y. For example, although machines
corresponding to ∃nDTISP[n, no(1)] and to NTISP[n, no(1)] both use only a subpolynomial amount
of space to verify their guesses, they do not necessarily have the same computational power. This
is because the former machines have two-way access to the guess bits, which are written down on a
separate tape that does not count towards its space bound, whereas the latter machines only have
one-way access to these bits and do not have enough space to write them down on their work tape.

2.3 Speedup of Space-Bounded Computations

We also make use of the standard divide-and-conquer approach for speeding up space-bounded
computations by introducing alternations. This technique is described in detail in [19]. By splitting
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up the computation tableau of a DTISP[T, S] computation into B ≥ 1 equal-sized blocks, we obtain

DTISP[T, S] ⊆ ∃BS∀log BDTISP[T/B, S] ⊆ Σ2TIME[BS + T/B]. (1)

By the closure of DTISP under complement, this inclusion can also be stated for the Π-side of the
polynomial time hierarchy, which will be more convenient to use in some of our arguments. If we
choose B to optimize the running time of the resulting Π2-computation, the result is a square-root
speedup for small space bounds S:

DTISP[T, S] ⊆ ∀
√

TS∃log T DTISP[
√
TS, S] ⊆ Π2TIME[

√
TS]. (2)

Recursively applying (1) while exploiting DTISP’s closure under complementation to conserve
alternations yields

DTISP[T, S] ⊆ ∀BS∃BS . . . Q
BS

︸ ︷︷ ︸

k−1

Qlog BDTISP[T/Bk−1 +BS,S] ⊆ ΠkTIME[T/Bk−1 +BS] (3)

for any integer k ≥ 2, where Q = ∃ if k is even and Q = ∀ otherwise, and Q denotes the quantifier
complementary to Q. Choosing B to optimize the resulting running time, (3) achieves a kth-root
speedup for small space bounds S.

DTISP[T, S] ⊆ ∀(TSk−1)1/k∃(TSk−1)1/k
. . . Q

(TSk−1)1/k

︸ ︷︷ ︸

k−1

Qlog(T/S)DTISP[(TSk−1)1/k, S]

⊆ ΠkTIME[(TSk−1)1/k]. (4)

2.4 Diagonalization Results

Finally, we need a standard diagonalization result from which we can derive contradictions. The
following lemma states that we cannot speed up the computation of every language in ΣℓTIME[T ]
by switching to Πℓ.

Lemma 5 (Folklore). Let ℓ be a positive integer and T a time function. Then

ΣℓTIME[T ] * ΠℓTIME[o(T )].

Our lower bounds for space-bounded alternating linear time require a stronger diagonalization
result which is both time- and space-sensitive.

Lemma 6 ([9]). Let T be a time function and S a space function. Then for any integer ℓ > 0,

ΣℓTISP[T, S] * ΠℓTISP[o(T ), o(S)].

3 Earlier Techniques

We now outline some of the techniques common to many time-space lower bound arguments. We
also use them for our results.
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3.1 Alternating Linear Time Versus QSATℓ

The first such result involves a tight connection between QSATℓ and linear time on an alternating
Turing machine with ℓ alternating stages, ΣℓTIME[n]. At the first level, we know that satisfiability
can be solved in nondeterministic quasi-linear time, so that time-space lower bounds for satisfiability
imply the same lower bounds for NTIME[n] up to polylogarithmic factors. Conversely, Fortnow
and Van Melkebeek [9] show that a sufficient strengthening of the Cook-Levin Theorem gives
a reduction from NTIME[n] to satisfiability which is efficient in both time and space, showing
that if satisfiability can be solved in time nc and space nd, then NTIME[n] can be solved in
time nc polylog(n) and space nd polylog(n). Thus, time-space lower bounds for NTIME[n] and for
satisfiability are equivalent up to polylogarithmic factors.

At higher levels of the polynomial-time hierarchy, we know that QSATℓ can be solved in quasi-
linear time on a machine which makes ℓ−1 alternations, so that time-space lower bounds for QSATℓ

imply the same lower bounds for ΣℓTIME[n] up to polylogarithmic factors. Conversely, just as the
Cook-Levin theorem generalizes from NP to higher levels of the polynomial-time hierarchy and
shows that QSATℓ is complete for Σp

ℓ , the reductions given by Fortnow and Van Melkebeek [9]
generalize to give time- and space-efficient reductions from ΣℓTIME[n] to QSATℓ:

Theorem 7. For any integer ℓ ≥ 1 and constants c, d > 0, if

QSATℓ ∈ DTISP[nc, nd],

then
ΣℓTIME[n] ⊆ DTISP[nc polylog(n), nd polylog(n)].

This also holds if we replace DTISP by BPTISP or RTISP.

This establishes the equivalence of time-space lower bounds for ΣℓTIME[n] and QSATℓ up to
polylogarithmic factors. In particular, polynomial-strength time-space lower bounds for ΣℓTIME[n]
on randomized machines yield essentially the same lower bounds for QSATℓ. With this in mind,
we focus on proving lower bounds for ΣℓTIME[n] for the rest of the paper. We include a proof of
Theorem 7 here for completeness.

Proof. Let L be a language decided by a random-access linear-time alternating Turing machine
which makes ℓ − 1 alternations, beginning in an existential stage. For such an L, let P be the
predicate recognized by a random-access linear-time nondeterministic machine so that the condition
x ∈ L can be written as

(∃y1 ∈ {0, 1}rn)(∀y2 ∈ {0, 1}rn) . . . (Qyℓ−1 ∈ {0, 1}rn)R(x, y1, y2, . . . , yℓ−1),

where r is some constant, and Q = ∀, R = P if ℓ is odd, and Q = ∃, R = ¬P otherwise. All that
remains to represent the acceptance condition of L as a quantified Boolean formula is to reduce P
to satisfiability. The original Cook-Levin reduction produces a formula of quadratic size, which is
too large for our purposes. However, Cook [6] shows how to leverage the oblivious simulations of
Hennie and Stearns [12] to obtain a formula of quasilinear size. More precisely, we can construct a
formula ϕ depending only on P and n such that ϕ:

• has size O(n polylog(n)) where each bit can be constructed in time O(polylog(n)) and space
O(log(n)),
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• involves the bits of x, y1, . . . , yℓ−1 input to P as well as O(n log n) additional Boolean variables
z, and

• is satisfiable in z on input x, y1, . . . , yℓ−1 if and only if P accepts x, y1, . . . , yℓ−1.

Defining ϕ′ .= ϕ if ℓ is odd and ϕ′ .= ¬ϕ otherwise, this shows that the Σℓ-formula

ψ
.
= ∃y1∀y2 . . . Qyℓ−1Qz ϕ

′,

is in QSATℓ if and only if x ∈ L. The size of ψ is only O(n log n) more than ϕ — the log factor
is required to write down the bit indices of the quantified variables. The easy nature of these
extensions to ϕ endows ψ with the same constructibility properties as ϕ.

In the case that QSATℓ ∈ DTISP[nc, nd], let M be a deterministic machine deciding QSATℓ in
time O(nc) and space O(nd). We simulate M on input ψ to decide L. However, computing ψ and
writing down the result on a worktape requires too much space. Instead, when M needs a bit of
ψ, the simulation computes this bit from scratch. As ϕ is of size O(n polylog(n)), M runs for time
O(nc polylog(n)) and space O(nd polylog(n)) on input ψ. Computing the bits of ψ on the fly adds
a multiplicative overhead of O(polylog(n)) to the time and an additive overhead of O(log n) to the
space. Thus, this deterministic simulation decides L in the desired time and space bounds.

The cases for BPTISP and RTISP follow from the same argument.

3.2 Indirect Diagonalization

We set out to prove Theorem 1, i.e., that ΣℓTIME[n] * BPTISP[t, s] for certain interesting values of
t and s. To accomplish this, we follow the same general technique that is used to prove all previous
time-space lower bounds for nondeterministic linear time, namely indirect diagonalization. This
paradigm can be described as following three basic steps:

1. Assume the inclusion that we wish to show does not hold. In our case, assume that ΣℓTIME[n] ⊆
BPTISP[t, s].

2. Using the hypothesis, derive inclusions of complexity classes which are increasingly unlikely.

3. Eventually, one of these inclusions contradicts a known diagonalization result, proving the
desired result.

There is a myriad of ways to derive new inclusions from the hypothesis in step 2, with different
approaches yielding different results. Often, the inclusions derived in step 2 are obtained by a
combination of two opposing processes. These can be loosely thought of as deriving a speedup
at the cost of adding alternations, and removing alternations at the cost of a small slowdown.
The main intuition that guides how we apply these processes is that we wish the speedup gained
by introducing alternations to outweigh the cost of eliminating them, so that overall we obtain a
contradiction to Lemma 5 (or Lemma 6).

The former process, deriving a speedup, involves simulating a space-bounded machine of the
type for which we are attempting to derive a lower bound (i.e., deterministic or randomized) in
significantly less time. We must pay a price to achieve this task, and we choose to pay in the currency
of alternations. Specifically, we introduce a small number of alternations to the computation and
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carry out a fast simulation on an alternating machine. In the deterministic setting, such a simulation
yields an inclusion resembling

DTISP[T, S] ⊆ ΠℓTIME[f(T, S)],

for ℓ ≥ 1 and f(T, S) ≪ T when S ≪ T . Note that the Π2-simulation of a DTISP-computation
given by (2) is an example of this process.

In the other direction, the process of removing alternations involves the task of simulating an
alternating machine by another alternating machine which makes fewer alternations and runs for
only slightly more time. In many cases, this is accomplished by deriving a statement such as

ΣℓTIME[T ] ⊆ ΠℓTIME[g(T )],

for a small function g. When g is polynomial, such an inclusion results in a collapse of the
polynomial-time hierarchy to the ℓth level, and we refer to it as an efficient complementation.
Note that a complementation can be derived unconditionally by using exhaustive search in lieu of
an alternating step, but in this case g will be exponential in T . In our arguments, we can derive
an efficient complementation which is conditional on the hypothesis of step 1, from which more
efficient complementations are derived in an inductive fashion in step 2.

Notice that by Lemma 5, a complementation with g(T ) = o(T ) is not just unlikely but impossi-
ble. Deriving such an impossibly efficient complementation provides the desired inclusion to arrive
at a contradiction in step 3. In the following section, we give an example of how to accomplish this
end via an appropriate combination of a speedup and an efficient complementation.

3.3 A Concrete Example

We step through an instantiation of the indirect diagonalization paradigm and prove the result of
[17] that satisfiability cannot be solved by deterministic random-access machines running in time
nc and space no(1) for constants c <

√
2. The first step is to assume that

NTIME[n] ⊆ DTISP[nc, no(1)]. (5)

This allows a simulation of NTIME[T ] by DTISP[T c, T o(1)] for some polynomial T . The speedup
given by the inclusion (2) then yields a square-root speedup at the cost of two alternations. The
net result is

NTIME[T ] ⊆ DTISP[T c, T o(1)] ⊆ Π2TIME[T c/2+o(1)], (6)

which represents a speedup of NTIME[T ] for c < 2 by using one more alternating stage. To con-
tradict Lemma 5, we need to arrive at such a speedup which uses just a universal stage. Therefore,
we use an efficient complementation to remove the inner existential stage from the Π2-speedup
represented by (6). Note that the hypothesis (5) gives a simulation of NTIME[n] by a deterministic
machine, and since any deterministic machine is trivially a conondeterministic machine, we have

NTIME[n] ⊆ coNTIME[nc]. (7)

In order to use this efficient complementation to remove an alternation, we write

Π2TIME[T c/2+o(1)] = ∀T c/2+o(1)
NTIME[T c/2+o(1)]
︸ ︷︷ ︸

(α)

.
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Note that (α) represents a nondeterministic computation which takes an input of size n+T c/2+o(1)

and runs in time T c/2+o(1). For T (n) ≥ n2/c, the running time is at least linear in the input size, so
that (7) gives a conondeterministic simulation of (α) running in time T c2/2+o(1). By merging the
resulting adjacent universal stages, we obtain

NTIME[T ] ⊆ ∀T c/2+o(1)
coNTIME[T c2/2+o(1)] = coNTIME[T c2/2+o(1)].

When c2/2 < 1, we can see this process has delivered a net speedup of nondeterministic time T on
conondeterministic machines, which is a contradiction to Lemma 5. This proves the desired result.

4 Lautemann’s Proof and Derandomization

We now adopt the techniques of the previous section to prove Theorem 1, beginning with the
case ℓ = 2. By way of Theorem 7 and the indirect diagonalization paradigm, we seek to derive a
contradiction from the assumption

Σ2TIME[n] ⊆ BPTISP[t, s] (8)

for some interesting functions t and s. The known proofs that BPP lies in the second level of the
polynomial-time hierarchy provide a simulation of randomized machines with two-sided error by
Π2-machines with a polynomial overhead in time. Combined with hypothesis (8), this immediately
gives us one of the ingredients we need to carry through the program from the previous section,
namely the efficient complementation of Σ2TIME[n].

Assuming the Π2-simulation is sufficiently time- and space-efficient, we can also use it for the
other ingredient we need, namely the speedup. This is because the divide-and-conquer strategy
for DTISP-computations from Section 2.3 applies to ΣkTISP-computations as well. However, it
turns out that the known Π2-simulations of randomized two-sided error machines are not time-
and space-efficient enough to obtain any lower bounds this way. Moreover, in order to achieve the
quantitative strength of our lower bounds, we need to save alternations by applying the speedup as
in (1) to the final deterministic phase of the simulation as opposed to the Π2-simulations as a whole.
For that approach to yield an overall speedup, we need the number of guess bits in the alternating
phases of the simulation to be small — otherwise, the time needed for the guesses would obviate the
speedup obtained in the final deterministic phase. The known simulations use too many guess bits
from that perspective. Therefore, in this section, we develop a new Π2-simulation of randomized
machines with two-sided error that meets all the above efficiency requirements.

We start by analyzing Lautemann’s proof that any language L in BPP is also in Σp
2 ∩ Πp

2.
The proof assumes a randomized algorithm using R random bits to decide L with error ǫ. When
ǫ is small enough in comparison to R, there is a v ≥ 1 so that membership of x in L can be
characterized by the existence of v shifts of the set of random strings accepting x which together
cover the universe of all random strings. If x ∈ L, the set of random strings accepting x is large
enough to guarantee that such shifts exist as long as ǫv < 2−R. On the other hand, if x /∈ L, the set
of accepting random strings is small enough so that v shifts cannot cover the universe of random
strings as long as ǫ < 1

v . For such ǫ and v, these complementary conditions are expressed by a Σp
2

predicate. Since BPP is closed under complement, this shows that BPP ⊆ Σp
2 ∩ Πp

2. Specifically,
we are interested in the Πp

2-side of the inclusion.
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Theorem 8 (Lautemann [15]). Let L be a language recognized by a randomized machine M that
runs in time T , space S, and uses R random bits with error bounded on both sides by ǫ. Then for
any v ≥ 1 such that ǫ < min(2−R/v , 1

v ), we have that

L ∈ ∀vR∃RDTISP[vT, S + log v]. (9)

In Lautemann’s proof that BPP ⊆ Σp
2 ∩ Πp

2, one starts from an algorithm deciding L ∈ BPP
that has error less than the reciprocal of the number R′ of random bits it uses. Such an error
probability can be achieved from a standard BPP algorithm deciding L that uses R random bits
by taking the majority vote of O(logR) independent trials, which results in R′ = O(R logR). For
ǫ < 1

R′ , choosing v = R′ satisfies the conditions of Lemma 8. This shows that if L can be decided
by a BPTISP[T, S] machine using R random bits, then

L ∈ ∀(R log R)2∃R log RDTISP[RT logR,S]. (10)

We can further reduce the number of guess bits in the alternating stages of the simulation by
using more efficient methods of amplification. With such methods, the error can be made as small
as 2−R while using only O(R) random bits. Specifically, the algorithm runs O(R) trials which are
obtained from the labels of vertices on a random walk of length O(R) in an easily constructible
expander graph, and accepts if a majority of these trials accept. For our purposes, we choose the
Gabber-Galil family of expanders [10], a construction based on the Margulis family [18] where the
vertices are connected via simple affine transformations on the labels. The easy form of the edge
relations ensures that the walk is efficiently computable in time O(R2) and space O(R).

Theorem 9 ([5, 13]). Let M be a randomized machine with constant error bounded away from
1
2 that runs in time T , space S, and uses R random bits. Then M can be simulated by another
randomized machine M ′ that runs in time O(RT ) and space O(R + S), while using only O(R)
random bits to achieve error 2−R.

When an algorithm has been amplified as in Theorem 9, v = O(1) shifts suffice for Theorem 8.
This shows that if L can be decided by a BPTISP[T, S] machine using R random bits, then

L ∈ ∀R∃RDTISP[RT,R+ S]. (11)

The efficiency of this simulation depends on the number of random bits R for all the criteria we
mentioned: the number of bits guessed in the alternating stages, the multiplicative time overhead,
and the additive space overhead for the final deterministic stage are all O(R). Since R can be as
large as T , we need an additional ingredient to do better. That ingredient exploits the fact that
we are dealing with space-bounded BPP-computations. In that setting, we know of techniques to
reduce the number of random bits without increasing the time or space by much, which in turn
increases the efficiency of the Π2-simulation in (11). The means by which we achieve the needed
reduction in randomness is the space-bounded derandomization of Nisan [20]. We state a version
here, and leave the proof to the Appendix (where we also present a brief overview of Theorem 9).

Theorem 10. Any randomized machine M running in time T and space S with error ǫ can be
simulated by another randomized machine running in time O(T polylog(T )), space O(S log T ), and
using only O(S log T ) random bits. The error of the simulation is ǫ+ 2−S, and is one-sided if M
has one-sided error.
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Note that we do not apply Theorem 10 to deterministically simulate the randomized machine.
Instead, we use it to reduce the randomness required by a BPTISP[T, S] machine to O(S log T ). If
we subsequently efficiently amplify using Theorem 9, then the overhead of the alternating simulation
given by Theorem 8 becomes acceptable for polynomial T and small S. More precisely, we have:

Theorem 11.

BPTISP[T, S] ⊆ ∀S log T∃S log T DTISP[TS polylog(T ), S log T ]. (12)

Proof. Let M be the randomized time T , space S machine for recognizing L ∈ BPTISP[T, S].
By the derandomization of Theorem 10, we obtain a simulation using R

.
= O(S log T ) random

bits, time O(T polylog(T )), and space O(S log T ), with error 1
3 + 2−S . Theorem 9 gives a machine

deciding L with error 2−R while using O(R) random bits. The time increases to O(TS polylog(T )),
while the space is still O(S log T ). Applying Theorem 8 for v = O(1) yields the desired alternating
simulation of M .

We point out that using the instantiation of Theorem 8 given by (10) instead of (11) in the proof
of Theorem 11 yields a simulation similar to (12). The main difference is that the initial universal
phase takes time O((S log T )2) rather than O(S log T ). This version is still efficient enough to
yield time-space lower bounds as in Theorem 1, but the dependence of the space parameter d on c
becomes worse.

4.1 Speedup

Theorem 11 has the desired nice properties that allow us to derive a speedup for BPTISP. The
simulation spends only time O(S log T ) in its alternating phases, which is small when S is small. In
this case, the running time is dominated by the final deterministic computation, so that a speedup
of this final stage results in a speedup of the computation as a whole. Since the final deterministic
computation of the simulation given by (12) is space-bounded, we can achieve this by applying the
speedup of (1) or (3). For example, applying (1) adds two alternations, and by merging adjacent
existential stages we obtain a simulation given by:

BPTISP[T, S] ⊆ ∀S log T∃S log T∃BS log T∀log BDTISP[TS polylog(T )/B, S log T ]

= ∀S log T∃BS log T∀log BDTISP[TS polylog(T )/B, S log T ].

Choosing B to optimize the running time of this simulation up to a polylog(T ) factor, we get

BPTISP[T, S] ⊆ ∀S log T∃
√

TS∀log T DTISP[
√
TS polylog(T ), S log T ]. (13)

For small S, we obtain a speedup for space-bounded randomized machines similar to that which
(2) gives for deterministic machines. However, the simulation uses three alternations rather than
two to realize the same speedup by a square root.
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4.2 Complementation

We also use Theorem 11 to derive an efficient complementation under the hypothesis of the indirect
diagonalization argument. Note that the hypothesis (8) gives a simulation of Σ2 by BPTISP, which
can be simulated in turn by the Π2-machine given by Theorem 11. Thus, we derive

Σ2TIME[n] ⊆ ∀s log t∃s log tDTISP[ts polylog(t), s log t], (14)

which gives the desired complementation for small enough t and s. For example, when t is polyno-
mial, say t = nc and s is subpolynomial, (14) becomes

Σ2TIME[n] ⊆ ∀no(1)∃no(1)
DTISP[nc+o(1), no(1)] ⊆ Π2TIME[nc+o(1)]. (15)

Thus, we can see that when s is small, this complementation allows us to eliminate alternations
at a cost little more than raising the running time to the power of c. In this manner, (15) can be
used analogously to the complementation (7) in the deterministic case of Section 3.3.

We note that the bottleneck causing our lower bounds for QSATℓ to hold only for ℓ ≥ 2 arises
right here. In the case ℓ = 1, the hypothesis becomes NTIME[n] ⊆ BPTISP[t, s]; combining with
Theorem 11 as above, we obtain NTIME[n] ⊆ Π2TIME[ts polylog(t)], which is trivial and does not
represent an efficient complementation

4.3 Higher Levels of the Hierarchy

The previous discussion in this section developed techniques towards proving lower bounds for
Σ2TIME[n]. These readily generalize to higher levels, where the hypothesis (8) becomes

ΣℓTIME[n] ⊆ BPTISP[t, s] (16)

for ℓ ≥ 3. Theorem 11 then allows for an efficient simulation of ΣℓTIME[n] by a Π2-machine, which
can be used to eliminate alternations. This allows us to establish Theorem 1 for values of c < ℓ,
where d approaches some small value depending on ℓ from below as c approaches 1 from above.

For ℓ ≥ 3, we can get a better dependence of d on c when c approaches 1. In this setting,
a Π3-simulation of BPTISP suffices to achieve an efficient complementation. The ability to use
an additional alternation allows us to achieve a more time-efficient simulation than the one given
by Theorem 11. Specifically, we add an alternation to the latter Π2-simulation and eliminate the
time blowup incurred by running the O(S log T ) trials required by the amplification of Theorem
9. Rather than deterministically simulate all of these trials, we use the power of alternation to
efficiently verify that a majority of these trials accept.

Lemma 12. Let M be a randomized machine with constant error bounded away from 1
2 that runs

in time T , space S, and uses R random bits. Then M can be simulated by another randomized
machine M ′ that uses O(R) random bits to achieve error 2−R. Furthermore, the acceptance of M ′

on input x and random string r can be decided in

∃R∀log RDTISP[T +R polylog(R), R + S].

We defer the proof to the Appendix. Notice that the final deterministic stage of the simulation
represented by (12) can be replaced by the Σ2-verification given by Lemma 12. Merging the
resulting adjacent existential phases results in a simulation using one more alternation but running
in less time.
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Theorem 13.

BPTISP[T, S] ⊆ ∀S log T∃S log T∀log SDTISP[T polylog(T ), S log T ]. (17)

As in Sections 4.1 and 4.2, Theorem 13 admits a speedup of BPTISP to Π4 as well as an
efficient complementation of Σ3. When t = nc and s = nd in (16), the latter eliminates alternations
essentially at the cost of raising the running time to the power of c. For values of c close to 1,
this cost is small enough to alleviate the effects of the extra alternation in (17). In this case, the
better dependence of the running time of the simulation on the space parameter allows us to derive
contradictions for larger values of d than we can by using Theorem 11. On the other hand, for
larger values of c, the extra alternation in (17) has a greater impact, and eventually prevents us
from reaching a contradiction. In this case, switching to the more alternation-efficient simulation
given by Theorem 11 allows us to derive a contradiction for such larger values of c. However, we
must restrict d to smaller values in order to counteract the worse dependence of (12) on the space
bound. Therefore, to derive Theorem 1, we focus on using Theorem 11 to obtain the bounds for
large values of c first, and then show how Theorem 13 yields the larger values of d when c is small.

5 Main Result

We now use the techniques discussed in the previous sections to formulate an indirect diagonaliza-
tion argument for the case ℓ = 2 of Theorem 1. For clarity, we present the following exposition in
terms of subpolynomial space bounds, and generalize these techniques to polynomial space bounds
in the subsequent formal proof. Thus, to obtain a lower bound for Σ2TIME[n], we start with the
assumption (8) for t = nc and s = no(1), i.e.,

Σ2TIME[n] ⊆ BPTISP[nc, no(1)].

Consider a Σ2TIME[T ] computation for some time function T (n) = nO(1). We adopt the approach
outlined in Section 3.3, namely speeding up Σ2TIME[T ] at the cost of adding alternations and
then removing these alternations via an efficient complementation to arrive at a Π2TIME[o(T )]
computation. The hypothesis gives a simulation of Σ2TIME[T ] in BPTISP[T c, T o(1)]. We then
apply the square-root speedup of (13) to obtain a simulation in Π3.

Σ2TIME[T ] ⊆ BPTISP[T c, T o(1)]

⊆ ∀T o(1) ∃T
c
2 +o(1)∀log T DTISP[T c/2+o(1), T o(1)]

︸ ︷︷ ︸

(α)

.

We have arrived at a simulation which makes one more alternation than we started with. To
balance the number of alternations, we eliminate one alternation. Notice that the stages of the
computation indicated by (α) can be seen as a computation in Σ2 taking input of size n + T o(1)

and running in time T
c
2
+o(1). When T is large enough, this running time is at least linear in the

input size, and we can pad (15) to allow us to switch (α) to Π2. Merging the resulting adjacent
universal stages yields the desired Π2-simulation:

Σ2TIME[T ] ⊆ Π2TIME[T
c2

2
+o(1)]. (18)
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For c <
√

2, this results in a net speedup which is a contradiction to Lemma 5. Thus we
have derived a lower bound of n

√
2−o(1) for QSAT2 on subpolynomial-space randomized machines.

However, we can do better by observing what (18) represents for values of c that do not immediately
contradict Lemma 5. Specifically, (18) gives a complementation of Σ2 of the same form as (15), but
has exponent cost of c2/2 rather than c. Thus, we have derived a more efficient complementation
for sufficiently large polynomial time bounds T when c < 2.

We now reiterate the above argument, except we use (18) to eliminate alternations more effi-
ciently than we did with (15). This yields an even more efficient complementation for sufficiently
large polynomials T :

Σ2TIME[T ] ⊆ Π2TIME[T
c3

4
+o(1)].

This can in turn be used to derive another more efficient complementation, and so on. In this
manner, we can derive a series of complementations, each one more efficient than the previous one.
Specifically, each iteration multiplies the exponent cost of the complementation by c

2 , so after k
iterations we obtain

Σ2TIME[T ] ⊆ Π2TIME[T c·ek+o(1)],

where ek = ( c
2 )k. Note that for c < 2, ek → 0 as k → ∞. Thus, by choosing k large enough so

that c · ek < 1, we arrive at a contradiction to Lemma 5, which proves the desired lower bound of
n2−o(1).

The following lemma precisely derives the series of complementations of Σ2 for larger space
bounds than no(1). Specifically, we consider the hypothesis (8) for polynomial t and s, namely
t = nc and s = nd for some constants c ≥ 1 and d > 0, and derive the running time of the resulting
Π2-simulation in terms c, d, and k, the number of times the argument is recursively applied.

Lemma 14. Suppose that
Σ2TIME[n] ⊆ BPTISP[nc, nd] (19)

for some constants c ≥ 1 and d > 0 where c + 2d ≤ 2. Then for any time function T and integer
k ≥ 0 such that d ≤ fk,

Σ2TIME[T ] ⊆ Π2TIME
[(

(T fk + n)c+d
)

polylog(T + n)
]

,

where

fk = ( c+2d
2 )k. (20)

Proof. We give a proof by induction on k. For k = 0, a padded version of the initial complemen-
tation given by (14) offers a Π2-simulation of Σ2TIME[T ] running in the desired time.

We now show the inductive step by using the kth complementation to derive the (k + 1)st.
Padding the hypothesis (19) gives a simulation of Σ2TIME[T ] in BPTISP[(T +n)c, (T +n)d]. Note
that the addition of the term n to T ensures the validity of this step for arbitrary T , in particular
for sublinear T . Applying (13) gives a speedup of the BPTISP simulation at the cost of three
alternations, yielding

Σ2TIME[T ] ⊆ ∀(T+n)d log(T+n) Σ2TIME
[

(T + n)
c+2d

2 polylog(T + n)
]

︸ ︷︷ ︸

(α)

. (21)
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The complementation given by the inductive hypothesis switches (α) to a Π2-computation, elimi-
nating one alternation. Specifically, (α) represents a Σ2-machine running in time

T̃
.
= O

(

(T + n)
c+2d

2 polylog(T + n)
)

on inputs comprised of the original n-bit input in addition to the (T + n)d log(T + n) bits guessed
in the preceeding universal stage, for a total input size of

ñ
.
= O

(

n+ (T + n)d log(T + n)
)

.

The inductive hypothesis allows us to simulate (α) by a Π2-machine running in timeO
(

(T̃ fk + ñ)c+d polylog(T̃ + ñ)

Using this Π2-machine for (α) and accounting for the time spent in the initial universal stage of
the simulation given by (21) results in a Π2 simulation of Σ2TIME[T ] running in time big-O of

(T + n)d log(T + n) +
(

(T̃ fk + ñ)c+d
)

polylog(T̃ + ñ).

All that remains is to show that the above running time is of the desired form under the conditions
on c and d. To simplify this expression, note that polylog(T̃ + ñ) = polylog(T + n). Collecting all
of the other polylog terms, the running time can be written as big-O of

[

(T + n)d +

((

(T + n)
c+2d

2

)fk

+ n+ (T + n)d
)c+d

]

polylog(T + n).

The terms depending on T in the big-O expression have exponents d, c+2d
2 fk(c + d), and d(c + d)

(putting aside the polylog(T + n) factor for a moment). Thus, when d ≤ c+2d
2 fk = fk+1 and

c+ d ≥ 1, the dominating term is T
c+2d

2
fk(c+d) = T fk+1(c+d).

Similarly, the terms depending on n have exponents d, c+2d
2 fk(c+ d), c+ d, and d(c+ d). Under

the same conditions on c and d, the first and last terms are subsumed by the second one, which
can be rewritten as fk+1(c + d). Additionally, when c + 2d ≤ 2, fk ≤ 1 for all k ≥ 0, so that the
nc+d term dominates. Thus, we simplify the running time to big-O of

(

(T fk+1 + n)c+d
)

polylog(T + n),

which is of the desired form.

The series of complementations given by Lemma 14 lead to a contradiction with Lemma 5 for
certain values of c and d, which proves the desired lower bound.

Theorem 15. For any constant c < 2, there exists a positive constant d such that Σ2TIME[n]
cannot be simulated by randomized random-access machines with two-sided error running in time
nc and space nd. Moreover, d approaches 1/2 from below as c approaches 1 from above.

Proof. For c < 1, the Theorem holds for any d by standard techniques. Namely, take the parity
function, which is surely in Σ2TIME[n] and consider any BPTIME[nc] machine M which purport-
edly computes it. On input 0n, we must have that

n∑

i=1

Pr[M looks at ith bit on input 0n] ≤ nc.
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For c < 1, this implies that there is a bit position that M looks at very rarely. Namely, there exists
an i such that

Pr[M looks at ith bit on input 0n] = o(1).

From this, we can deduce that M has approximately the same probability of accepting 0n as it
does 0n with the ith bit flipped. Therefore, M cannot compute parity.

We prove the case for c ≥ 1 via indirect diagonalization. Suppose, by way of contradiction, that

Σ2TIME[n] ⊆ BPTISP[nc, nd], (22)

for some constant d > 0 to be determined later. Then for any time function τ(n), Lemma 14 gives
us the complementations

Σ2TIME[τ ] ⊆ Π2TIME
[(

(τ fk + n)c+d
)

polylog(τ + n)
]

,

when c+ 2d ≤ 2 and d ≤ fk. Choosing τ so that τ(n)fk ≥ n allows us to simplify this to

Σ2TIME[τ ] ⊆ Π2TIME[τ (c+d)fk polylog(τ)]. (23)

The inclusion (23) gives a contradiction with Lemma 5 for any k with fk <
1

c+d . Note that
fk → 0 as k →∞ if c+ 2d < 2. Therefore, all that remains is to show that the latter condition is
compatible with the other ones, i.e., that we can pick a constant d > 0 and an integer k > 0 such
that

c+ 2d < 2, (24)

d ≤ fk, and (25)

fk <
1

c+ d
. (26)

For any c and d satisfying (24), consider choosing k ≥ 1 to be the smallest integer such that
(26) is satisfied. Observe that fk ≥ c+d

2 fk−1, and by how we chose k, fk−1 ≥ 1
c+d . This shows that

fk ≥ 1/2, so (25) is satisfied when d ≤ 1/2. From (24), we have d < 2−c
2 , which is at most 1/2 when

c ≥ 1. Therefore, choosing d such that d < 2−c
2 and then calculating k as described above yields

a d and k satisfying all of the constraints, leading to the desired contradiction. As c approaches 1
from above, 2−c

2 approaches 1/2 from below, so the largest value of d that yields a contradiction
approaches 1/2 as well. This proves that Σ2TIME[n] * BPTISP[nc, nd] for such c and d.

We point out that, although we can handle the same values of c as in the deterministic setting,
the dependence of d on c in Theorem 15 is worse. In particular, the proofs of the time-space lower
bounds for deterministic machines show that d approaches 1 from below as c approaches 1 from
above [9], while in our result d approaches 1/2 from below as c approaches 1 from above.

The proof of Theorem 15 generalizes to ΣℓTIME[n] for any ℓ ≥ 3. In this setting, the hypothesis
becomes

ΣℓTIME[n] ⊆ BPTISP[nc, nd]. (27)

Along with the Π2-simulation of BPTISP[T, S] of Theorem 11, this yields a collapse of the form
Σℓ ⊆ Π2, which allows us to eliminate more than one alternation at the same cost of removing
one alternation in the setting of Theorem 15 where ℓ = 2. Therefore, we can afford to use more
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alternations using (4) and achieve a greater speedup. In a manner analogous to the proof of
Theorem 15, we derive a series of increasingly efficient complementations of Σℓ to Πℓ for c < ℓ,
eventually reaching a contradiction as long as d ≤ 1√

ℓ
.

Alternatively, we can use extra alternations to achieve a dependence of d on c where d approaches
1 from below as c approaches 1 from above, as in the deterministic case. For example, when ℓ = 3,
this follows by deriving a complementation of Σ3 following the same technique that derives the
complementation of Σ2 given by (18) when ℓ = 2, modulo the replacement of the Π2-simulation
given by Theorem 11 with the Π3-simulation given by Theorem 13. Specifically, hypothesis (27)
and Theorem 13 give a complementation of Σ3:

Σ3TIME[n] ⊆ ∀nd log n∃nd log n∀log nDTISP[nc polylog(n), nd log n]. (28)

Consider a Σ3TIME[τ ] computation for some time function τ to be determined. Applying the
speedup of (2) to the final deterministic stage of the simulation given by (28) yields

Σ3TIME[τ ] ⊆ ∀τd log τ ∃τd log τΠ2TIME[τ
c+d
2 polylog(τ)]

︸ ︷︷ ︸

(α)

.

We can now use (28) to simulate (α) by a Π3-machine, yielding a more efficient complementation
than (28) for certain values of c and d:

Σ3TIME[τ ] ⊆ ∀τd log τΠ3TIME[(τ
c+d
2 + n+ τd)c polylog(τ)].

When τ(n) ≥ n
2

c+d (and d ≤ c), this simplifies to

Σ3TIME[τ ] ⊆ Π3TIME[τ c c+d
2 polylog(τ)], (29)

yielding a contradiction to Lemma 5 when c <
√

2 and d < 2−c2

c . Therefore, as c approaches 1 from
above, the upper bound on d approaches 1 from below when ℓ = 3. Indeed, this analysis establishes
the desired behavior of d as c approaches 1 for any level ℓ ≥ 3, since if (27) holds for ℓ > 3, it must
also hold for ℓ = 3.

We point out that we can augment the strategy leading to (28) with a bootstrapping argument
similar to the one in the proof of Lemma 14 and obtain increasingly efficient complementations
of Σ3. This approach results in a contradiction for c < 2, whereas the analogous approach using
Theorem 11 leads to a contradiction for c < 3. More generally, at level ℓ ≥ 3, we can modify the
above approach to take full advantage of the stronger hypothesis and arrive at complementations of
Σℓ. However, we only reach a contradiction for c < ℓ−1 whereas the strategy based on Theorem 11
results in a contradiction for c < ℓ. Therefore, we need both approaches to prove Theorem 1 – the
latter achieves the lower bound for large values of c, while the former establishes the dependence
of d on c for small values of c.

Since much of the proof of Theorem 1 closely follows the outline of Theorem 15, we give only
a brief sketch of it here. In fact, Theorem 1 also follows from the more general Theorem 2, which
gives time-space lower bounds for simulations of space-bounded linear-time alternating machines.
A complete proof of Theorem 2 appears in the next section.

Proof of Theorem 1. The case for c < 1 follows by standard techniques, as in the proof of Theorem
15.
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For the case c ≥ 1, assume that ΣℓTIME[n] ⊆ BPTISP[nc, nd] for some constant d > 0 to be
determined later. Using the speedup given by (4) rather than (2), we can step through an argument
similar to that of Lemma 14 to show

ΣℓTIME[T ] ⊆ ΠℓTIME
[(

(T gk + n)c+d
)

polylog(T + n)
]

, (30)

as long as c+ ℓd ≤ ℓ and d ≤ gk, where

gk = (
c+ ℓd

ℓ
)k. (31)

We can now use (30) as we used Lemma 14 in the proof of Theorem 15. For a time function τ
such that τ(n)gk ≥ n, (30) gives that

ΣℓTIME[τ ] ⊆ ΠℓTIME
[

τ (c+d)gk

]

,

which is a contradiction with Lemma 5 when gk <
1

c+d . Therefore, it remains to show that it is
possible to choose a positive d and integer k satisfying the latter condition as well as those on (30).
More specifically, for c < ℓ we can choose d < ℓ−c

ℓ so that there exists a smallest positive integer k

such that gk <
1

c+d . Since gk = c+ℓd
ℓ · gk−1 ≥ c+ℓd

ℓ · 1
c+d , we can guarantee that the only constraint

possibly left unsatisfied, namely d ≤ gk, is met by restricting our choice of d to d ≤ c+ℓd
ℓ · 1

c+d .

When ℓ = 2, the upper bound on d approaches 1
2 as c approaches 1. For ℓ ≥ 3, the upper

bound on d approaches 1√
ℓ

as c approaches 1 but we can improve it using the combination of the

hypothesis and Theorem 13 that leads to the complementation of Σ3 represented by (29). For large
enough τ , this gives a contradiction for values of d approaching 1 from below as c approaches 1
from above when ℓ ≥ 3.

Theorem 7 transfers the lower bounds to QSATℓ.

6 Other Results

In this section, we strengthen Theorem 1 to establish time-space lower bounds for problems decid-
able by alternating machines that run in linear time and only use a small amount of space. We also
prove Theorem 3 regarding time-space lower bounds for tautology on randomized machines with
one-sided error.

6.1 Sublinear Space on Linear-Time Alternating Machines

By paying close attention to the space used by the simulations in the proof of Theorem 1, we actually
obtain time-space lower bounds for randomized simulations of linear-time alternating machines
using space na for a < 1, given by Theorem 2. The main task is to use the weaker assumption
that ΣℓTISP[n, na] ⊆ BPTISP[nc, nd] to eliminate the alternations introduced by the speedup of
(3). This requires that the Σk-simulation after the speedup uses an amount of space which is at
most the ath power of its running time. Since the simulation guesses (and stores) O(BS) bits in
each alternating stage, this restricts us to choose a small value of B, which in turn grants a smaller
speedup. Therefore, our bounds become weaker as a becomes smaller.

To prove Theorem 2, we first prove an analog of Lemma 14 which gives a series of complemen-
tations of ΣℓTISP.
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Lemma 16. Suppose that
ΣℓTISP[n, na] ⊆ BPTISP[nc, nd] (32)

for some integer ℓ ≥ 2 and constants 0 < a ≤ 1, c ≥ 1, and d > 0 with c + ℓd ≤ 1 + (ℓ − 1)a and
(1− a)d ≤ ac. Then for any time function T and integer k ≥ 0 such that d ≤ hk,

ΣℓTISP[T, T a] ⊆ ΠℓTISP
[(

(T hk + n)c+d
)

polylog(T + n), (T + n)d polylog(T + n)
]

, (33)

where
hk = ( c+ℓd

1+(ℓ−1)a )k. (34)

Proof. The base case k = 0 is given by combining the hypothesis (32) and the efficient Π2-simulation
of BPTISP given by Theorem 11. We now prove the inductive step k → k + 1. Consider a
ΣℓTISP[T, T a] computation. From the hypothesis (32), Theorem 11, and the speedup of (3) (to Σℓ

rather than Πℓ), we obtain a simulation which (neglecting the polylog(T + n) factors) is in

∀(T+n)d
ΣℓTISP

[

B(T + n)d +
(T + n)c+d

Bℓ−1
, B(T + n)d

]

︸ ︷︷ ︸

(α)

.

In order to apply the inductive hypothesis to complete the complementation to ΠℓTISP, the space
bound of (α) must be at most the ath power of its running time. This is the case when B satisfies

B(T + n)d =

(
(T + n)c+d

Bℓ−1

)a

,

which offers the choice

B = (T + n)
ac+(a−1)d
1+(ℓ−1)a

as long as ac+ (a− 1)d ≥ 0. For such a choice, (α) is a computation in

ΣℓTISP
[

(T + n)
c+ℓd

1+(ℓ−1)a , (T + n)
a c+ℓd

1+(ℓ−1)a

]

,

which takes an input of size O(n + (T + n)d), which is in O(n + T d) when d ≤ 1. Thus, instead
of achieving an ℓth root speedup as we do when we are not concerned about the space used by the
simulation of (3), we instead achieve a (1 + (ℓ− 1)a)th root speedup.

The inductive hypothesis gives a ΠℓTISP-simulation of (α), and hence a ΠℓTISP-simulation of
ΣℓTISP[T, T a] running in time big-O of (neglecting the polylog(T + n) terms)

T ∗ .
= (T + n)d +

(

(T + n)
hk

c+ℓd
1+(ℓ−1)a + n+ T d

)c+d

and using space big-O of

S∗ .
= (T + n)d +

(

(T + n)
c+ℓd

1+(ℓ−1)a + n+ T d
)d

.

When c + ℓd ≤ 1 + (ℓ − 1)a and d ≤ 1, S∗ simplifies to (T + n)d. When we have the further
constraint that d ≤ hk+1, T

∗ has the appropriate leading terms and simplifies to (T hk+1 + n)c+d.
Accounting for the polylog factors, we have shown that the simulation is of the desired form.
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We note that the proof of Lemma 16 also yields a version in which the Πℓ on the right-hand side
of (33) is replaced by Π2. However, we do not see a way to exploit that fact to strengthen our final
result. For the sake of clarity and consistency, we present Lemma 16 as stated.

When c+ ℓd < 1 + (ℓ− 1)a, hk → 0 as k →∞. In such a case, we can use Lemma 16 to derive
a contradiction to Lemma 6 in an analogous fashion to how we used Lemma 14 to prove Theorem
15 for values of c as large as possible. For ℓ = 2, this gives a value of d approaching a

2 from below
as c approaches 1 from above. We can do better when ℓ ≥ 3 by using Theorem 13 to derive a
space-bounded complementation analogous to that given by (29) in the unrestricted case.

Lemma 17. Suppose that
Σ3TISP[n, na] ⊆ BPTISP[nc, nd] (35)

for constants 0 < a ≤ 1, c ≥ 1 and 0 < d ≤ ac with c+ d ≤ 1 + a. Then for any time function T ,

Σ3TISP[T, T a] ⊆ Π3TISP[(T
c+d
1+a + n)c polylog(T + n), (T + n)d polylog(T + n)].

Proof. The hypothesis (35) and Theorem 13 yield the complementation

Σ3TISP[n, na] ⊆ ∀nd log n∃nd log2 n∀log nDTISP[nc polylog(n), nd log n]. (36)

Consider a Σ3TISP[T, T a] computation. Padding (36) and applying the speedup of (1) (on the
Π2-side) to the final deterministic stage gives a simulation of Σ3TISP[T, T a] which (neglecting the
polylog terms) is in

∀(T+n)d∃(T+n)d
Π2TISP[B(T + n)d + (T + n)c/B,B(T + n)d]
︸ ︷︷ ︸

(β)

.

Choosing B = (T + n)
ac−d
1+a so that the in the space bound of (β) is the ath power of its running

time places the simulation in

∀(T+n)d ∃(T+n)d
Π2TISP[(T + n)

c+d
1+a , (T + n)a

c+d
1+a ]

︸ ︷︷ ︸

(γ)

,

when d ≤ ac. Under the same condition, (γ) is a computation in Σ3TISP[(T + n)
c+d
1+a , (T + n)a

c+d
1+a ]

taking an input of size n+ (T + n)d, so that (36) gives a simulation of (γ) in Π3TISP. Overall we
have derived

Σ3TISP[T, T a] ⊆ Π3TISP[
(

(T + n)
c+d
1+a + n+ (T + n)d

)c
, (T + n)d +

(

(T + n)
c+d
1+a + n+ (T + n)d

)d
]

⊆ Π3TISP[(T
c+d
1+a + n)c, (T + n)d],

where the last inclusion follows as long as d ≤ ac and c+d
1+a ≤ 1. Accounting for the polylog(T + n)

terms finishes the proof.

We are now ready to prove Theorem 2.
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Proof of Theorem 2. The proof for c < 1 follows from standard techniques, as in the proof of
Theorem 15.

For the case c ≥ 1, assume by way of contradiction that ΣℓTISP[n, na] ⊆ BPTISP[nc, nd] for
some constant d > 0 to be determined later. Then for a time function τ where τ(n)hk ≥ n, Lemma
16 gives the complementation

ΣℓTISP[τ, τa] ⊆ ΠℓTISP
[

τ (c+d)hk polylog(τ), τd polylog(τ)
]

(37)

when c+ ℓd ≤ 1+(ℓ−1)a, (1−a)d ≤ ac, and d ≤ hk. When hk <
1

c+d , the time bound of the right-
hand side of (37) is o(τ). Provided that c < 1+(ℓ−1)a, we can choose a positive d and an integer k

such that all the above conditions are met. More specifically, for any value of d < 1+(ℓ−1)a−c
ℓ , there

exists a smallest positive integer k such that hk <
1

c+d . Since hk = c+ℓd
1+(ℓ−1)a · hk−1 ≥ c+ℓd

1+(ℓ−1)a · 1
c+d ,

we can guarantee that d ≤ hk by imposing the condition

d ≤ c+ ℓd

1 + (ℓ− 1)a
· 1

c+ d
. (38)

It follows that we can meet all constraints mentioned so far by choosing d below some positive
threshold. All that remains to reach a contradiction with Lemma 6 is to ensure that the space
bound of the right-hand side of (37) is o(τa), which can be done with the additional constraint on
d that d < a.

For ℓ = 2 the upper bound on d approaches a
2 from below as c approaches 1 from above. In the

case ℓ ≥ 3 the upper bound on d imposed by the conditions other than (38) approaches ℓ−1
ℓ a as

c approaches 1; condition (38) implies an upper bound of 1/
√
ℓ for a = 1 and a somewhat weaker

bound for smaller values of a. However, we can achieve a contradiction for larger d as c approaches

1 and ℓ ≥ 3 using the following argument. For τ(n) ≥ n
1+a
c+d , Lemma 17 gives

Σ3TISP[τ, τa] ⊆ Π3TISP[τ c c+d
1+a polylog(τ), τd polylog(τ)]

when c+ d ≤ 1 + a and d ≤ ac. When c <
√

1 + a, we can choose d < min( (1+a)−c2

c , a) and arrive
at a contradiction with Lemma 6. As c approaches 1 from above, the upper bound on d approaches
a from below, which gives the desired dependence.

6.2 Tautology on Randomized Machines with One-Sided Error

In this section, we consider problems in the first level of the polynomial-time hierarchy and establish
the time-space lower bounds of Theorem 3 for tautology on randomized machines with one-sided
error. To do so, we actually prove time-space lower bounds for a more powerful class of machines,
namely nondeterministic machines which are restricted to guess few bits.

Theorem 18. There exists positive constants b and d such that tautology cannot be solved by
nondeterministic random-access machines which run in time n1.759 polylog(n), space nd, and non-
deterministically guess only nb bits.

By way of the space-bounded derandomization of Theorem 10, a space-bounded randomized
machine with one-sided error can be made to use very few random bits. Since a randomized machine
with one-sided error is also a special type of nondeterministic machine, we can view the one-sided
error machines obtained by Theorem 10 as nondeterministic machines which guess very few random
bits. Thus, the time-space lower bounds of Theorem 3 follow as a corollary to Theorem 18.
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Proof of Theorem 3. Let b∗ the value of b given by Theorem 18, and d∗ the value of d. By the de-
randomization of Theorem 10, if tautology can be solved in RTISP[nc, nd], then it can also be solved

in ∃nd log nDTISP[nc polylog(n), nd]. Thus by Theorem 18, tautology is not in RTISP[n1.759, nd] for
any d < min(b∗, d∗).

We now focus on proving Theorem 18 using the ideas outlined in Section 1.2. In this setting, the
hypothesis of the indirect diagonalization argument becomes NTIME[n] ⊆ ∀nb

DTISP[nc, nd]. This
unlikely scenario certainly yields an efficient complementation, and it is actually strong enough to
allow for something more: Under this hypothesis, we can improve the space-bounded speedups of
(2) and (4) for certain values of b, c and d.

Lemma 19. Suppose that

NTIME[n] ⊆ ∀nb
DTISP[nc, nd] (39)

for some constants b, c ≥ 1, and d such that c + d ≤ 2 and b ≤ c + d − 1. Then for any time
function T , space function S and integers i ≥ 0 and k ≥ 2,

DTISP[T, S] ⊆ ΠkTIME[(TSk−1)
γi

(k−2)γi+1 + n+ S], (40)

where γ0 = 1
2 and γi+1 = (c+d)γi

(c+d)γi+1 .

We point out some facts about the sequence (γi)i in order to clearly assess the speedup represented
by Lemma 19. From the definition, we can see that γi+1 ≤ γi if and only if γi ≤ γi−1. It follows that

the sequence (γi)i is monotonic. Since the transformation x 7→ (c+d)x
(c+d)x+1 has a unique attractive

fixed point at 1− 1
c+d , (γi)i converges to this value. Specifically, when c+ d < 2, this fixed point is

less than 1
2 = γ0, so in this case (γi)i decreases monotonically to 1− 1

c+d .

When S is small, Lemma 19 essentially offers a ((k − 2) + 1
γi

)th-root speedup of a DTISP[T, S]
machine on a Πk-machine, provided this running time remains at least linear. From the convergence
properties of (γi)i, we can see that this speedup approaches the (k−1+ 1

c+d−1)th-root as i increases.

Recall that the unconditional speedup offered by (4) gives a similar kth-root speedup. Thus,
when the hypothesis (39) holds for c + d < 2, Lemma 19 offers a greater speedup than we had
unconditionally.

To prove Lemma 19, we start with the case k = 2 by inductively deriving better and better
speedups of DTISP[T, S] into Π2. For the case k > 2, we use k − 2 alternations for a speedup as
in (3) and then one more alternation to speed up the final deterministic phase in (3) by applying
(40) for k = 2. An optimal choice of the number of blocks B yields the result.

Proof of Lemma 19. We prove the case k = 2 by induction on i. In particular, we need to prove

DTISP[T, S] ⊆ Π2TIME[(TS)γi + n+ S]. (41)

For the base case, (41) holds unconditionally for i = 0 by the standard square root speedup of (2).
For the inductive step i→ i+ 1, consider a DTISP[T, S] computation. Using the Π2-version of the
inclusion (1), we speed up this computation in Π2:

DTISP[T, S] ⊆ ∀BS ∃log BDTISP[T/B, S]
︸ ︷︷ ︸

(i)

.
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We can see that (i) represents a computation in nondeterministic time O(T/B) taking an input
of length O(n+BS). Thus, the hypothesis (39) gives a simulation of (i) which yields

DTISP[T, S] ⊆ ∀BS∀(T/B+n+BS)b

︸ ︷︷ ︸

(ii)

DTISP[(T/B + n+BS)c, (T/B + n+BS)d]
︸ ︷︷ ︸

(iii)

.

Notice that the final space-bounded deterministic stage (iii) takes an input of size O(n + BS +
(T/B)b) provided b ≤ 1, so that the inductive hypothesis yields a simulation of this stage in

Π2TIME[((T/B + n+BS)c+d)γi + n+BS + (T/B)b + (T/B + n+BS)d].

Merging the initial universal phase of this simulation with that represented by (ii) and noting that
B ≥ 1, we see that we have arrived at a simulation of DTISP[T, S] on a Π2-machine running in
time big-O of

BS + (T/B + n+BS)max(b,d) + ((T/B + n+BS)c+d)γi + n.

To simplify this, notice that when c+ d ≤ 2, we have that (c+ d)γi ≤ 1 (since γi ≤ 1
2). If c ≥ 1, we

have d ≤ (c+ d)γi (since γi ≥ 1− 1
c+d). Furthermore, if b ≤ c+ d− 1, we have b ≤ (c+ d)γi (since

γi ≥ 1− 1
c+d). Under these conditions, the above running time simplifies to big-O of

BS + (T/B)(c+d)γi + n.

To minimize this running time up to a constant factor, we choose a value for B such that BS =

(T/B)(c+d)γi , namely B∗ .
= (T (c+d)γi

S )1/((c+d)γi+1). If B∗ ≥ 1, this choice results in a running time
in big-O of

(TS)
(c+d)γi

(c+d)γi+1 + n = (TS)γi+1 + n.

On the other hand, if B∗ < 1, then B = 1 is the best we can do. This yields a running time of
O(S+n). In either case, O((TS)γi+1 +n+S) is an upper bound on the running time. By induction,
(41) holds for all i ≥ 0 and b, c, and d as above.

Now that we have established (41), we use it to establish (40) for k > 2. The first step is to use
(3) to speed up a DTISP[T, S]-machine on a Πk−1-machine. This yields

DTISP[T, S] ⊆ ∀BS∃BS . . . Qlog B

︸ ︷︷ ︸

k−1

DTISP[T/Bk−2, S]
︸ ︷︷ ︸

(α)

, (42)

where Q is ∀ if k is even, and ∃ if k is odd.
We can see that (α) represents a computation taking an input of size O(n+ BS) and running

in time T/Bk−2 and space S. Provided b, c, and d satisfy the constraints of the lemma, (41) gives
simulations of (α) on Π2-machines running in time

O
(

(TS/Bk−2)γi + n+BS
)

,

for B ≥ 1. Since deterministic classes are closed under complement, we also get simulations on
Σ2-machines running in the same amount of time. Choosing the former if Q = ∀ in (42), and the
latter otherwise, the alternating stages align properly so that replacing (α) in this manner adds
only one alternation. Overall, we arrive at a simulation of DTISP[T, S] by a Πk-machine running
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in the above time bound. To minimize this running time up to a constant factor, we choose B so
that the two terms depending on B are equal. This occurs at the value

B† .
= (T γiSγi−1)

1
(k−2)γi+1 .

When B† ≥ 1, such a choice yields the running time O
(

(TSk−1)
γi

(k−2)γi+1 + n
)

. If B† < 1, then

B = 1 is the best we can do and the running time becomes O(S + n). In both cases, we obtain an
upper bound of

O
(

(TSk−1)
γi

(k−2)γi+1 + n+ S
)

on the running time, which proves the claim.

We now use a bootstrapping argument to derive a series of increasingly efficient complementa-
tions of the linear-time hierarchy at higher and higher levels. At each level, the improved speedup
granted by Lemma 19 for sufficiently small b and d allows a more efficient complementation than
the unconditional speedup of (4), which is key to obtaining quantitatively stronger lower bounds.

Lemma 20. For any constants 1 ≤ c < 2, ǫ > 0, and integer ℓ ≥ 2, there exist positive constants
b and d such that if

NTIME[n] ⊆ ∀nb
DTISP[nc, nd], (43)

then
ΣℓTIME[n] ⊆ ΠℓTIME[ncℓ+ǫ], (44)

where

cℓ =

{
c(c− 1) for ℓ = 2
c2(c−1)

Qℓ−1
j=2 cj

(ℓ−1)(c−1)+1 otherwise.
(45)

Closed forms for the exponent cℓ defined by (45) become rather complex. One can show by
induction that

cℓ =
c3·2

ℓ−3
(c− 1)2

ℓ−2

((ℓ− 1)(c − 1) + 1) ·∏ℓ−1
k=3((k − 1)(c − 1) + 1)2ℓ−k−1

for ℓ > 2.

Proof of Lemma 20. Let c and ǫ be given. We argue by induction that we can choose b and d
appropriately so that (43) yields the desired inclusion. For ℓ = 2, we use the hypothesis to obtain
a DTISP simulation of Σ2TIME[n] when b ≤ c:

Σ2TIME[n] = ∃n∀nDTIME[n] ⊆ ∃n∃nb
DTISP[nc, nd] ⊆ NTIME[nc]

⊆ ∀nbc
DTISP[nc2, ncd].

The input to the final deterministic stage is of size n+ nbc, so applying Lemma 19 to simulate this
stage yields

Σ2TIME[n] ⊆ ∀nbc
DTISP[nc2, ncd] ⊆ Π2TIME[(nc(c+d))γi + n+ nbc + ncd].

As i→∞, the exponent c(c+d)γi → c(c+d−1). For d such that this limit is at most c(c−1)+ ǫ
2 ,

we can choose i large enough so that the exponent is at most c(c − 1) + ǫ. Under the additional
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constraints b, d ≤ c−1, the running time becomes O(nc(c−1)+ǫ+n). Therefore, when c(c−1)+ǫ ≥ 1,
we have the desired inclusion. In fact, this is the only case we need to consider, for if c(c−1)+ǫ < 1,
we can find a > 1 such that ac(c− 1) + ǫ = 1 and apply the above argument to Σ2TIME[na]. This
yields the inclusion Σ2TIME[na] ⊆ Π2TIME[n], which contradicts Lemma 5. Therefore, the claim
holds for ℓ = 2.

Now suppose that for 2 ≤ k < ℓ, ΣkTIME[n] ⊆ ΠkTIME[nck+ǫ′ ] for an ǫ′ to be determined
later. Let bk,ǫ′ and dk,ǫ′ denote the appropriate values of b and d given by the inductive hypothesis
for the complementation at Σk to hold. To show that the desired complementation holds for Σℓ,
we first derive a simulation of such a computation in ∀nDTISP[nO(1), nd] and then use Lemma 19
to achieve a faster simulation in Πℓ.

We accomplish the former by iteratively deriving simulations one level lower in the polynomial-
time hierarchy. At step j = 0, . . . , ℓ− 3, we start with a Σℓ−j-machine and use a complementation
given by the inductive hypothesis to obtain a simulation by a Σℓ−j−1-machine. This follows by
complementing the computation following the initial existential stage of the Σℓ−j-machine, which
is a Πℓ−j−1-computation. Thus, when the hypothesis holds for b ≤ bℓ−j−1,ǫ′ and d ≤ dℓ−j−1,ǫ′,
we derive a simulation with one fewer alternation while raising the running time to the power of
cℓ−j−1 + ǫ′. This lets us write:

ΣℓTIME[n] ⊆ Σℓ−1TIME[ncℓ−1+ǫ′ ]

⊆ Σℓ−2TIME[n(cℓ−1+ǫ′)(cℓ−2+ǫ′)]

. . .

⊆ Σ2TIME[n(cℓ−1+ǫ′)(cℓ−2+ǫ′)···(c2+ǫ′)].

Defining Cℓ,ǫ′
.
= (cℓ−1 +ǫ′)(cℓ−2 +ǫ′) · · · (c2 +ǫ′) and applying the hypothesis (43) twice to the latter

simulation (as in the base case), we obtain the desired simulation:

ΣℓTIME[n] ⊆ ∀n
bcCℓ,ǫ′

︸ ︷︷ ︸

(α)

DTISP[nc2Cℓ,ǫ′ , ncdCℓ,ǫ′ ]
︸ ︷︷ ︸

(β)

.

The input to (β) is of size O(n + nbcCℓ,ǫ′ ), so applying Lemma 19 to this stage and absorbing the
universal stage (α) gives

ΣℓTIME[n] ⊆ ΠℓTIME[(nc(c+(ℓ−1)d)Cℓ,ǫ′ )
γi

(ℓ−2)γi+1

︸ ︷︷ ︸

(∗)

+n+ nbcCℓ,ǫ′ + ncdCℓ,ǫ′

︸ ︷︷ ︸

(∗∗)

], (46)

for small enough b and d and any integer i ≥ 0. When d is yet further restricted, the exponent of

the term (∗) approaches
c2(c−1)Cℓ,ǫ′

(ℓ−1)(c−1)+1 + ǫ
4 as i grows. This allows the choice of i large enough so

this exponent is at most ǫ
4 away from its limit point, namely at most

c2(c−1)Cℓ,ǫ′

(ℓ−1)(c−1)+1 + ǫ
2 . We next

choose ǫ′ small enough so that all of the terms in the exponent of (∗) involving ǫ′ sum to at most
ǫ
2 . Under these circumstances, an upper bound for the exponent of (∗) is

c2(c− 1)Cℓ,ǫ′

(ℓ− 1)(c − 1) + 1
+
ǫ

2
≤ c2(c− 1)

∏ℓ−1
i=2 ci

(ℓ− 1)(c− 1) + 1
+ ǫ = cℓ + ǫ.

When we also have b, d ≤ c(c−1)
(ℓ−1)(c−1)+1 , the term (∗) dominates (∗∗), so the Πℓ-simulation represented

by (46) runs in time O(ncℓ+ǫ + n). When cℓ + ǫ ≥ 1, this shows that (44) holds for b and d small
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enough to meet all of the above constraints. This is the only case we need to consider, since
cℓ + ǫ < 1 results in a contradiction to Lemma 5 by applying the above argument to ΣℓTIME[na]
for an appropriate a > 1 (as in the step for ℓ = 2).

Lemma 20 gives a series of complementations which are increasingly unlikely and eventually
contradict Lemma 5 for certain values of c. We obtain Theorem 18 by analyzing the behavior of
the sequence of exponents cℓ defined by (45).

Proof of Theorem 18 (See page 23 for the statement). For any integer ℓ ≥ 2, consider cℓ defined by
(45) as a function of c. One can show by induction on ℓ that cℓ monotonically grows from cℓ = 0
at c = 1 to infinity. By continuity, there exists a unique value c∗ℓ at which cℓ equals 1. For values
c < c∗ℓ , Lemma 20 gives a contradiction to Lemma 5 for a choice of ǫ small enough such that

cℓ + ǫ < 1. Thus, we can rule out simulations of NTIME[n] in ∀nb
DTISP[nc, nd] for all c < c∗ℓ and

b, d given by Lemma 20.
By (45), we have that at c = c∗ℓ

cℓ+1 =
cℓ+1

cℓ
=

(

1− 1

ℓ+ 1
c−1

)

· cℓ < 1.

The monotonicity of cℓ+1 then implies that c∗ℓ+1 > c∗ℓ , i.e., the sequence (c∗ℓ )ℓ increases. Numerical
calculations show that c∗14 ≈ 1.759708 and c∗15 ≈ 1.759719, which is enough to prove the claimed
lower bound of n1.759 polylog(n).

7 Further Research

The techniques discussed in this work allow us to establish time-space lower bounds for QSATℓ

on two-sided error randomized machines for ℓ ≥ 2. They do not seem to extend to the first-level
problems of satisfiability or tautology in a straightforward way. The only reason is our inability to
exploit the assumption NTIME[n] ⊆ BPTISP[t, s] to obtain an efficient complementation at some
level of the polynomial-time hierarchy. Thus, establishing time-space lower bounds for satisfiability
on randomized machines with two-sided error remains open.

We employed and further developed a technique from [24] to improve the known lower bounds
for satisfiability on deterministic machines. The original technique also leads to improved lower
bounds for QSATℓ with ℓ ≥ 2 on deterministic machines. For example, it allows the boosting of
the time lower bound for QSAT2 on deterministic subpolynomial-space machines from n2 [9] to
n2.761 [24]. Although we were able to find purchase in adopting these techniques to establish better
lower bounds for randomized machines with one-sided error, we have been unable to adopt them to
improve our results for machines with two-sided error. As a next step, we suggest to find a way to
extend the improved lower bounds for QSATℓ with ℓ ≥ 2 on deterministic machines to randomized
machines with two-sided error.
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Appendix

We now prove some results on the complexity of Nisan’s generator (Theorem 10) and on determin-
istic amplification by random walks on a Gabber-Galil expander graph (Lemma 12).

A Nisan’s Generator

Theorem 10 follows from an analysis of a time- and space-efficient implementation of Nisan’s pseu-
dorandom generator using fast Fourier transform multiplication methods to quickly evaluate and
invert linear hash functions. In fact, we prove a somewhat stronger version of Theorem 10.

Theorem 21. Any randomized machine M running in time T and space S with error ǫ can be
simulated by another randomized machine running in time O(T log2 S log logS), space O(S log T ),
and using only O(S log T ) random bits. If two-way access to the random bits is allowed, the space
requirement is reduced to O(S). The error of the simulation is ǫ+ 2−S, and is one-sided if M has
one-sided error.

Theorem 21 gives a tighter time bound than the bound of O(T polylog(T )) stated in Theorem 10.
Our arguments in Sections 5 and 6 are not noticeably improved by using the tighter bound stated
in Theorem 21, so we use the simpler bounds of Theorem 10 there for clarity. We state the tighter
bound here because it may be of independent interest.

Before proving Theorem 21, we introduce Nisan’s pseudorandom generator [20] and discuss
some of its properties. Define

Gm,k : {0, 1}m ×Hk
m → ({0, 1}m)2

k
,
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where Hm is a family of two-universal hash functions h : {0, 1}m → {0, 1}m [4]. The evaluation of
Gm,k is defined recursively as

Gm,k(y, h1, . . . , hk) =

{
y if k = 0
Gm,k−1(y, h1, . . . , hk−1) ◦Gm,k−1(hk(y), h1, . . . , hk−1) otherwise,

where “◦” denotes concatenation. Given a randomized machine M running in time T and space S,
we define G

.
= Gm,k for k = log T

m where m = Θ(S) will be determined later. The simulation of M
proceeds with the output of G as the random string, one block of length m at a time. Nisan proves
that G fools M in the following sense:

Theorem 22 (Nisan [20]). There exists a constant ν such that if M is a randomized machine
running in time T and space S on input x, then for m ≥ ν · S and k = log T

m ,
∣
∣
∣
∣
Pr
r

[M(x, r) accepts]− Pr
y,h1,...,hk

[M(x,Gm,k(y, h1, . . . , hk)) accepts]

∣
∣
∣
∣
≤ 2−S ,

where M(x, r) denotes the outcome of running M on input x and random string r.

This satisfies the error requirements of Theorem 21, so all that remains to prove Theorem 21 is to
show how to simulate M on the random string G(y, h1, . . . , hk) within the correct bounds on the
time, space, and randomness.

We start with the standard simulation that computes G in a block-wise fashion, where each
subsequent m-bit block is computed after m simulation steps of M using the current block. One
way to do this is to compute each block from scratch, namely, apply the appropriate sequence of
at most k hash functions to the m-bit seed y. Although this technique is good enough to derive
our main results, we can do slightly better, namely by a factor of O( log S

log(T/S)). This improvement
follows by computing each block in a recursive manner, which avoids the calculations that the
“from scratch” method does over and over again. We now work out the details of our simulation
to complete the proof of Theorem 21.

Proof of Theorem 21. To accomodate the approach described above, we choose m = Θ(S) such
that m ≥ ν · S and is of the form 2 · 3q for some integer q ≥ 0. The latter guarantees a simple
explicit formula for an irreducible polynomial of degree m over GF(2), namely z2·3q

+ z3q
+ 1 [16,

Theorem 1.1.28 on page 13]. We choose Hm to be the set of all invertible linear mappings from
GF(2m) to GF(2m), i.e., all functions of the form x 7→ ax + b where a, b ∈ GF(2m) and a 6= 0
[4].2 Such functions can be described by 2m bits, so that the input to G can be described by
(2k + 1)m = O(S log T ) bits. This meets the requirements on the randomness.

To reach the desired time and space bounds, we must be able to evaluate the functions in
Hm much faster than the näıve bound of O(m2). Using fast Fourier transform multiplication
techniques based on those of Schönhage and Strassen and exploiting the sparseness of the above
irreducible polynomial, we can evaluate h ∈ Hm in time O(m logm log logm) and space O(m).
These fast multiplication techniques can be combined with the extended Euclidean algorithm to
invert h ∈ Hm in time O(m log2m log logm) and space O(m). See [11, Corollary 11.8 on page 319]
for more details. We use these algorithms to output the blocks of Gm,k(y, h1, . . . , hk) recursively
with small space overhead. Specifically, we define the procedure Pm which uses global registers
containing k ≥ 0, y ∈ {0, 1}m, and h1, h2, . . . , hk ∈ Hm to perform the following steps:

2Excluding the non-invertible functions (a = 0) introduces a small bias. Although our family Hm is not perfectly
two-universal, it is close enough for our purposes.
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1. If k > 0:

2. k ← k − 1;

3. Recursively call Pm;

4. y ← hk+1(y);

5. Recursively call Pm;

6. y ← h−1
k+1(y); k ← k + 1 and return.

7. Else output y and return.

The output of Pm(k, y, h1, . . . , hk) is exactly Gm,k(y, h1, . . . , hk). Evaluating Pm takes 2k recursive
calls, each accompanied by an evaluation of hi or h−1

i . Thus, the overall time complexity to output
Gm,k is O(2k ·m log2m log logm). By replacing y by hk(y) instead of writing down hk(y) separately
on the work tape, only a constant amount of space overhead is required for each level. Thus, the
space requirement is O(m + k). For the settings of G, m = O(S) and k = log T

S + O(1), the time
becomes O(T log2 S log log S), while the space is O(S+log T

S ), which is O(S) since T ≤ 2S without
loss of generality. This assumes that the hash functions can be accessed repeatedly, so there is an
additional space cost of O(S log T ) to copy the hash functions from the random tape to the work
tape, bringing the space bound to O(S log T + S) = O(S log T ). However, if the simulation has
two-way access to the random tape, this cost is avoided.

Our simulation runs M for O(S) steps every time Pm outputs a block of G, for a total of T
steps while using space S. Thus, the above time and space bounds for computing G hold for the
simulation as a whole.

B Deterministic Amplification

We now prove Lemma 12, beginning with a brief discussion of some properties of the amplification
given by Theorem 9. Let M be a randomized machine that runs in time T , space S, and uses R
random bits. We may assume that M has error at most some small constant δ to be determined
later, since this can be achieved with only a constant overhead from a machine with any error
bounded away from 1/2. The amplified machine M ′ given by Theorem 9 interprets its random
string r′ of length O(R) as an initial vertex in a Gabber-Galil graph followed by O(R) edge labels
(of constant size) specifying the edges on a walk in the graph. Formally, this graph is described as
follows:

Definition (Gabber-Galil graph [10]). The Gabber-Galil graph GG(m) is a graph with vertices
Zm×Zm of degree 5 where the vertices adjacent to (x, y) ∈ Zm×Zm are the five pairs (x′, y′) obtained
from the matrix multiplication [x′, y′, 1]T = Ai[x, y, 1]

T (over Zm) for 1 ≤ i ≤ 5, where

A1 =





1 0 0
0 1 0
0 0 1



 , A2 =





1 0 0
1 1 0
0 0 1



 , A3 =





1 0 0
1 1 1
0 0 1



 , A4 =





1 1 0
0 1 0
0 0 1



 , A5 =





1 1 1
0 1 0
0 0 1



 .

We now state a useful lemma which says that the vertex at the end of a path of length p in GG(2k)
can be found in time quasi-linear in p and k, an improvement on the näıve bound of O(pk). We
leave the proof for later.

32



Lemma 23. Given a vertex (x, y) of the graph GG(2k) and a path π of length p indicated by edge
labels (e1, e2, . . . , ep), where 1 ≤ ei ≤ 5 for 1 ≤ i ≤ p, the vertex connected to (x, y) by π can be
determined in time O(m polylog(m)) and space O(m) where m = k + p.

For the purposes of Theorem 9, the vertices of the Gabber-Galil graph must be described by R
bits corresponding to the possible random strings for M . To this end, we choose GG(2R/2). Given
input x and random string r′, M ′ proceeds by deterministically carrying out the walk of length
p = O(R) on GG(2R/2) indicated by r′. Every β steps, where β is some constant, M ′ simulates
M on input x and random string corresponding to the label of the current vertex on the walk.
M ′ accepts if a majority of these trials accept. As each edge relation can be computed by simple
arithmetic in time O(R) and space O(R), and running M requires time T and space S, M ′ runs in
time O(R2 + RT ) = O(RT ) and space O(R + S). Cohen and Wigderson [5] and Impagliazzo and
Zuckerman [13] show that when β is large enough and M has error smaller than some constant δ,
the trials specified by a randomly chosen r′ are close enough to uniform so that M ′ only errs with
probability 2−R. This establishes Theorem 9.

We now prove Lemma 12, giving a more time-efficient manner to determine if M ′ accepts on x
and r′ at the cost of using alternations.

Proof of Lemma 12. To arrive at Lemma 12, we show how to use alternations to verify if there is
a majority of trials on the walk given by the random string r′ where M accepts, in such a way
that the final deterministic phase only needs to simulate M once. Specifically, given input x and
random string r′, we can express the acceptance condition of M ′ as

(∃Z ⊆ {1, 2, . . . , R′}, |Z| =
⌈
R′/2

⌉
)(∀i ∈ Z)M(x, ri) accepts, (47)

where R′ is the number of trials of M specified by r′, and ri is the random string produced for the
ith trial. Observe that this describes a Σ2-computation which accepts if and only if M ′ accepts. The
initial existential phase guesses the characteristic string of the set Z consisting of ⌈R′/2⌉ indices
of the R′ trials, for a total of R′ = O(R) bits. The universal phase guesses logR′ = O(logR) bits
to determine the index of a trial to verify. The final deterministic stage must first determine ri
and then run M on input x and random string ri. Once the former has been computed, the latter
task takes time T and space S. Since ri corresponds to the label of the (βi)th vertex on the walk
in GG(2R/2) specified by r′, Lemma 23 shows that ri can be computed in time O(R polylog(R)).
Therefore, the final deterministic stage takes time O(T + R polylog(R)) and space O(R + S). All
told, we have shown that (47) is a computation in

∃R∀log RDTISP[T +R polylog(R), R + S]

which accepts if and only if M ′ accepts. This completes the proof.

All that remains is to establish Lemma 23, which follows from a divide-and-conquer strategy to
efficiently evaluate a product of p matrices Ai.

Proof of Lemma 23. Throughout this proof, we use the fact that multiplication of b bit integers
can be done in time O(bpolylog(b)) and space O(b). This follows from the fast Fourier transform
techniques of Schönhage and Strassen [11, Theorem 8.24 on page 240]. Let

A
.
= AepAep−1 · · ·Ae1 .

33



Then the vertex (x′, y′) connected to (x, y) by π satisfies [x′, y′, 1]T = A[x, y, 1]T mod 2k. Therefore,
computing (x′, y′) reduces to computing A and multiplying by the vector [x, y, 1]T modulo 2k.

We accomplish the latter with a divide-and-conquer strategy. Namely, we split the product
approximately in half and recursively compute the subproducts AepAep−1 · · ·Ae⌊p/2⌋+1

.
= B and

Ae⌊p/2⌋
Ae⌊p/2⌋−1

· · ·Ae1

.
= C. It can be shown by induction that any product of p matrices Ai has

entries bounded by 2p−1, since each column of any matrix Ai has at most two non-zero entries,
which are ones. This shows that once B and C are computed, A can be computed as A = BC by
O(1) multiplications and additions of integers of bit length p/2, so we require time O(p polylog(p))
in addition to the recursive calls. Thus, by following this strategy, we can see that at each recursive
call to compute the product of q matrices, we solve two subproblems of size q/2 and do an additional
amount of work which is quasi-linear in q and uses space O(q). Thus, A can be computed in total
time O(p polylog(p)) and space O(p).

By our observation on the size of the product matrix entries, we also know that the entries of
the matrix A are at most 2p−1. Therefore, computing the product A[x, y, 1]T and reducing modulo
2k can be done in time O(m polylog(m)) and space O(m) as desired.

We point out that another natural way to arrive at Theorem 13 is to use expander walks to
generate the shift vectors for Lautemann’s simulation in lieu of amplifying the confidence of the
simulated algorithm as above. While the effect of the latter is to reduce the number of shift vectors
needed, the former allows a large number of “good” shifts to be described by very few bits. Briefly,
the hitting property of expanders guarantees that the shifts satisfy the needed property (i.e., the
shifts of the accepting set cover the entire set of random strings) with approximately the same
probability when they are chosen by a random walk on a Gabber-Galil graph as when they are
chosen independently. Thus, we can generate a set of O(R) good shifts in the initial stage of the
simulation with only O(R) bits. Furthermore, each shift can be computed efficiently by Lemma 23,
so we can avoid the O(R) blowup in the running time of the final deterministic stage by using an
additional alternation to verify that M accepts on some shift. This approach leads to a simulation
that matches the parameters of Theorem 13.

34


