
1

Application of Genetic Algorithms and
Multiple Hypotheses for Supervised
Machine Learning

Sajika Gallege

Department of Computer Sciences

University of Wisconsin-Madison

1210 W. Dayton Street, Madison, WI 53706

sgallege@cs.wisc.edu

ABSTRACT

This paper describes the implementation of a Genetic Algorithm (GA) and a variant of learning

multiple hypotheses. The GA is applied to a binary classification of a labeled dataset to evaluate

the algorithm’s performance in a supervised learning environment. The details include the basic

GA implementation and the modifications done to create a variant of learning multiple

hypotheses. The Paper also includes the results and a comparison to other Machine Learning

Algorithms such as Decision Trees and Perceptrons. The discussion includes advantages such as

the ability to parallelize the hypotheses search and drawbacks such as the time taken to select

good hypotheses as well as propose modifications to enhance the algorithm.

2

INTRODUCTION

Genetic Algorithms loosely simulated biological evolution due to natural selection. Concepts

such as reproduction, carrying on good traits to the next generation, and survival of the fittest are

simulated in genetic algorithms. The population is represented by a set of hypotheses; in this

algorithm’s context a hypothesis is a bit string. Some hypotheses survive and pass on to the next

generation with a probability based on their fitness, whereas some hypotheses crossover and

produce siblings which join the new generation. The specific terms and the implementation are

detailed in the next sections of the paper. In essence, GAs work by parallelizing the hypotheses

space search. This is an interesting area to research because of the similarity to evolution which

has proved successful in the natural world. This will also allow a comparison between other

Machine Learning Algorithms analyzed over the semester.

In this implementation the GAs are used to learn and classify a labeled data set with fixed length

features the label belonging to two classes. Two variants of the GA are implemented and tested

in this project. The first version learns the single best hypothesis that meets a certain fitness

threshold and applies the hypothesis to classify the test examples. The second version learns a set

of hypotheses which are best hypotheses from all the generations and applies it for classification.

The results from the GA are then compared to Decision Trees and Perceptrons to determine the

performance of the algorithm.

One of the main drawbacks of Gas as discovered from the experiments is the amount of time

taken to find a good hypothesis due to the randomness of the search. Limiting the time frame

results in producing a non optimal hypothesis; thus the performance of the GA’s seems low

compared to the other algorithms. The multi hypotheses variant seems to have better

performance than the single hypothesis algorithm due to better generalization.

PROBLEM DEFINITION AND ALGORITHM

Task Definition

The goal of the Genetic Algorithm is to learn to classify a dataset with fixed length features.

More precisely the learning happens on a labeled set of training examples. Once the learning is

complete, the algorithm is expected to be able to classify future (unobserved/ test) examples of a

3

similar format. The accuracy of the algorithm can be calculated by comparing the number of

correctly classified test examples.

The input for the GA is provided in the form of a .names file that contains the data definitions

and a .data file which contains the data samples. The .names file follows the format for each

feature:

featureName featureType possibleValues
where

• featureName is a token (i.e. a character string without quotes and internal spaces)
• featureType is either discrete or continuous (for the output category, use output as the

feature type)
• possibleValues is a comma-separated list of tokens specifying (a) the possible values for

a discrete-valued feature or (b) the minimum and maximum values for a continuous-
valued feature

The .data is a space delimited list of examples with the features appearing in the same order as

the .names file.

To apply the GA, the examples in the dataset need to be converted to binary strings. The discrete

features were converted to 1-of-n representation by adding a new boolean feature for each

distinct value of the discrete feature. The thermometer representation was used for continuous

features. The number digits can be specified by the user. The DataReader splits the difference

between the upper bound and the lower bound as specified in the .names file into equal intervals.

A new boolean feature is added after comparing the continuous value against the intervals.

Algorithm Definition

The Genetic Algorithm works by searching the hypotheses space for the best (fittest) hypothesis

as specified by the fitness function. The basic algorithm follows the pseudo code given in Table

9.1 of Machine Learning by Tom Mitchell. The Multi-Hypothesis variant follows pseudo the

code given below.

GeneticLearner(Fitness, Fitness_threshold, p, r, m)

Fitness: A function that assigns an evaluation score, given a hypothesis.
Fitness_threshold: A threshold specifying the termination criterion.
p: The number of hypotheses to be included in the population.
r: The fraction of the population to be replaced by Crossover at each step.

4

m: The mutation rate.
n: Number of best hypotheses to be learned
H: Array of n best hypotheses

Initialize population: P  Generate p hypotheses at random
Evaluate: For each h in P, compute Fitness(h)
Add: maxh Fitness(h) to H
While [H.best] < Fitness_threshold do

Create a new generation, Ps:

1. Select: Probabilistically select (1 - r)p members of P to add to Ps. The probability Pr(hi)
of selecting hypothesis hi from P is given by

𝑃𝑃𝑃𝑃(ℎ𝑖𝑖) =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(ℎ𝑖𝑖)

∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(ℎ𝑗𝑗)𝑝𝑝
𝑗𝑗=1

2. Crossover: Probabilistically select pairs of hypotheses from P, according to Pr(hi) given

above. For each pair, < hl, h2 >, produce two offspring by applying the Crossover
operator. Add all offspring to P

3. Mutate: Choose m percent of the members of P, with uniform probability. For each,
invert one randomly selected bit in its representation.

4. Update: P  Ps
5. Evaluate: for each h in P, compute Fitness(h)
6. Add: maxh Fitness(h) to H if H.worst < maxh Fitness(h)

Return the set of hypotheses H that has the highest fitness

The Fitness is evaluated by using

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (ℎ) = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(ℎ) − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

|ℎ|
|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|

�

2

A hypothesis h is considered correct for a given training sample x as follows: After a bitwise and

operation, (h and x = y) if a disjunction (or) within the features and a conjunction (and) of the

features match the actual label for the sample.

Example: Assume the following features with the possible values and binary encoding

Color: red, green, blue
Encoding: 100, 010, 001

Size: small med. large
Encoding: 100, 010, 001

5

Samples:
S1: 010 100 (green, small) label: 1
S2: 100 100 (red, small) label: 1

Hypotheses:
H1: 110 100 (red or green and small)
H2: 010 101 (green and small)

If we evaluate S1 using H1

 010 100 and 110 100 = 110 100 = [1 v 1 v 0]  [1 v 0 v 0] = predict 1
If we evaluate S2 using H1

100 100 and 110 100 = 110 100 = [1 v 1 v 0]  [1 v 0 v 0] = predict 1
So H1 would be correct for both S1 and S2

Similarly, if we evaluate S1 and S2 using H2 we get

010 100 and 010 100 = 010 100 = [0 v 1 v 0]  [1 v 0 v 0] = predict 1
100 100 and 010 100 = 000 100 = [0 v 0 v 0]  [1 v 0 v 0] = predict 0

So H2 would only be correct for S1.

Thus, H1 would get a higher fitness score; also we enforce a penalty for having zeroes to avoid

over fitting. Note that a more general hypothesis contains more ones, and zeroes make the

hypothesis less general.
For classifying the test examples a procedure similar to the above example is used. For the

variant version of multiple hypotheses all the learned hypotheses are combined together using a

bitwise ‘or’ to create a more general hypotheses, the same procedure described above is used for

classification.

EXPERIMENTAL EVALUATION

Methodology

The performance of the Genetic Algorithm is evaluated by the test set accuracy. The primary

dataset used for this experiment is the fuel consumption of the 2010 model year motor vehicles

obtained from http://www.fueleconomy.gov. The Algorithm’s task is to learn to classify if a

given car is a guzzler (a vehicle is classified as a guzzler if the fuel consumptions is greater than

18 miles per gallon). The features of the dataset include manufacture country, engine

displacement, number of cylinders, number of gears, transmission type, drive type, vehicle

classification, air aspiration method and variable valve timing. This dataset contains real data and

has a very practical application as the learned concept can reflect the contribution of the features

to the fuel consumption of a vehicle. The Weather dataset by Andrew W Bender and the Internet

http://www.fueleconomy.gov/�

6

usage dataset by Natasha Eilbert obtained from the CS760 shared data repository were also used

to evaluate the Genetic Algorithm.

The data is formatted as a .names file and a .data file as described in the task definition. For cross

validation purposes, samples were randomly picked from the dataset to create 10 train/ test folds,

such that the test set consists of 10 percent of the data and the train set consists of 90 percent of

the data. The datasets used for the experiment contain roughly 1000 samples. By using the same

train/test folds on the other Machine Learning Algorithms and comparing the test set accuracies

using a paired t-test we are able to determine if the GAs are statistically significantly different

from the other algorithms.

It is difficult to draw any assumptions on how the Genetic Algorithm would perform compared

to other Machine Learning algorithms. The multi-hypotheses Genetic Algorithm is expected to

perform better than the basic version, since it learns a set of hypothesis which are best from all

the generations. To draw a human analogy it would be like having Leonardo da Vinci, Isaac

Newton, and Albert Einstein on the team versus having only one of them in a given team. To

compare the multi-hypotheses Genetic Algorithm (GA_MH) and basic single-hypothesis Genetic

Algorithm (GA_SH) ROC curves and Recall-Precision curves are used. The ROC curves display

the False Positive Rate (FPR) verses True Positive Rate (TPR) and the Recall-Precision curve

displays the Recall versus the Precision.

The performance of the Genetic Algorithm can be evaluated based on the values of the

parameters such as Fitness threshold, p: population, r: fraction of replaced by crossover, m:

mutation rate, n: number of hypotheses. Nevertheless a complete evaluation of the dependence

on the parameters was not carried out due to time constraints. The following (arbitrary) settings

were used for the experiments.

Fitness_threshold:45/50/ 55
p: 70
r: 0.5
m:0.1
n: 5

A tuning set which is 20 percent of the training set was randomly selected to evaluate the fitness

of the candidate hypotheses.

7

Results
The First Table shows the accuracies of the ten test folds from the Cars dataset. The comparison

includes Genetic Algorithm with multi-hypotheses (GA_MH), Genetic Algorithm with single-

hypothesis (GA_SH) , Artificial Neural Net-Perceptron (ANN) and Decision Tree (ID3).

Fold# GA_MH GA_SH ANN ID3
1 0.8557692308 0.7692307692 0.9230769230 0.9519230769
2 0.7826923077 0.7403846154 0.8942307690 0.8653846154
3 0.8365384615 0.7692307692 0.9230769230 0.9038461538
4 0.7563972940 0.7403846154 0.9423076920 0.8942307692
5 0.7403846154 0.7211538462 0.9038461540 0.9423076923
6 0.7619230769 0.6634615385 0.9134615380 0.9134615385
7 0.7715384615 0.6538461538 0.8653846150 0.9423076923
8 0.6923076923 0.6730769231 0.9615384620 0.9326923077
9 0.7788461538 0.7561538462 0.8269230770 0.8942307692

10 0.7369230549 0.6278264033 0.9326923080 0.9230769231
mean 0.7713320349 0.6954749480 0.9086538461 0.9163461538
st. Dev 0.0474519885 0.0608034154 0.0390578770 0.0272152945
p-Value(MH) 0.0015873178 0.0001325595 0.0000177112
p-Value(SH) 0.0015873178 0.0000006564 0.0000026870

The Last two rows show the two tailed p-values of Multi Hypotheses and Single Hypothesis

Genetic algorithms in comparison to each other as well as the Perceptron and the Decision Tree.

The Following bar chart shows the test set accuracies by the fold for algorithms mentioned

above.

It is evident from the p-values and the bar chart that the Multi Hypotheses GA is statistically

significantly better than the Single Hypothesis GA. It is also evident that the Perceptron and the

Decision Tree are both statistically significantly better than the Multi Hypotheses GA and the

Single Hypothesis GA.

0.500
0.550
0.600
0.650
0.700
0.750
0.800
0.850
0.900
0.950
1.000

1 2 3 4 5 6 7 8 9 10

Te
st

 s
et

 a
cc

ur
ac

y

Fold

Test set accuracy by fold

GA_MH

GA_SH

ANN

ID3

8

The ROC curve given below shows the FPR versus TPR of the Multi Hypotheses GA and the

Single Hypothesis GA.

It can be observed from the ROC curve that the Multi Hypotheses GA has higher TPR and lower

FPR than the Single Hypothesis GA.

The Recall - Precision curve below shows the Recall versus Precision of the Multi Hypotheses

GA and the Single Hypothesis GA.

It can be observed from the Recall - Precision curve that the Multi Hypotheses GA has higher

Precision and less recall than the Single Hypothesis GA.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Tr
ue

 P
os

it
iv

e
Ra

te

False Positive Rate

ROC Curve

GA_MH GA_SH Poly. (GA_MH) Poly. (GA_SH)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Pr
ec

is
io

n

Recall

Recall- Precision Curve

GA_MH GA_SH Poly. (GA_MH) Poly. (GA_SH)

9

The Next Table shows the test set accuracies of the Multi Hypotheses GA and the Single

Hypothesis GA on different data sets. The cars data set contains car models and the classification

task is the fuel economy, the weather dataset contains atmospheric data and the classification

task is the temperature, and the internet dataset contains demographics of people and the

classification task is internet usage.

 Cars Weather Internet
Fold# GA_MH GA_SH GA_MH GA_SH GA_MH GA_SH

1 0.8558 0.7692 0.8000 0.6900 0.7402 1.0000
2 0.7827 0.7404 0.7200 0.6500 0.4724 1.0000
3 0.8365 0.7692 0.7400 0.7500 0.7953 0.9764
4 0.7564 0.7404 0.8200 0.7700 0.7559 1.0000
5 0.7404 0.7212 0.7700 0.7600 0.4236 0.9921
6 0.7619 0.6635 0.7600 0.8500 0.8031 1.0000
7 0.7715 0.6538 0.8200 0.6400 0.8504 1.0000
8 0.6923 0.6731 0.8900 0.7700 0.4488 1.0000
9 0.7788 0.5962 0.8300 0.6700 0.7638 1.0000

10 0.7369 0.6278 0.8700 0.7700 0.7874 1.0000
mean 0.7713 0.6955 0.8020 0.7320 0.6841 0.9969
st Dev 0.0475 0.0608 0.0549 0.0668 0.1658 0.0076

The bar chart below show the averages accuracies from the different data sets

It can be observed from the bar chart and the table that the Single Hypothesis GA has almost 100

percent accuracy on the internet dataset. The Multi Hypotheses GA has better average accuracy

on the on the cars data set and the weather data set.

Discussion

The results of the paired t-test, ROC curve and the Recall - Precision curve show that the Multi

Hypotheses GA performs better than the Single Hypothesis GA. This validates our initial

assumption that a more general model learned by multiple hypotheses yields better results than

learning a single hypothesis.

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

MH[car] SH[car] MH[weath] SH[weath] MH[inet] SH[inet]

A
ve

ra
ge

 te
st

se
t a

cc
ur

ac
y

Alogorithm[Dataset]

Performance on different Datasets

10

It is also evident that the Perceptron and the Decision Tree algorithms performed better than both

of the GA variations. This could be due to lowering the fitness threshold in order to reduce the

running time of the GA. Because of the random nature of the GA it is naturally expected to take

a longer time to find good hypotheses; so by attempting to reduce the running time we also

reduce the effectiveness of the GA.

The results from applying the GA to different data set show that the Single Hypothesis GA

clearly archives near perfect accuracy on the internet dataset this could be because the data set

has one hypothesis that classifies the dataset perfectly and the Single Hypothesis GA was able to

find it. The above dataset can be considered an anomaly. The Multi Hypotheses GA has better

average accuracy on the on the cars data set and the weather data set.

RELATED WORK

The GABIL system described by DeJong et al. (1993) uses a GA to learn boolean concepts

represented by a disjunctive set of propositional rules which is very similar to the Single

Hypothesis GA implemented in this paper. The Multi Hypotheses GA builds up on this idea by

saving the best hypotheses from all the generations resulting in better performance as observed

from the comparison results.

 FUTURE WORK

The major shortcoming of the GA is that it performed poorly compared to the other Machine

Learning algorithms such as Perceptrons and Decision Trees. It is reasonable to believe that the

lower accuracy of the GA is due to constraining the running time and not tuning the algorithm

parameters properly. So it would be worthwhile to revisit the GAs with more time at hand to

allow the GA sufficient time and well tuned parameters in the future to re-evaluate the

performance.

CONCLUSION

We can conclude that the Multi Hypotheses GA performs better than the Single Hypothesis GA,

so it is encouraging to continue working on Multi Hypotheses GAs. From the performance on

different datasets we can conclude that GAs performs generally well on other datasets. It is also

clear that GAs need sufficient time to provide good results and further testing is necessary to

verify whether the GAs can perform as well as the other Machine Learning algorithms.

11

REFERENCES
DeJong, K. A., Spears, W. M., & Gordon, D. F. (1993). Using genetic algorithms for concept
learning. Washington: Naval Research Laboratory.

Goldberg, G. (1989). Genetic algorithms in search, optimization, and machine learning. MA:
Addison-Wesley.

Mitchell, T. M. (1997). Machine Learning. Portland: McGraw-Hill.

	Sajika Gallege
	Results

	REFERENCES

