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ABSTRACT 

This paper describes the implementation of a Genetic Algorithm (GA) and a variant of learning 

multiple hypotheses. The GA is applied to a binary classification of a labeled dataset to evaluate 

the algorithm’s performance in a supervised learning environment. The details include the basic 

GA implementation and the modifications done to create a variant of learning multiple 

hypotheses. The Paper also includes the results and a comparison to other Machine Learning 

Algorithms such as Decision Trees and Perceptrons. The discussion includes advantages such as 

the ability to parallelize the hypotheses search and drawbacks such as the time taken to select 

good hypotheses as well as propose modifications to enhance the algorithm. 
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INTRODUCTION 

Genetic Algorithms loosely simulated biological evolution due to natural selection. Concepts 

such as reproduction, carrying on good traits to the next generation, and survival of the fittest are 

simulated in genetic algorithms.  The population is represented by a set of hypotheses; in this 

algorithm’s context a hypothesis is a bit string.  Some hypotheses survive and pass on to the next 

generation with a probability based on their fitness, whereas some hypotheses crossover and 

produce siblings which join the new generation. The specific terms and the implementation are 

detailed in the next sections of the paper. In essence, GAs work by parallelizing the hypotheses 

space search.  This is an interesting area to research because of the similarity to evolution which 

has proved successful in the natural world. This will also allow a comparison between other 

Machine Learning Algorithms analyzed over the semester.  

In this implementation the GAs are used to learn and classify a labeled data set with fixed length 

features the label belonging to two classes. Two variants of the GA are implemented and tested 

in this project. The first version learns the single best hypothesis that meets a certain fitness 

threshold and applies the hypothesis to classify the test examples. The second version learns a set 

of hypotheses which are best hypotheses from all the generations and applies it for classification.  

The results from the GA are then compared to Decision Trees and Perceptrons to determine the 

performance of the algorithm. 

One of the main drawbacks of Gas as discovered from the experiments is the amount of time 

taken to find a good hypothesis due to the randomness of the search. Limiting the time frame 

results in producing a non optimal hypothesis; thus the performance of the GA’s seems low 

compared to the other algorithms.  The multi hypotheses variant seems to have better 

performance than the single hypothesis algorithm due to better generalization.  

 

PROBLEM DEFINITION AND ALGORITHM 

Task Definition 

The goal of the Genetic Algorithm is to learn to classify a dataset with fixed length features. 

More precisely the learning happens on a labeled set of training examples. Once the learning is 

complete, the algorithm is expected to be able to classify future (unobserved/ test) examples of a 
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similar format. The accuracy of the algorithm can be calculated by comparing the number of 

correctly classified test examples.  

The input for the GA is provided in the form of a .names file that contains the data definitions 

and a .data file which contains the data samples.  The .names file follows the format for each 

feature: 

featureName  featureType  possibleValues 
where 

• featureName is a token (i.e. a character string without quotes and internal spaces) 
• featureType is either discrete or continuous (for the output category, use output as the 

feature type) 
• possibleValues is a comma-separated list of tokens specifying (a) the possible values for 

a discrete-valued feature or (b) the minimum and maximum values for a continuous-
valued feature 

The .data is a space delimited list of examples with the features appearing in the same order as 

the .names file.  

To apply the GA, the examples in the dataset need to be converted to binary strings. The discrete 

features were converted to 1-of-n representation by adding a new boolean feature for each 

distinct value of the discrete feature. The thermometer representation was used for continuous 

features. The number digits can be specified by the user. The DataReader splits the difference 

between the upper bound and the lower bound as specified in the .names file into equal intervals. 

A new boolean feature is added after comparing the continuous value against the intervals.  

Algorithm Definition 

The Genetic Algorithm works by searching the hypotheses space for the best (fittest) hypothesis 

as specified by the fitness function.  The basic algorithm follows the pseudo code given in Table 

9.1 of Machine Learning by Tom Mitchell.  The Multi-Hypothesis variant follows pseudo the 

code given below.  

GeneticLearner(Fitness, Fitness_threshold, p, r, m) 

Fitness: A function that assigns an evaluation score, given a hypothesis. 
Fitness_threshold: A threshold specifying the termination criterion. 
p: The number of hypotheses to be included in the population. 
r: The fraction of the population to be replaced by Crossover at each step. 
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m: The mutation rate. 
n: Number of best hypotheses to be learned 
H: Array of n best hypotheses 

Initialize population: P   Generate p hypotheses at random 
Evaluate: For each h in P, compute Fitness(h) 
Add:  maxh Fitness(h) to H 
While [H.best] < Fitness_threshold do 
 
Create a new generation, Ps: 

1. Select: Probabilistically select (1 - r)p members of P to add to Ps. The probability Pr(hi) 
of selecting hypothesis hi from P is given by 

𝑃𝑃𝑃𝑃(ℎ𝑖𝑖) =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(ℎ𝑖𝑖)

∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(ℎ𝑗𝑗 )𝑝𝑝
𝑗𝑗=1

 

 
2. Crossover: Probabilistically select pairs of hypotheses from P, according to Pr(hi) given 

above. For each pair, < hl, h2 >, produce two offspring by applying the Crossover 
operator. Add all offspring to P 

3. Mutate: Choose m percent of the members of P, with uniform probability. For each, 
invert one randomly selected bit in its representation. 

4. Update: P  Ps 
5. Evaluate: for each h in P, compute Fitness(h) 
6. Add: maxh Fitness(h) to H if H.worst < maxh Fitness(h) 

 
Return the set of hypotheses H that has the highest fitness 

 

The Fitness is evaluated by using  

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (ℎ) = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(ℎ) − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

|ℎ|
|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|

�
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A hypothesis h is considered correct for a given training sample x as follows: After a bitwise and 

operation, (h and x = y) if a disjunction (or) within the features and a conjunction (and) of the 

features match the actual label for the sample.    

Example:  Assume the following features with the possible values and binary encoding 

Color:   red, green, blue 
Encoding:  100, 010,  001 
 

Size:   small med. large  
Encoding:  100, 010,  001 
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Samples: 
S1:  010 100 (green, small) label: 1 
S2:  100 100 (red, small)   label: 1 
 
Hypotheses:  
H1: 110 100  (red or green and small) 
H2: 010 101  (green and small) 
 
If we evaluate S1 using H1 

 010 100 and 110 100 = 110 100 = [1 v 1 v 0 ]  [1 v 0 v 0] = predict 1 
If we evaluate S2 using H1 

100 100 and 110 100 = 110 100 = [1 v 1 v 0 ]  [1 v 0 v 0] = predict 1 
So H1 would be correct for both S1 and S2 
 
Similarly, if we evaluate S1 and S2 using H2 we get  

010 100 and 010 100 = 010 100 = [0 v 1 v 0 ]  [1 v 0 v 0] = predict 1 
100 100 and 010 100 = 000 100 = [0 v 0 v 0 ]  [1 v 0 v 0] = predict 0 

So H2 would only be correct for S1. 
 

Thus, H1 would get a higher fitness score; also we enforce a penalty for having zeroes to avoid 

over fitting. Note that a more general hypothesis contains more ones, and zeroes make the 

hypothesis less general.  
For classifying the test examples a procedure similar to the above example is used. For the 

variant version of multiple hypotheses all the learned hypotheses are combined together using a 

bitwise ‘or’ to create a more general hypotheses, the same procedure described above is used for 

classification. 

 

EXPERIMENTAL EVALUATION 

Methodology 

The performance of the Genetic Algorithm is evaluated by the test set accuracy.  The primary 

dataset used for this experiment is the fuel consumption of the 2010 model year motor vehicles 

obtained from http://www.fueleconomy.gov. The Algorithm’s task is to learn to classify if a 

given car is a guzzler (a vehicle is classified as a guzzler if the fuel consumptions is greater than 

18 miles per gallon). The features of the dataset include manufacture country, engine 

displacement, number of cylinders, number of gears, transmission type, drive type, vehicle 

classification, air aspiration method and variable valve timing. This dataset contains real data and 

has a very practical application as the learned concept can reflect the contribution of the features 

to the fuel consumption of a vehicle.  The Weather dataset by Andrew W Bender and the Internet 

http://www.fueleconomy.gov/�
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usage dataset by Natasha Eilbert obtained from the CS760 shared data repository were also used 

to evaluate the Genetic Algorithm. 

The data is formatted as a .names file and a .data file as described in the task definition. For cross 

validation purposes, samples were randomly picked from the dataset to create 10 train/ test folds, 

such that the test set consists of 10 percent of the data and the train set consists of 90 percent of 

the data. The datasets used for the experiment contain roughly 1000 samples. By using the same 

train/test folds on the other Machine Learning Algorithms and comparing the test set accuracies 

using a paired t-test we are able to determine if the GAs are statistically significantly different 

from the other algorithms.  

It is difficult to draw any assumptions on how the Genetic Algorithm would perform compared 

to other Machine Learning algorithms. The multi-hypotheses Genetic Algorithm is expected to 

perform better than the basic version, since it learns a set of hypothesis which are best from all 

the generations. To draw a human analogy it would be like having Leonardo da Vinci, Isaac 

Newton, and Albert Einstein on the team versus having only one of them in a given team. To 

compare the multi-hypotheses Genetic Algorithm (GA_MH) and basic single-hypothesis Genetic 

Algorithm (GA_SH) ROC curves and Recall-Precision curves are used. The ROC curves display 

the False Positive Rate (FPR) verses True Positive Rate (TPR) and the Recall-Precision curve 

displays the Recall versus the Precision. 

The performance of the Genetic Algorithm can be evaluated based on the values of the 

parameters such as Fitness threshold, p: population, r: fraction of replaced by crossover, m:  

mutation rate, n: number of hypotheses. Nevertheless a complete evaluation of the dependence 

on the parameters was not carried out due to time constraints.  The following (arbitrary) settings 

were used for the experiments. 

Fitness_threshold:45/50/ 55 
p: 70 
r: 0.5 
m:0.1 
n: 5 

A tuning set which is 20 percent of the training set was randomly selected to evaluate the fitness 

of the candidate hypotheses. 
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Results 
The First Table shows the accuracies of the ten test folds from the Cars dataset. The comparison 

includes Genetic Algorithm with multi-hypotheses (GA_MH), Genetic Algorithm with single- 

hypothesis (GA_SH) , Artificial Neural Net-Perceptron (ANN) and Decision Tree (ID3). 

Fold# GA_MH GA_SH ANN ID3 
1 0.8557692308 0.7692307692 0.9230769230 0.9519230769 
2 0.7826923077 0.7403846154 0.8942307690 0.8653846154 
3 0.8365384615 0.7692307692 0.9230769230 0.9038461538 
4 0.7563972940 0.7403846154 0.9423076920 0.8942307692 
5 0.7403846154 0.7211538462 0.9038461540 0.9423076923 
6 0.7619230769 0.6634615385 0.9134615380 0.9134615385 
7 0.7715384615 0.6538461538 0.8653846150 0.9423076923 
8 0.6923076923 0.6730769231 0.9615384620 0.9326923077 
9 0.7788461538 0.7561538462 0.8269230770 0.8942307692 

10 0.7369230549 0.6278264033 0.9326923080 0.9230769231 
mean 0.7713320349 0.6954749480 0.9086538461 0.9163461538 
st. Dev 0.0474519885 0.0608034154 0.0390578770 0.0272152945 
p-Value(MH)   0.0015873178 0.0001325595 0.0000177112 
p-Value(SH) 0.0015873178   0.0000006564 0.0000026870 

 

The Last two rows show the two tailed p-values of Multi Hypotheses and Single Hypothesis 

Genetic algorithms in comparison to each other as well as the Perceptron and the Decision Tree.  

The Following bar chart shows the test set accuracies by the fold for algorithms mentioned 

above. 

 

It is evident from the p-values and the bar chart that the Multi Hypotheses GA is statistically 

significantly better than the Single Hypothesis GA. It is also evident that the Perceptron and the 

Decision Tree are both statistically significantly better than the Multi Hypotheses GA and the 

Single Hypothesis GA. 
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The ROC curve given below shows the FPR versus TPR of the Multi Hypotheses GA and the 

Single Hypothesis GA. 

 

It can be observed from the ROC curve that the Multi Hypotheses GA has higher TPR and lower 

FPR than the Single Hypothesis GA.  

The Recall - Precision curve below shows the Recall versus Precision of the Multi Hypotheses 

GA and the Single Hypothesis GA. 

 

It can be observed from the Recall - Precision curve that the Multi Hypotheses GA has higher 

Precision and less recall than the Single Hypothesis GA. 
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The Next Table shows the test set accuracies of the Multi Hypotheses GA and the Single 

Hypothesis GA on different data sets. The cars data set contains car models and the classification 

task is the fuel economy, the weather dataset contains atmospheric data and the classification 

task is the temperature, and the internet dataset contains demographics of people and the 

classification task is internet usage. 

  Cars Weather Internet 
Fold# GA_MH GA_SH GA_MH GA_SH GA_MH GA_SH 

1 0.8558 0.7692 0.8000 0.6900 0.7402 1.0000 
2 0.7827 0.7404 0.7200 0.6500 0.4724 1.0000 
3 0.8365 0.7692 0.7400 0.7500 0.7953 0.9764 
4 0.7564 0.7404 0.8200 0.7700 0.7559 1.0000 
5 0.7404 0.7212 0.7700 0.7600 0.4236 0.9921 
6 0.7619 0.6635 0.7600 0.8500 0.8031 1.0000 
7 0.7715 0.6538 0.8200 0.6400 0.8504 1.0000 
8 0.6923 0.6731 0.8900 0.7700 0.4488 1.0000 
9 0.7788 0.5962 0.8300 0.6700 0.7638 1.0000 

10 0.7369 0.6278 0.8700 0.7700 0.7874 1.0000 
mean 0.7713 0.6955 0.8020 0.7320 0.6841 0.9969 
st Dev 0.0475 0.0608 0.0549 0.0668 0.1658 0.0076 

 

The bar chart below show the averages accuracies from the different data sets 

 

It can be observed from the bar chart and the table that the Single Hypothesis GA has almost 100 

percent accuracy on the internet dataset. The Multi Hypotheses GA has better average accuracy 

on the on the cars data set and the weather data set. 

Discussion 

The results of the paired t-test, ROC curve and the Recall - Precision curve show that the Multi 

Hypotheses GA performs better than the Single Hypothesis GA. This validates our initial 

assumption that a more general model learned by multiple hypotheses yields better results than 

learning a single hypothesis.  
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It is also evident that the Perceptron and the Decision Tree algorithms performed better than both 

of the GA variations. This could be due to lowering the fitness threshold in order to reduce the 

running time of the GA. Because of the random nature of the GA it is naturally expected to take 

a longer time to find good hypotheses; so by attempting to reduce the running time we also 

reduce the effectiveness of the GA.  

The results from applying the GA to different data set show that the Single Hypothesis GA 

clearly archives near perfect accuracy on the internet dataset this could be because the data set 

has one hypothesis that classifies the dataset perfectly and the Single Hypothesis GA was able to 

find it. The above dataset can be considered an anomaly. The Multi Hypotheses GA has better 

average accuracy on the on the cars data set and the weather data set.  

RELATED WORK 

The GABIL system described by DeJong et al. (1993) uses a GA to learn boolean concepts 

represented by a disjunctive set of propositional rules which is very similar to the Single 

Hypothesis GA implemented in this paper. The Multi Hypotheses GA builds up on this idea by 

saving the best hypotheses from all the generations resulting in better performance as observed 

from the comparison results. 

 FUTURE WORK 

The major shortcoming of the GA is that it performed poorly compared to the other Machine 

Learning algorithms such as Perceptrons and Decision Trees. It is reasonable to believe that the 

lower accuracy of the GA is due to constraining the running time and not tuning the algorithm 

parameters properly. So it would be worthwhile to revisit the GAs with more time at hand to 

allow the GA sufficient time and well tuned parameters in the future to re-evaluate the 

performance. 
 

CONCLUSION 

We can conclude that the Multi Hypotheses GA performs better than the Single Hypothesis GA, 

so it is encouraging to continue working on Multi Hypotheses GAs.  From the performance on 

different datasets we can conclude that GAs performs generally well on other datasets. It is also 

clear that GAs need sufficient time to provide good results and further testing is necessary to 

verify whether the GAs can perform as well as the other Machine Learning algorithms.   
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