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ABSTRACT

Recent years have seen a tremendous growth in the volume of video
traffic in mobile settings. In this paper, we present the design of a
mobile video-centric proxy cache, named iProxy, that offers im-
proved performance in terms of both hit rates and streaming qual-
ity. Our thesis in designing iProxy is that we need to elevate the
traditional view of caching from “data” to “information” in order
to optimally meet the stringent requirements of video streaming in
mobile settings. iProxy relies on recent advances on information-

bound references (IBRs) to collapse multiple related cache entries
into a single one, improving hitrate while lowering storage costs.
iProxy incorporates a novel dynamic linear rate adaptation scheme
to ensure high stream quality in face of channel diversity and de-
vice heterogeneity. Our evaluation of iProxy using realistic traffic
traces shows that it can improve hitrate, but we need to use novel
information-aware replacement policies for optimal performance.
We show that our linear encoder can adapt well to changes in band-
width, and yield better bit rates, lower buffering and lower start up
delays than state-of-the-art schemes.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design
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Wireless Networks, Caching, Video, Quality of Experience

1. INTRODUCTION
This paper is motivated by two key trends: (1) video-on-demand

traffic in mobile settings is seeing unprecedented growth, doubling
in volume every few months [2]. Crucially, this is beginning to
strain cellular network infrastructures [25]. (2) As user expecta-
tions of video quality grow, it is becoming increasingly important
to improve the users’ quality of experience (QoE). This is central
to sustaining subscription/advertisement based revenue generation
models which are the drivers behind video growth [2].
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In this paper, we focus on how cellular network providers can
enhance their infrastructure to meet the goal of ensuring good end
user QoE even in the face of growing traffic volumes. One option is
to upgrade link capacities everywhere. However, this is expensive
and can only provide a temporary solution. Another option is to
rely on data offloading techniques, but this may not be universally
applicable (e.g., WiFi offload may require open APs).

This paper explores a third approach: in-network caching. Caches
are inexpensive, and they can be easily retrofit into an existing cel-
lular backbone. Crucially, while the above approaches improve ef-
fective capacity, caches also improve latency which is important for
good QoE.

While caching in networks is well-studied, we argue that simply
adapting traditional Web cache designs to mobile video is not suf-
ficient. First, in contrast with Web content, video content is often
available in multiple different encodings and formats [43]. Not ac-
counting for these differences leads to sub-optimal cache designs
that suffer from poor hit rates (up to 20% lower compared with
ideal) or need excessive storage (up to 2.4X more). Second, be-
cause of the centrality of video QoE, special measures must be
adopted to orchestrate the transmission of cache contents to opti-
mize various QoE metrics. In contrast, traditional caches can sim-
ply transmit bytes to end users. Our work presents the design, im-
plementation, and evaluation of techniques that address both issues.

Cache design: We leverage the fact that the same video is often
available in many different resolutions or formats and from many
different content providers. This is particularly true for popular
video; indeed, a recent study [43] estimated that nearly 30% of the
video search results returned for 25 popular queries at various video
content providers were duplicates, i.e., nearly identical to the most
popular version of the video, differing only in resolution, encoding
and/or the content provider hosting the video.

This insight is embodied in iProxy, our mobile video-centric
cache. iProxy derives the information-bound reference (IBR) for
each video, which is a collection of summaries of the frequency
domain representation of the video data in multiple chunks of the
video [17, 33]. We then bind videos that share “identical” IBRs
into a single cache entry, thereby saving storage. iProxy iden-
tifies matches by comparing requested URLs against URLs that
are known to have the same IBR, as opposed to looking for URL
matches, or matches in content SHA-1 hashes. Because the IBR
labels the information content in a video, agnostic of irrelevant de-
tails such as the source domain or host providing the content, the
format of the content, the presentation, bit rate etc, iProxy enables
caching information as opposed to data.

We argue that novel information-aware cache replacement schemes
must be designed to optimize the hit rate of iProxy. We develop
modifications to classical least-recently used (LRU) and least-frequently



used (LFU) schemes that significantly outperform even state-of-
the-art information-agnostic schemes.

Optimizing QoE: End-user QoE is reflected in engagement, i.e.,
fraction of the total video time that a user watches, and abandon-
ment, i.e., whether a user quits a video before it starts [32]. Recent
studies [32, 24] showed that a viewer who experiences buffering
equal to 1% of stream duration plays 5% less of the video com-
pared with a user with no buffering, and higher average bit rate
correlated with higher video play times [24]. Furthermore, users
start to abandon a video if it takes more than 2s to start up, and
even 1s additional start up delay increases abandonment rate by
6% [32].

We argue that iProxy’s information-aware design, coupled with
the fact that it is deployed by the cellular provider, offers natural av-
enues for optimizing the three key quality metrics – buffering, bit
rate, and start up delay – thereby improving end-user QoE. With
each iProxy entry, we store the raw frequency domain data corre-
sponding to the highest quality video observed thus far across all
URLs mapping to the entry, which is needed to compute the IBR
for the video any way. We then design a novel linear bit rate adapter
that dynamically encodes videos directly from the raw data.

Our scheme first derives client-side constraints by parsing HTTP
headers to determine what resolutions and encodings are accept-
able; determining these is key to ensuring low start up times (§5).
Then our scheme uses information from the mobile device’s phys-
ical context – which is available to the cellular provider – to de-
termine the baseline bit rate to use, and low-level TCP feedback to
estimate network conditions and adapt the bit rate closely to fine-
grained channel variations. Our bit rate adapter keeps the average
bit rate as high as possible and minimizes bit rate switches, while
also controlling re-buffering events. Also, by virtue of being close
to clients, iProxy caches offer low RTTs, which translates to higher
bit rates, compared with transfers across the network.

We implement a prototype of iProxy using a quad-core Linux
desktop. We evaluate it using real traffic traces of handheld video
traffic collected over the wireless network of our university over a
three-day period and a public dataset of popular video queries at
top content providers [6].

Our evaluation shows the following: compared with a naive con-
ventional proxy, iProxy offers a 20% better hit rate for our univer-
sity trace (60% vs 72%), and improves hit rate by a factor of 1.6X
(28% vs 44%) for the public video dataset, compared with a con-
ventional proxy. For our university traces, we find that our new
information-aware cache replacement policies offer 15% better rel-
ative hit rates than even the best information-agnostic cache re-
placement strategies. We find that using an information-aware pol-
icy is crucial to realizing the benefits of iProxy, and that iProxy uses
2.4X less storage than conventional designs. We present an analy-
sis of where to deploy iProxy in a cellular providers’ network. We
also conduct a thorough evaluation of iProxy’s dynamic encoding
and adaptation schemes using an Android smartphone. We show
that iProxy improves start-up times by up to 13s by serving a for-
mat that is optimally suited for the phone. Some videos can simply
not be played on the phone using traditional techniques, but they
play almost instantly when iProxy is used. Testing against a vari-
ety of scenarios where bandwidth varies dynamically, we also find
that, compared with state-of-the-art streaming techniques (specifi-
cally, MPEG DASH), iProxy’s linear bit rate adaptation improves
the average bit rate for a given stream by 16%, and virtually elimi-
nates buffering.

To summarize, the contributions of this paper are as follows:

• We present the design and implementation of iProxy, a cache
for mobile video that optimizes end-user QoE while alleviat-
ing load on cellular network links.

• A novel design feature of iProxy is that multiple videos con-
taining the same underlying information but differing in for-
mat, bit rate or source are stored using a single iProxy cache
entry: the index for the entry is an information-bound ref-
erence (IBR), and the value is the list of URLs that share
the IBR as well as the common underlying frequency do-
main representation. We show that leveraging IBRs in this
fashion can result in 1.2 to 1.6X better hit rates, and up to
2.4X lower storage compared with URL- or content-based
approaches. But achieving these results requires careful de-
sign of information-aware cache management schemes.

• The second unique feature of iProxy, a novel bit rate adap-
tation scheme, builds off of the above cache design: it de-
termines the format ideally suited for a device and further
uses TCP layer feedback to encode the video directly from
the stored frequency domain representation at a dynamically
selected bit rate that matches network conditions as closely
as possible. This design feature helps improve video start
times (by up to 13s), buffering rates and average bit rates (by
16%), thereby improving end-user QoE.

2. MOTIVATION AND BACKGROUND
A recent study [43] analyzed similarity among video results cor-

responding with 25 popular queries from YouTube, Google Video,
and Yahoo! Video [6] and found that on average 27% of the videos
are “redundant”, i.e., nearly identical to the most popular version of
a video in the search results. Simply using URLs will not identify
these videos as being redundant because each video has a differ-
ent URL. In addition, we applied data-centric approaches [36] that
identify similarities based on matching SHA-1 hashes of content
chunks, but found that these approaches could identify less than a
third of the redundant videos; these techniques completely missed
out on videos that had minor differences due to resolution, encod-
ing, or quality. Our analysis of requests to video content made from
mobile devices traced in our campus wireless network also revealed
similar qualitative results (some of these results can be found in §5).

iProxy leverages these observations. It is built on the fact that
users may request the same video in different formats or encodings,
potentially served by different content providers. In contrast with
prior schemes, iProxy’s caching scheme can identify redundancy
in the face of such access to video because its use of IBRs, which
we explain later in this next section, helps it match information
contained in a video without being tied to the URL (i.e., the location
where it is hosted) and specifics such as encoding or resolution.
While we discuss iProxy in the context of caching, we argue in
§4.3 that its design is also applicable to prefetching.

2.1 Design Requirements
iProxy must meet the following requirements:

(1) Efficient caching: While IBRs help identify matches across
multiple versions of a video, we must still understand how to en-
sure cost-effectiveness of caching, which is reflected in bandwidth
savings per unit cost. As the diversity in video formats and sources
grows, it is likely that naive approaches that store all redundant ver-
sions of a video in every possible format and from every possible
source may use a significant amount of storage and, as a result, be
quite expensive. We seek a design whose storage cost is signifi-
cantly lower than this naive alternative, but the bandwidth savings



are similar. Meeting this requirement is possible if: (a) iProxy has a
way of organizing the cache such that videos carrying redundant in-
formation are not stored, and (b) only those entries that correspond
to the most heavily accessed information—not data—are stored in
the cache.
Good QoE: It is nontrivial to precisely define QoE, because dif-
ferent users may care about different criteria, but in our paper, we
focus on start-up latency, video stall time, and video quality (bit
rate). Content providers today employ sophisticated mechanisms
to ensure QoE, e.g., using third parties to switch downloads across
multiple CDNs, and pick alternate bit rates [3]. Because iProxy
interposes between content providers/CDNs and end-users, there
is a danger that it may undercut content providers’ QoE enhance-
ments. To meet QoE requirements, iProxy must ensure that: (a)
video is served in a resolution and encoding optimally suited to an
end-device so that the start-up delay is as low as possible, minimiz-
ing the potential for abandonment [32], and (b) bit rate used stays
close to the available bandwidth so that the average bit rate is high
and buffering is controlled, maximizing engagement [19, 24, 32].
The use of IBRs in iProxy provides unique opportunities, enabling
solutions for both.

When these requirements are met, iProxy can ensure that the ef-
fective utilization of providers’ network infrastructure can be low-
ered for a given high aggregate mobile-video traffic load, while
ensuring high end-user QoE. In what follows, we describe IBRs
which form the basis for iProxy.

2.2 Information-Bound Referencing
Information-bound referencing (IBR) was first introduced in [17];

key details can be found in [33]. IBR derives the information from
multimedia data as a “perceptual fingerprint” for the data. This
fingerprint isn’t tied to a specific protocol, host, file name, or mul-
timedia format such as resolution and bit rate, but is bound only to
the information it presents. Algorithms for IBRs have their basis in
multimedia fingerprinting, used for copyright violation detection.
In this section, we discuss how to calculate the IBR value for mul-
timedia content and how to apply it to iProxy.

IBR for a single frame: We first explain the IBR calculation of a
single frame. Prior work [33, 17] presents three options to retrieve
fingerprint for an image: leveraging spatial structure, using color
distribution, and frequency domain analysis. Of these, frequency
domain analysis based on Discrete Cosine transforms (DCT) is
shown to be the better choice. The main insight is that the low-
frequency components provide a high-level “sketch,” and the high-
frequency components provide more fine-grained distinctions [16]
of the underlying information content. To elaborate, the image is
first scaled to a baseline resolution of 128 × 128 [33]. Then, the
YCbCr representation of this scaled image is generated [11]. Dis-
crete cosine transform (DCT) on the Y, Cb, and Cr matrices is then
run. The IBR then consists of two parts: First, the low 9 × 9 fre-
quency components are used, which capture more than 95% of the
signal energy. Second, to capture more fine-grained differences,
the sum of the high-frequency components of Y is computed; the
lower-end 3×3 sub-matrices of Cb and Cr DCT components where
most of the signal energy lies are also captured.

IBR for a Video: Prior work [33, 17] suggests videos be chun-
ked and only frames at chunk boundaries be processed to compute
IBRs. The way to chunk videos is using scene detection [21] which
scans frames for similarity and groups together frames with similar
content. The frames at chunk boundaries are called key frames,
where the images change significantly due to scene changes. To
identify this scene change, we need to pick a good image feature.
Based on extensive experiments, [33] suggests using the varia-

Figure 1: In the IBR table, multiple URLs map to one IBR

value, which corresponds to exactly one video.

tion in the amplitude of the zero-th frequency of the Y component.
More specifically, the distance between frames i and i + 1 is mea-

sured as DistSeq(i) =
|Ai+1−Ai|

min(Ai+1,Ai)
, where Ai is the zero-th

frequency of the Y-component of frame i. If the distance is less
than ChunkThresh, the two frames are considered similar and
grouped into the same chunk. [33] suggests that ChunkThresh

be set to 0.5. For each chunk, only the first and the last ImgIBRs
are kept. All ImgIBR pairs of chunks are concatenated to form
the IBR value of a video, V ideoIBR. A 424-byte audio IBR using
an existing audio fingerprinting algorithm [22] is also included.

IBR lookup and lookup performance: As mentioned earlier,
the same content may provide slightly different IBRs due to the ran-
dom noise introduced by different encoding methods. Thus, [17]
suggests using fuzzy matching based on locality sensitive hash-
ing [18, 28] to lookup IBRs and identify videos with matching
IBRs.

Analysis of IBRs over a large collection of videos in the wild
shows that, using conservative match thresholds, IBRs can match
related variants with a zero false positive rate. We found zero false
positives in our own trace-based analysis (§5). However, false neg-
atives are non-negligible (∼5%) meaning that not all hits will be
identified. In addition, [33] shows that IBRs can defend against a
variety of attacks on content integrity such as the use of insets (bo-
gus content is embedded), quantization (lower the video quality),
and resizing (rescale videos); however, IBRs cannot determine dif-
ferences arising due to subtitles. Luckily, many modern MPEG4
videos separate video content from subtitles.

We believe that with evolution in multimedia fingerprinting schemes,
it will be possible to design even more robust IBRs with lower false
negative and zero false positive rates for matching. We use the
thresholds recommended in [33] for both deriving and matching
IBRs in the rest of this paper.

3. EFFICIENT CACHING IN iProxy
iProxy is located between cellular users and video providers.

No modifications are necessary at either end-user devices or video
providers; so, for example, end users can still use conventional
schemes such as search engines and HTTP requests to peruse and
retrieve video content.

To meet the first requirement in §2 iProxy stores an IBR table

that maps URLs to IBR values. As shown in Figure 1, each IBR
value corresponds to exactly one video file. Multiple URLs may
map to the same IBR value because these URLs represents videos
with redundant information, and each IBR value associates with a
single video file (no matter how many URLs map to it).

After receiving a request for a URL, iProxy checks the IBR table
first (Figure 2); this table maps an URL to a particular IBR value.
Three cases arise:

The URL hits: The URL requested by an end user can be found
in the IBR table, which means that this exact URL was requested



Figure 2: The flow of cache matching.

Figure 3: iProxy vs traditional cache.

previously. In this case, iProxy can transmit the cached video to the
end user.

The IBR (eventually) hits: When the requested URL cannot hit
any entry in the IBR table, iProxy forwards the request to the cor-
responding content provider. The provider transmits the requested
video, and iProxy transforms it into frequency domain data. The
transmission and transformation can be processed in parallel to re-
duce overhead. iProxy then derives the IBR from this frequency
domain data as described in §2.2, and the computed IBR is then
looked up. A match means that the same content was requested ear-
lier, but from a different source and/or in a different format. In this
case, iProxy compares the quality of the downloaded video against
the in-cache video corresponding with the matching IBR. iProxy
keeps the higher-quality version and drops the other (assuming the
cache is full, which is iProxy’s steady-state mode of operation).
Finally, the IBR table is updated by inserting the new URL into
the existing entry corresponding with the matching IBR. Using this
approach ensures that with a limited cache size, iProxy can cover
more and more URLs over time than a conventional proxy, which
means its cache can satisfy more requests.

Neither URL nor IBR hits: After video transmission from the
provider and frequency domain transformation, the computed IBR

may not hit any entry in the IBR table. In this case, a new entry
created for the IBR is inserted, the requested URL added to the
entry, and the frequency domain data for the video is cached. The
new entry and the corresponding video need to replace one or more
IBR entries and corresponding videos in the cache (discussed in
§3.1).

Example: Figure 3 compares iProxy to a conventional proxy. In
this scenario, there are two smartphones called Client1, Client2,
and Client3 which connect to a cellular tower. iProxy is behind
the cellular tower. Assume the cache size is bound to two entries.
The upper table is the cache (index) of a conventional proxy, and

the lower table is the IBR table of iProxy. Both employ FIFO re-
placement.

In Figure 3(a), Client1 requests a video with URL1. URL1 is
not in the IBR table, so iProxy forwards the request to the provider.
After receiving a video named V ideo1, iProxy calculates its IBR
value as IBR1, which does not exist in the IBR table. Thus, the
mapping between URL1 and IBR1 is inserted, and V ideo1 (its
frequency domain representation) is cached. Then, the video is
forwarded to Client1 via dynamic video encoding. A conventional
proxy works similarly, but does not employ dynamic encoding or
adaptive video rate adjustment, of course.

Next, in Figure 3(b), the URL2 request from Client2 is not
in the IBR table either. Thus, iProxy fetches V ideo2 from the
video provider and calculates its IBR value, IBR1, which is close
enough to the IBR value of V ideo1. Thus, we can say that V ideo1
and V ideo2 include the same underlying information. iProxy prefers
to keep videos with higher quality and drops the others. In this ex-
ample iProxy decides to keep the higher-quality V ideo1 and drops
V ideo2. Finally, URL2 is inserted into the IBR table to show
that URL2 also maps to IBR1. In this case, iProxy does not re-
place any entry and all of URL1, URL2, and URL3 stay in the
table. However, a conventional proxy replaces potentially valuable
URL3 content by URL2; it also wastes storage in caching the
content for both URL1 and URL2, although they both refer to the
same underlying information.

Later requests for any of URL1, URL2, or URL3 will hit in
iProxy, but URL3 doesn’t hit in a conventional proxy. For ex-
ample, suppose Client3 requests videos with URL2 and URL3.
Both URL2 and URL3 are in the IBR table and map to IBR1 and
IBR3, respectively, so V ideo1 and V ideo3 will be forwarded to
Client3. However, a conventional proxy can only hit URL1 and
needs to request V ideo3 for URL3 from the provider.

3.1 Info-aware Cache Replacement
While the aforementioned design ensures that redundant videos

are not stored, its FIFO cache management policy does not provide
control over the usefulness of the videos stored. In this section, we
consider how to design cache management schemes that work with
the rest of iProxy’s design, to store the most valuable data and keep
hit rates high.

To optimize hit rate, our schemes prefer entries whose corre-
sponding information shows both sufficient locality of access as
well as wide-spread coverage across many URLs. In particular,
we modify the least frequently used (LFU) and least recently used
(LRU) schemes to result in two new schemes, as follows:

Our modification to LFU is called “LFU-based IBR-score” pol-
icy wherein we give each IBR table entry a score defined as scorei =
∑

u∈URLs(
Cu
hit

Cu
stay

)

V ideoSize
. scorei is the score of entryi and

Cu
hit

Cu
stay

is the

sub-score for individual URL u which references the IBR value that
entryi represents. Cu

hit is the “hit count”, i.e., the number of hits
for URL u and Cu

stay is the “stay count”, i.e., how long URL u has
been in cache in terms of the number of total requests arriving at

the cache. Thus,
∑

u∈URLs
(

Cu
hit

Cu
stay

) captures the contributions of

different URLs u to the overall “interest” in the information repre-
sented at entryi. We divide the frequency by video size, so shorter
videos tend to get higher score.

The policy then is to evict the item with the lowest score. This
policy is better than naive LFU: unlike LFU, it does not have the



“cache pollution” problem1 because it considers how long an entry
stays in cache (Cu

stay).
This scheme is better than an alternative that ignores per-URL hit

and stay counts and instead computes the aggregate hit/stay counts
for the IBR table entry as a whole. This alternative is a direct gener-
alization of cost-aware cache replacement schemes such as Greedy
Dual Size-Frequency (GDS) [23]2 that have been shown to be more
effective than LRU and LFU. Our scheme is better because it is
information-aware. In particular, it simultaneously prioritizes fre-
quently referred entries as well as entries that cover more URLs.
While the former (number of accesses per IBR table entry) captures
the relative interest in a certain information, the latter (number of
URLs for an entry) captures both the many different representa-
tions for information (i.e., different encodings/formats, which are
often given different URLs at a given content provider) and ways
of accessing the information (i.e., different content providers). In
doing so, our scheme also better accounts for temporal locality that
arises when a small number of representations or content providers
are repeatedly employed when a certain piece of information is ac-
cessed. We empirically establish the superiority of our scheme in
§5, especially in comparison with LFU and GDS.

We also design a modification to LRU called “LRU-based IBR-

score” and it computes the following: scorei =

∑
URLs(

1
Clast

)

V ideoSize
.

Clast means how long the last hit for a URL has been in the cache
in terms of the number of total requests to the cache. 1

Clast
is the

sub-score for an individual URL. Higher 1
Clast

means this URL

is hit more recently. As the earlier scheme, this simultaneously
prioritizes most recently referred entries and those that cover more
URLs.

3.2 Cache Deployment
In a canonical cellular network architecture, there are a few po-

tential locations to deploy iProxy, each with different trade-offs: at
the radio network controller (RNC), at the serving GPRS support
node (SGSN), and at gateway GPRS support node (GGSN). The
RNC is closer to the user equipment (UE), so the latency between
RNC and UE is lower, which can be important for QoE, discussed
next. However, being low in the hierarchy, each RNC may only
serve a few users, which may, in some cases (where population
density is low), result in low hit rate. At the other extreme, GGSN
aggregates many UEs so it can provide a higher hit rate, but this
comes with much higher latency, which affects QoE.

Our design permits deployment at all three locations in the hi-
erarchy. The “optimal” location depends on the cellular network
subscriber density and the cache location relative to content servers.
We evaluate these trade-offs in §5.

4. OPTIMIZING QOE
As mentioned earlier, iProxy must ensure good end-user QoE

as it transmits videos out of the cache. There are two aspects to
this: ensuring high bit rates and low buffering rates, which max-
imize user engagement, and ensuring low start-up times, which
minimizes abandonment. We discuss these in the following two
sections. In both cases, we argue that iProxy’s information-aware
design discussed earlier, coupled with the fact that it is deployed

1Since LFU only considers hit counts, entries that are very popular
briefly tend to stick around in the cache
2GDS calculates a score which is the ratio of cost and size ( cost

size
)

for each entry. The cost is measured in reference counts (i.e., fre-
quency). Size is the data size. When the cache is full, GDS evicts
the entry with lowest score.

inside the cellular network infrastructure, provides unique opportu-
nities.

Many cellular providers already employ transcoding proxies [20]
that transform Web content to a suitable format for mobile device
users to save bandwidth. For example, such proxies are employed
to reduce image resolution for smartphones. However, we are not
aware of any proxy that dynamically adapts video according to
channel quality. That said, iProxy can work in conjunction with
such proxies.

4.1 Bit Rate and Buffering: Handling Chan-
nel Diversity

Several prior works have measured the throughput, jitter, and
loss rate of 3G networks and have found that the channel conditions
and, hence, throughput performance, vary widely with location [26]
and also over time at a given location [26, 38]. The dynamic range
can span a few tens of Kbps to a few Mbps, and the variations can
happen on sub-minute timescales [38].

Ensuring high QoE implies adapting the video stream to such
rapid, arbitrary changes in bandwidth as channel conditions change
and/or the mobile device moves.

In what follows, we describe a novel approach for dynamic video
encoding, which drives all video transmissions out of the iProxy
cache. It does not require the active participation of CDN servers or
video content providers nor does it require modifications to clients.

Before describing our framework for addressing these issues, we
start by providing some background on MPEG 4-based video en-
coding, which we use as the basis for our dynamic encoder.

MPEG4 Video Encoding - Background: Figure 4 presents a
typical MPEG 4 video encoding process. The whole process can be
divided into discrete cosine transform (DCT), scaling/quantization,
motion estimation, and entropy coding.

DCT computes frequency domain data for video content [15].
More important data is located in low-frequency components and
data, including more detail located in high-frequency components.
DCT is widely used in lossy compression for multimedia content.
Quantization determines the bit rate of the video stream. The quan-
tization process follows DCT and compresses a range of continu-
ous values into one discrete value. Usually we give more bits to
represent low-frequency components, which are more important,
and fewer bits to represent high-frequency components, which are
less important. By choosing the quantization strategy, we can de-
termine the bit rate.

Motion estimation can further reduce video size. Before com-
pressing a video frame, we cut a video frame into multiple blocks
and try to match these blocks with other blocks in the same or pre-
vious or following frames. If some blocks can be matched, we keep
only their reference pointers (also called motion vectors) instead of
the blocks themselves. Frames can be categorized into I-frames,
P-frames, and B-frames. I-frames do not refer to any frames, P-
frames refer to earlier frames (usually I-frames), and B-frames re-
fer to earlier or following frames.

Finally, we code all data including the output from quantization
and motion estimation using entropy coding. Entropy coding gath-
ers statistics about how often each symbol appears. High-frequency
symbols are given shorter codes for representation. Thus, on aver-
age the code length is reduced, which decreases the video size.

4.1.1 Dynamic Video Encoding: A Linear Bit Rate
Adapter

We argue that providing high QoE in the face of cellular channel
diversity implies that iProxy should provide a flexible video bit rate
that is as close to the available bandwidth as possible. State-of-the-



Figure 4: MPEG4 encoding overview, and how iProxy adapts

the encoder.

art solutions, e.g., layered video encoding or MPEG DASH, are not
suitable, as they cannot offer linear bit rate adaptation, e.g., MPEG
DASH it employs k different pre-selected versions of the video, se-
lecting the appropriate version over time based on client-reported
performance metrics. Unfortunately, these versions may differ sig-
nificantly in the bit rate and the quality3. While using large val-
ues of k, where the corresponding videos are closer to each other
in quality, enables smoother adaptation, it also has downsides: it
needs nearly k× more storage in iProxy, and it is hard to predeter-
mine a set of k encodings that will work across all possible mobile
clients. Also, the bit rate adaptation scheme in DASH works on the
time-scale of several seconds [30], due to which there are multiple
time-instances when the bit rate and available bandwidth differ, es-
pecially under dynamically changing conditions. As we show in
§5, these attributes can cause the stream to use a lower-than-ideal
bit rate or overshoot available bandwidth significantly, resulting in
stalls/buffering, both of which result in poor QoE.

iProxy uses a new dynamic video encoding scheme to provide
linear bit rate adaptation. It uses in-band schemes that provide
fine-grained information on channel conditions, such that the re-
sulting stream can gracefully fit the available bandwidth, meaning
there are few buffering events, if any, and the video quality stays
as high as possible. Different from other mobile video schemes,
iProxy doesn’t need any modification on the client and video provider
side. In addition, it doesn’t rely on physical layer support. Conse-
quently, it is easier to deploy in existing infrastructures.

At a high level, the linear bit rate adapter works as follows: the
original MPEG 4 encoder uses a rate controller to achieve a con-
stant bit rate. The rate controller takes a particular bit rate and feed-
back from the quantization module as inputs. Then, it calculates the
appropriate parameters for the quantization module to output video
stream with a fixed bit rate. iProxy adds a link monitor module to
monitor available bandwidth and send this information to the rate
controller in the MPEG 4 encoder, as shown in the top box in Fig-
ure 4. We modify the rate controller to accept the bit rate suggested
by the iProxy link monitor on-line. iProxy’s link monitor uses two
schemes to determine the network conditions in order to pick a bit
rate, which we will describe shortly.

To enable fast dynamic video encoding based on the suggested
bit rate, we cache frequency domain data and motion estimation
vectors for each video instead of caching encoded videos. This

3Four versions that offer 38 dB, 42 dB, 47 dB, and 50 dB in peak
signal-to-noise ratio (PSNR), require 800 kbps, 1200 kbps, 1600
kbps, and 2000 kbps of bandwidth, respectively

allows us to skip calculating the DCT when performing dynamic
video encoding. To facilitate this, when receiving a video from
a video provider, iProxy transforms the video into the frequency
domain data and retrieves its motion estimation vectors. As shown
in §2.2, frequency domain data is also needed during IBR value
calculation. Thus, caching frequency domain data and calculating
the IBR value can be done in parallel.

Baseline bit rate using in-context information: The first scheme
operates on coarse time-scales and establishes a baseline bit rate to
use. The baseline is reset/chosen each time there is a significant
change in the mobile device context, in particular, when the device
moves to a different cell tower (known to the cellular provider),
meaning that the cache-to-device network path is now different
and we need to adapt the stream to it. The baseline for each cell
tower can be computed by the cellular provider based on historical
measurements of the average throughput mobile devices associated
with the tower observe at a given time in the day.

TCP information feedback: Once a reasonable baseline is cho-
sen, we must then adapt the bit rate as the achievable throughput
varies on fine timescales. For this, we rely on per-packet TCP feed-
back information. In particular, iProxy collects current TCP-level
information for a stream, such as the congestion window (CWND)
and RTT (by reading off the TCP/IP stack). iProxy then estimates
the current available bandwidth as: Available_bw =

CWND × segment_size

RTT
. Finally, iProxy uses an exponentially-

weighted moving average (EWMA) of Available_bw to compute
the bit rate to suggest to the MPEG4 rate controller in Figure 4. Us-
ing EWMA helps avoid rapid bit-rate shifts. We set the weight to
0.9 to ensure smooth bit rate changes. Also, to account for changes
in the device’s cell tower, we ignore the available bandwidth re-
ported for the first few RTTs after a device has moved and rely on
the baseline bit rate instead. Finally, when the expected bit rate
does not exactly match real network bandwidth, we rely on buffer-
ing at the client side to smooth out the videos.

In §5, we use extensive experiments to show that our bit rate
adaptation schemes enables iProxy to keep the bit rate as high as
possible, while also eliminating stalls.

4.2 Low Start-up Time: Accommodating Client
Diversity

A recent study of handheld traffic in a campus network [27]
showed that users employ devices from many vendors and with
different form factors. The advent of tablets only exacerbates this
diversity. The challenge is that each model typically has a different
screen size and supported resolution. Thus, videos with different
resolutions may be requested at iProxy. The study found a wide
diversity in device OS, which means that the video decoders the
devices have installed could be quite different. Finally, the study
found a wide diversity in video formats requested.

A key challenge in iProxy is to stream compatible videos to
clients in the face of such diversity. This is crucial to optimize start-
up time: as we show in §5, transmitting a video that is encoded at a
higher resolution than a device’s screen resolution can inflate start
up time by 2-14s; and, picking the wrong encoding can result in the
video being unplayable (i.e., the start up time is infinity).

In order to stream compatible videos, client-specific information
must be obtained by iProxy’s dynamic video encoding module. We
discuss how this can be done next.

OS: A majority of mobile devices employ Android, iOS, or Win-
dows mobile. This can generally be inferred from the HTTP header,
which often includes the operating system version and device type.The
videos each operating system can handle are not the same; e.g., iOS



Figure 5: Multiple dynamic video encoding nodes can be added

to improve scalability.

cannot support flash-related formats. iProxy tracks this informa-
tion.

Screen resolution: Common screen resolutions of smartphones
vary from 240x320 to 720x1280. When a smartphone is sent a
video at a resolution larger than the phone can display, two prob-
lems can arise: first, the smartphone has to spend a significant
amount of time buffering the high-resolution stream compared with
using the optimal resolution, which inflates start-up delays (§5);
second, the video cannot be displayed optimally on the screen,
which further has an impact on the user experience. earlier, we
can retrieve device models from the HTTP headers, and the screen
resolution of any particular model is fixed. This is the upper bound
of the resolution that iProxy should provide to the end user. In
other words, we may reduce the resolution of a video requested by
a client if her screen cannot support high-resolution videos.

Decoder: iProxy should ascertain what end users can decode.
Some operating systems support built-in video decoders; e.g., An-
droid 2.3.3 supports 3GPP (.3gp), MPEG-4 (.mp4), MPEG-TS (.ts),
and webM (.webm) [1]. Thus, the OS can give us a hint as to what
video format can be decoded. However, end users may install other
decoders. To infer this, cellular providers can track requests sent to
to app stores to estimate what other decoders clients have installed
and, thus, the encodings/formats of videos the clients can decode
and play.

4.3 Applicability to Prefetching
While iProxy operates as a cache, it is also applicable to prefetch-

ing which is becoming popular in the mobile video context. In
particular, the cellular provider can prefetch high quality versions
of videos that users are likely to access and store the correspond-
ing frequency domain representations in iProxy, just as above. For
each entry created in this manner, the provider can also obtain a
list of URLs where alternate versions of the video are stored; this
could be done by crawling the Web and identifying duplicates of
the stored entries using the IBR matching algorithms described in
§2.2. Subsequently, iProxy operates just as described above both in
terms of how storage is managed and how content is streamed.

4.4 Scalability
A natural question that arises is whether this design is scalable:

in particular, can the dynamic encoding scale with number of end-
users. In §5.4.2, we show that dynamic-encoded videos are on aver-
age 42 times shorter than the original video’s length, so one single
machine can support multiple clients at the same time. To support
even more clients simultaneously, we can leverage parallelism, as

shown in Figure 5. Here, a single cache tries to match requested
videos and download unmatched videos. In addition, there are
multiple nodes that work on dynamic video encoding. Encoding
workload can be spread among these nodes. All requests are sent
to the cache first and, after obtaining the requested videos, each
video is redirected to one of the dynamic video encoding nodes.
The dynamic encoding nodes finally transmit videos to clients with
a specific video format. Cellular network providers can provision
dynamic video encoding nodes based on expected total load.

5. EVALUATION
Our evaluation addresses the following issues: (a) Caching: How

do different replacement policies compare and how important is
info-awareness? How much cache storage is needed? (b) Han-

dling diversity: To what extent does selecting the right resolution
and encoding help improve start up times? (c) Dynamic encoding:
How well does dynamic encoding adapt to changing conditions?
Does it lead to improvements in quality metrics such as buffering
rate and bit rate that impact end-user QoE?

We first describe our prototype implementation.

5.1 Implementation
On the client’s side, we use unmodified Android smartphones,

running VPlayer [10]. VPlayer can send a request with a URL to
iProxy through 3G.

We implemented iProxy in a 4-core desktop with Intel(R) Core(TM)2
Quad 2.66GHz CPU Q6700 and 8GB RAM. Our prototype proxy,
written in C, can fetch videos from video providers, calculate IBRs,
compare IBRs, cache raw video data, match videos, and dynami-
cally encode videos. We modified the pHash library [7] to calculate
IBRs.

For each request, our proxy iProxy checks its IBR table; we
use a locality-sensitive hashing (LSH) [29] based index to aid fast
lookups at scale. If the URL is not in the table, iProxy downloads
the video from a original website and redirects it to the client. Af-
ter the video is downloaded, we derive its IBR, and compare this
IBR to others in cache (using LSH to retrieve candidates, and then
obtaining nearest matches). If we find a matched IBR, we delete
the copy with lower quality and update the IBR table by adding the
new URL.

The video is then sent to a modified FFmpeg [4] module that
supports our dynamic video encoding. It interprets requests from
clients to determine client-side constraints. FFmpeg uses FFserver [9]
to stream the video to VPlayer in the client’s device. During stream-
ing, the FFserver module retrieves dynamic CWND and RTT by
reading the relevant network stack variables and calculates suitable
video bit rates to use. It then sends this information to FFmpeg
which adapts bit rate.

5.2 Traces
Our analysis of iProxy relies on two sets of real traffic traces.

Our first trace is the Web video data set [6] we used the motivating
statistics in §2. This data set had a total of 10,000 videos corre-
sponding to the search results for the top 25 queries at three popu-
lar video content providers. This amounts to about 400 URLs per
query: note that the videos corresponding to some of the URLs
corresponding to a query may point to the same underlying in-
formation, whereas others may correspond to “related” videos that
have entirely different information altogether. The total size of the
videos is about 300GB.

In addition, we leverage packet traces collected over the Uni-
versity of Wisconsin’s Wireless Network. The traces span three
days, from April 26, 2010 (Monday) to April 28, 2010 (Wednes-
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Figure 6: Hit rates for various cache policies in iProxy.

day). We prune the traces to only capture the subset of devices
that are known to be smartphones or tablets, using the techniques
identified in [27]; the techniques have known false negatives (but
minimal false positives), meaning that we don’t capture all hand-
held devices. Furthermore, we focus mainly on the trace subset
containing the HTTP protocol. For each packet, we collect the first
128B, which includes the HTTP header.

We identify video traffic based on the “content type” field in the
HTTP header, similar to [27]. We derive URLs from the HTTP
requests for videos, and download the corresponding video files in
their entirety.

5.3 Caching: Hit rates, Storage, Deployment
Replacement Policies: To evaluate the performance of our IBR

specific cache replacement policies, we can compare it with other
traditional cache replacement policies, including FIFO, Least Re-
cently Used (LRU), Least Frequently Used (LFU), and Greedy Dual
Size-Frequency (GDS) [23]. Unless otherwise specified, we as-
sume that the underlying cache is IBR-based. We use hit rate (HR)
as the main metric to compare the policies. All caches have the
same 1GB size. We use the traces described above for the analysis.

Results from our analysis of the university data set are shown in
Figure 6. As expected, FIFO offers the worst performance on HR,
because it doesn’t consider the importance of cache entries. The
HRs of LFU and LRU are around 62%. In contrast, info-aware ap-
proaches (modified LRU or LFU) result in higher HR (70-71%),
which is better than the state-of-the-art GDS scheme. The differ-
ence between GDS and our schemes is that the former only ac-
counts for the overall interest in information, but not the number of
different avenues for accessing it; both aspects must be taken into
account when designing an information-aware scheme. GDS could
evict large collections of URLs in bulk, which may impact future
hit rates.

Interestingly, the conventional proxy offers same or better hit-
rate than an iProxy that uses an info-agnostic replacement policy
such as FIFO, LRU of LFU. This is because it is a sub-optimal pol-
icy that is not aware of the importance of information as captured
by the hit rate across multiple related URLs. This shows that we
need to use info-aware replacement policies to realize the benefits
of iProxy.

The rest of the paper assumes the LFU-based IBR-score policy
is employed in iProxy.

Storage Requirement: Recall that iProxy stores the frequency
domain (DCT) data for the highest quality video in each IBR entry.
What storage cost does this impose? As exemplified in Table 1,

Video bit rate Size

885 kbps 3744 KB

1063 kbps 4588 KB

1277 kbps 5403 KB

1385 kbps 5862 KB

DCT data 8154 KB

Table 1: For a single example video, we show the size of the

raw data stored with an iProxy cache entry, vs. that of different

formats of the video file.

Population RNC SGSN GGSN

1400 1373.55 kbps 1303.9 kbps 1271.93 kbps

800 1282.18 kbps 1259.99 kbps 1176.55 kbps

500 1244.51 kbps 1194.67 kbps 1182.06 kbps

300 1190.22 kbps 1165.02 kbps 1123.62 kbps

Table 2: Throughput vs. location and population.

DCT data is larger than individual video files (we show only four
different bit rates for a single example video), but: (1) the differ-
ence is not significant compared to any single video file (2.1X in
the worst case) and (2) the DCT data size is 2.4X smaller than the
sum of the sizes of the individual video files, meaning that iProxy
outperforms the naive strategy of storing multiple versions.

Deployment Evaluation: As mentioned in §3.2, the performance
of iProxy depends on where we deploy it and what the served pop-
ulation is. If we put iProxy closer to clients, the latency is lower
and the performance is better. However, a less served population
means less overlap in accesses which affect hit rate. We study this
question using an emulation based on our traces.

To understand this, we first measure the throughput between a
machine at our university and the nearest YouTube server, which
determines the cost of a cache miss and the relative improvement
from a hit. We calculate mean and variance and model the cost as
a normal distribution. In addition, we use the data in [39] which
shows the delay to RNCs, to SGSNs, and to GGSNs from UEs in a
tier-1 cellular network.

We identified a total of 1400 unique users in our traces. We di-
vide them into smaller groups and associate each group with a node
in the same level of the cellular hierarchy. We compute and report
the average throughput across all groups. The results are shown in
Table 2. In this table, the entry corresponding to row “500” and
column “SGSN,” means that we divide the 1400 users randomly
into three groups of 500, 500, and 400, and “assign” them to three
SGSNs. We emulate requests of UEs in each group, identify cache
hits/misses and compute the effective throughput observed by the
clients. Each miss goes to the YouTube server, whereas a hit is
served from cache.

Our goal is not to show that one location is clearly better than
the other, but rather to show the trade-off between population den-
sity, iProxy location and performance, helping the cellular provider
make the appropriate choices. In general, our results show that
when the population density is low (e.g., 300 users per RNC, 800
or more at SGSN, and 1400 or more at GGSN), aggregating a small
number of iProxy’s at the SGSN and GGSN is reasonable. When
the population density is high (e.g., 1400 users at an RNC), deploy-
ing at the RNCs is a good choice.

5.4 QoE
The setup we use to test iProxy’s ability to support good QoE is

shown in Figure 7. We stream videos from an iProxy located on
our campus to mobile phones also located close by. However, the



Figure 7: Experimental scenario for video performance.
Daily-motion YouTube (HD) Yahoo Video (.asf)

Both hit 0s 13s ∞

iProxy hit 2s 14s ∞

Table 3: Improvement in video start up latency using iProxy

and a conventional proxy. ∞ means the client cannot play

the original video format, but can play re-encoded video from

iProxy.

transfers themselves traverse the Internet and the cellular backbone
before reaching the end device. In practice the proxy would be
deployed a lot closer to clients; thus, our experiments below show
a lower bound on the effectiveness of iProxy in ensuring QoE.

5.4.1 Start up times

We setup an experiment to show how iProxy improves start up
latency. Here, we assume a set-up where users click on embedded
links to videos, e.g., links in emails, blogs, etc.

In Table 3, we stream three different videos to an Android smart
phone (Samsung GALAXY SII) with a 480×800 screen. The first
video is in VGA (640×480 resolution, .flv) from Dailymotion, the
second one is in XGA (1024×768 resolution, .flv) from YouTube,
and the third one is in 360×288 (.asf) resolution from Yahoo! Video.
The first column shows the improvement in video start up latency
in seconds in the case where both iProxy and a conventional proxy
observe a cache hit for the video request. The second column shows
the improvement when only iProxy observes a cache hit.

The video from Dailymotion is in a suitable format and resolu-
tion for the client’s device, so when both proxies see a cache hit,
iProxy does not offer any improvement. However, when a conven-
tional proxy does not see a cache hit, it takes two extra seconds to
retrieve the video from Dailymotion, delaying start-up correspond-
ingly.

The resolution of the second video from YouTube is much higher
than the smartphone can play, causing the phone to spend time fill-
ing its cache and pre-processing the video. Furthermore, because of
the resolution mismatch, the XGA video appears pixelated on the
smartphone. iProxy lowers start up latency by 13s; it also converts
the video into a more suitable resolution (VGA).

The smartphone simply cannot open and play the third (.asf)
video file. iProxy converts the video into a suitable format (.mpg),
so the smartphone can still play it.

5.4.2 Bit rate and Buffering

Speed: To support user video playback without lag, the time
needed to dynamically encode a video from raw data should be
small, otherwise users may face stalls waiting for encoded video
data. To study this, we use modified ffmpeg to encode video into
different bit rates to observe encoding speed compared to video
length in seconds. We chose a 590s video and encode it with bit
rates from 200 kbps to 1000 kbps. As shown in Table 4, encoding
times are similar no matter the bit rate, and are 42 times shorter

Video length 586.98 sec

200 kbps 13.34 sec

400 kbps 13.94 sec

600 kbps 14.03 sec

800 kbps 14.36 sec

1000 kbps 14.54 sec

Table 4: Video length and encoding time

than the video length. This provides evidence that dynamic video
encoding can work on-line, matching real-time video playback re-
quirements. This is further evidenced by our experiments below.

To measure the efficacy of our linear bit rate adapter in improv-
ing QoE, we experiment with scenarios where we estimate how
well iProxy functions with rapid changes in network conditions. In
each scenario we first send a video around 50 seconds long with a
starting bit rate of 800 kbps to a smartphone over 3G. Every few
seconds, a bandwidth shaper kicks in at the desktop where iProxy
is running to change the available bandwidth according to a pre-
defined pattern. Note that the available bandwidth is also affected
by channel diversity; this is not in our control. We measure the av-
erage bit rate received by the smartphone and the extent of buffer-
ing, both of which impact engagement.

We compare our linear adapter against a version of iProxy that
uses the state-of-the-art MPEG DASH scheme. Note that this scheme
does not use cellular phone context. Also, it employs k different
versions of the video (§4.1). While using large values of k enables
greater adaptation, it also uses more storage. To strike a balance,
we select k = 4, which uses nearly 2X more storage than iProxy
with the linear adapter.

We tried out several different scenarios, each with a different
way in which bandwidth gets shaped. We shows results for two
randomly picked scenarios below.

Note that FFmpeg reports video bit rate of encoded video every
two seconds.

Figure 8(a)shows the change in video bit rate in Scenario 1.
In the beginning, the available bandwidth out of the desktop is
1000 kbps and video bit rate used by our linear adapter (Figure
a) varies between 700 kbps to 1400 kbps. The variation is caused
by uncontrolled background traffic. Twenty seconds later, when
the bandwidth is shaped to 500 kbps, our linear adapter can de-
tect the change and reduce the bit rate to around 400Kbps to avoid
frame loss; our linear adapter keeps the bit rate at 400 kbps. Note
that despite the use of EWMA, our linear adapter adjusts bit rate
almost immediately after TCP detects packet loss. However, be-
cause of the use of a buffer in clients, these bursts in bit rate do
not cause any perceptible impact to the user. When available band-
width drops further to 300 kbps, it is detected by our linear adapter
based on the smaller average CWND, causing the linear adapter to
continue to decrease the bit rate. Because TCP CWND can reach
available bandwidth more quickly when bandwidth is low, the bit
rate used by the linear adapter can more closely match the available
bandwidth. On the whole, the average bit rate used by our linear
adapter is 490Kbps.

Figure 8(b) shows the bit rate used by MPEG DASH. While
DASH can also adapt, we see that its bit rate is often significantly
lower than the available bandwidth, due to the discrete choices
available (e.g., between 40s and 60s). The average bit rate of DASH
is about 430Kbps; our linear adapter’s bit rate was 16% higher on
average. Between 40s and 60s, our linear adapter’s bit rate was
twice as high as DASH (200Kbps vs 100Kbps).

Figures 9(a) and (b) show the results for a second scenario where
the shaper causes oscillations in the bandwidth. For the linear
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Figure 8: Scenario 1: the available bandwidth set by the shaper

falls over time. The left figure is for iProxy using the linear

adapter, the right is using MPEG DASH.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  10  20  30  40  50  60

B
it
 R

a
te

(K
b
it
s
/s

e
c
)

Time (sec)

(a) Linear adapter

Bandwidth
Video Bit Rate

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  10  20  30  40  50  60

B
it
 R

a
te

(K
b
it
s
/s

e
c
)

Time (sec)

(b) MPEG DASH

Bandwidth
Video Bit Rate

Figure 9: Scenario 2: the available bandwidth set by the shaper

oscillates. The left figure is for iProxy using the linear adapter,

the right is using MPEG DASH.

adapter, we observe that the bit rate gradually falls between 0 and
20s, perhaps because of poor channel conditions which cause the
true available bandwidth to be much lower than the 1000Kbps limit
set by our traffic shaper. Our scheme starts by using an statically
picked initial rate of 1000Kbps; however, if the initial rate were set
based on an accurate available bandwidth measure such as that in-
ferable from the latency spread observed for TCP ACKs, we would
have picked a better initial bit rate. In general, relying on direct
available bandwidth estimates in this fashion could help our bit
rate adapter pick better rates even during the course of streaming,
compared to our current scheme of using CWND/RTT; we plan to
extend our adapter to work in this fashion in the future.

At around 20s, the bit rate settles to approximately 400Kbps.
After 40s, the traffic shaper sets the bandwidth to 500Kbps, and our
linear adapter immediately adapts its bit rate to around 450Kbps.
In contrast, MPEG DASH generally uses a lower bit rate than our
linear adapter (410Kbps, on average), especially in the 20-60s time
period where it is nearly 40% lower.

In both cases, our scheme suffered from no buffering events. In
contrast, MPEG DASH saw up to 1s of buffering. While this may
seem insignificant, prior studies [32] show that this lowers engage-
ment to levels that start to matter to content providers.

Sensitivity Because iProxy estimates available bandwidth using
simple passive measurements, there is a possibility of error, espe-
cially when the available bandwidth drops suddenly. To understand
how this impacts QoE, we use the same setup as above, but shape
bandwidth such that it drops suddenly from 2000 kbps to 400 kbps
roughly 11s into the video (total length of 40s). We observe that
the video stream suffers from around 1s of buffering in all. While
this is not conclusive, it indicates that iProxy’s adaptation scheme
is reasonably robust against sudden variations.
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Figure 10: Video quality evaluation

For completeness, we also study a more traditional quality met-
ric, namely Peak signal-to-noise ratio (PSNR). PSNR is calculated
by comparing the difference in quality between raw videos and
compressed videos. Higher PSNR means higher quality. There
are two aspects that affect PSNR: (a) frame loss: if some frames
are dropped, much of the information in the video will be lost, and
(b) the bit rate: lower bit rate means we lose more information. We
use an emulation-based study that also models cache deployment
alternatives.

For the test video we used above, the video is compressed with
30.9dB in PSNR and 2.53Mbps in bit rate; thus, these are the max-
imal PSNR and bit rate we can achieve with iProxy’s dynamic en-
coding module. We emulate three scenarios representing situations
where proxies are located at the RNC, SGSN, or GGSN. We as-
sume network bandwidth is 1.5Mbps. The average delay from the
RNC to a mobile device is 90ms, from SGSN to a mobile device is
101ms, and from GGSN to a mobile device is 114ms. We measure
the PSNR of the received video at the mobile device. We assume
that the video player in the mobile device can buffer 10 seconds
worth of video and drop any frames that pass the assigned dead-
line.

Figure 10 shows PSNR when different approaches are used to
send the test video for each of the three deployment options. The
first bar shows the original compressed video. The second bar is
the PSNR of a video sent by iProxy. iProxy decreases video bit
rate when available network capacity is lower. Thus, it suffers no
frame loss and its PSNR is only slightly lower than the original
video. In the RNC case, its PSNR is 11% lower, and in the GGSN
case it is 15% lower, showing that iProxy’s performance suffers
with network delay.

The third bar in Figure 10 shows the case where we keep the
video bit rate as low as possible instead of adapting bit rate; this
options can also prevent frame loss. However, lower video bit rate
means lower quality video and lower PSNR; and even though there
is available network capacity, it is left unused. Since this approach
suffers no frame loss and uses a fixed bit rate, the PSNR is the
same in the three scenarios, but is inferior to iProxy in all three
cases. Furthermore, compared to iProxy, these schemes leave 20%
of the bandwidth unused in the RNC case, 18% of the bandwidth
unused in the SGSN case, and 15% of the bandwidth unused in
GGSN case.

The fourth bar shows a conventional proxy sending high quality
video directly to mobile devices. It results in a very high frame



loss rate, and consequently has a poor PSNR. In addition, the video
quality is affected much more drastically by network delay than
iProxy. For example, PSNR drops 55% if we move the proxy from
RNC to GGSN.

The last bar shows video quality when we stream the video di-
rectly from the video source. Without any help from proxy sys-
tems, the quality of video streaming is not acceptable with very
low PSNR (i.e. 4.75dB). High delay and frame loss on the long
path between video sources and mobile devices hurt PSNR signifi-
cantly.

5.5 Summary
In sum, our evaluation shows the following:

• iProxy can improve cache hit rates from 20% to up to 1.6X
for the two traces we studied, compared to conventional prox-
ies using state-of-the-art cache replacement schemes. Using
information-aware schemes is crucial. iProxy uses 2.4X less
storage than a naive cache design.

• iProxy improves start up delays by 2-14s compared to a proxy
that is not intelligent in selecting the right video version to
serve to a client when a URL is requested. In some cases,
iProxy can play video that a conventional design simply can-
not play.

• iProxy’s linear adapter improves bit rate by 16% compared to
state-of-the-art MPEG DASH scheme. Our adaption scheme
gracefully changes bit rate in response to changing network
conditions. Buffering is minimized, if not virtually elimi-
nated.

6. RELATED WORK
New video encoding schemes: In recent years, there have been

proposals for new video encoding schemes that allow clients to
play videos even in the face of partial errors in packets. For ex-
ample, in [31], the authors argue that the whole video encoding
process from DCT to 16-QAM encoding should be linear. They
present SoftCast which replaces non-linear entropy coding by scal-
ing up important DCT components to provide error protection in
wireless networks. FlexCast [14] provides another way to encode
a video grouping equally important bits of a video using “distor-
tion grouping.” Then, they modify Raptor codes [40] to do rateless
video coding to protect more important groups. While these ap-
proaches could be used by iProxy, they all require a modification
of the physical layer which makes deployment difficult. Our ap-
proach is targeted toward immediate deployment.

Video adaptation: [12] consider network conditions to send
suitable versions of videos encoded using H.264/SVC [37] in a P2P
VOD system. Their work can use network resources efficiently
by picking the appropriate bit rate. However, the approach cannot
provide linear bit rate.

Techniques such as HLS by Apple and Smooth Streaming [5] are
very similar to MPEG DASH (they can be thought of as vendor-
specific realizations of DASH). They share all of DASH’s draw-
backs discussed earlier, making it unsuitable for iProxy. In addi-
tion, Smooth Streaming and HLS require users to install a client
side program.

In [35], the authors implement a cross-layer mechanism that op-
timizes TCP-Friendly Rate Control protocol to stream video on
wireless multi-hop mesh networks. They use feedback from the
receiver as an indicator to adjust sending rate. They control the
sending rate in two ways: (a) at the physical layer, they change the
modulation to employ suitable bit rates on wireless links, and (b) in

the application layer, they change the quantization step in video en-
coding to achieve the right video bit rate. However, their solution
needs to modify the receiver, where as ours doesn’t. In addition,
they also need to coordinate with the physical layer.

Vantrix [8] transcodes and adapts videos based on user devices
and available bandwidth in real time. It results in efficient band-
width usage and a better user experience. It also provides smart
caching to store popular videos and save bandwidth on Internet
backhaul links. However, Vantrix still use URLs to identify videos
and may cache redundant videos. In addition, it transcodes videos
from the original format instead of transcoding from frequency
domain data, and as such, it is more resource intensive than our
scheme (which skips the DCT process).

Video proxies: Others have proposed video proxies (e.g., Mid-
dleMan [13, 42]) and some have focused on caching or prefectch-
ing strategies coupled with server-side scheduling that help offer
better video experience and QoS [41, 34]. However, iProxy is the
first to argue for an information-centric approach that achieves bet-
ter caching of important information by aggregating multiple re-
lated URLs, and co-designs an effective video adaptation scheme
into the cache. We design mechanisms that help directly improve
quality metrics that matter for user engagement and abandonment.
We also design and evaluate information-aware cache replacement
policies.

7. CONCLUSION
This paper presented the design of a mobile video-centric cache

named iProxy that simultaneously meets three key requirements:
higher video hit rates at a lower overall cost, adaptability to channel
diversity, and the ability to accommodate client diversity. iProxy
leverages the recently-proposed notion of IBRs to identify and club
together multiple variants of the same video into a single entity.
It also uses a linear bit rate adapter that directly encodes raw in-
cache video data at the optimal rate given instantaneous TCP feed-
back about network conditions. Both of these aspects of iProxy’s
design are rooted in the central observation that effective mobile
video-centric cache design requires us to view caching from the
higher level perspective of “information” as opposed to “data.” Our
evaluation shows that iProxy can improve hitrate, but we need to
use novel information-centric replacement policies to achieve ideal
benefits. We show that our linear encoder can adapt well to changes
in bandwidth, and yield better bit rates and fewer buffering events
than traditional approaches. We find that our scheme is able to de-
liver the optimal format to clients, minimizing start up delays.
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