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Abstract

Memory leaks and memory corruption are two major forms
of software bugs that severely threaten system availabil-
ity and security. According to the US-CERT Vulnerability
Notes Database, 68% of all reported vulnerabilities in 2003
were caused by memory leaks or memory corruption.

Dynamic monitoring tools, such as the state-of-the-art
Purify, are commonly used to detect memory leaks and
memory corruption. However, most of these tools suffer
from high overhead, with up to a 20 times slowdown, mak-
ing them infeasible to be used for production-runs.

This paper proposes a tool called SafeMem to detect
memory leaks and memory corruption on-the-fly during
production-runs. This tool does not rely on any new hard-
ware support. Instead, it makes a novel use of existing
ECC memory technology and exploits intelligent dynamic
memory usage behavior analysis to detect memory leaks
and corruption. We have evaluated SafeMem with seven
real-world applications that contain memory leak or mem-
ory corruption bugs. SafeMem detects all tested bugs with
low overhead (only 1.6%-14.4%), 2-3 orders of magni-
tudes smaller than Purify. Our results also show that ECC-
protection is effective in pruning false positives for memory
leak detection, and in reducing the amount of memory waste
(by a factor of 64-74) used for memory monitoring in mem-
ory corruption detection compared to page-protection.

1 Introduction

Memory leaks and memory corruption are two major forms
of software bugs that severely threaten system availabil-
ity and security. According to the US-CERT Vulnerabil-
ity Notes Database [28], 39% of all reported vulnerabilities
since 1991 were caused by memory leaks or memory cor-
ruption, and 55% of the most severe vulnerabilities are re-
lated to them. In the year of 2003, these two types of bugs
contributed to 68% of the CERT/CC [6] advisories.

Memory leaks, caused when some allocated memory
is never accessed again, can cumulatively degrade overall
system performance by increasing memory paging. Even
worse, they may cause programs to exhaust system re-
sources, eventually leading to program crashes [15]. For
this reason, malicious users often exploit memory leaks to
launch denial-of-service attacks. Memory corruption, on
the other hand, damages memory content through buffer
overflow, incorrect pointer arithmetic, or other types of pro-
gram errors. Similar to memory leaks, memory corrup-
tion bugs, especially buffer overflows, are commonly ex-
ploited by Internet attacks to attach malicious code through
carefully-crafted input data.

There are three main approaches to address the memory
leak and memory corruption problems. The first approach
uses type-safe languages such as Java or the Microsoft
Common Language Runtime environment [22] to eliminate
the memory leak problem and reduce the chances for mem-
ory corruption. While this approach improves code qual-
ity significantly, it is not applicable to performance-critical
software such as server programs. This is because type-safe
languages typically introduce significant overhead, and do
not allow fine-grained manipulation of data structures. As a
result, most performance-critical software programs are still
written in unsafe languages such as C or C++.

The second approach applies static program analysis
tools, such as METAL [14], PREfix [5], Clouseau [16] and
CSSV [10], to detect memory leaks and memory corrup-
tion. While these tools do not impose run-time overheads,
they may miss a lot of bugs and also generate many false
alarms because no accurate run-time information is avail-
able during static checks. In addition, some of these tools
require annotations from the programmer, which many pro-
grammers find too tedious.

The third approach, called dynamic monitoring, is com-
monly used by programmers to detect memory leaks and
memory corruption. Dynamic monitoring can be performed
either in software or with hardware support. Purify [15]
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is a state-of-the-art software-only dynamic tool for detect-
ing memory leaks and memory corruption. However, Pu-
rify and most other software dynamic tools have a ma-
jor limitation: incurring high run-time overhead. Some-
times these tools can slow down a program by up to 20
times [23, 7]. Therefore, they cannot be used during produc-
tion runs. iWatcher [32] is a recently proposed architectural
extension to reduce overheads for dynamic monitoring, but
it requires new hardware extensions and therefore cannot be
used in existing systems.

In this paper, we propose a low-overhead dynamic tool
called SafeMem to detect memory leak and memory cor-
ruption on-the-fly during production runs. It does not re-
quire any new hardware extensions. Instead, it makes a
novel use of existing Error-Correcting Code (ECC) memory
technology and exploits intelligent dynamic memory usage
behavior analysis to detect memory leaks and corruption.
ECC-protection is used to prune false positives in memory
leak detection, and to monitor illegal accesses, both to freed
memory buffers and to the two ends of allocated memory
buffers, to detect memory corruption. More specifically, our
work has the following contributions:

� A novel use of ECC memory technology to detect
memory leaks and memory corruption. Our experi-
mental results with seven real-world buggy applica-
tions show that this method generates few false posi-
tives (0-1 for memory leak detection, and 0 for mem-
ory corruption detection), and has low overhead ( only
1.6%-14.4%), 2-3 orders of magnitudes smaller than
Purify. Our results also show that, compared to page
protection, ECC protection can reduce the amount of
memory waste by a factor of 64-74 for memory mon-
itoring in memory corruption detection. Finally, ECC
protection is also effective in pruning false positives
(reduced from 2-13 to 0-1) for memory leak detection.

� A novel method that uses intelligent memory usage be-
havior analysis to detect memory leaks with few false
positives. This method is based on a novel obser-
vation of memory object lifetime, which is validated
through statistical analysis using three server programs
(see Section 3).

� SafeMem, a low-overhead tool that can be used to de-
tect memory leaks and memory corruption on-the-fly
during production runs for preventing security attacks
and improving software robustness.

The rest of the paper is organized as follows. Section 2 in-
troduces the ECC memory and our novel use of this technol-
ogy. Sections 3 and 4 present the methods to detect memory
leaks and memory corruption, respectively, followed by the
evaluation methodology in Section 5. Experiment results
are presented in section 6. Section 7 discusses the related
work, and section 8 concludes the paper.

2 ECC Memory

2.1 Background

Error-Correcting Code (ECC) memory is commonly used
in modern systems, especially server machines, to provide
error detection and correction in case of hardware mem-
ory errors. It is an extension of simple parity memory,
which can detect only single-bit errors. In contrast, ECC
not only detects single-bit and multi-bit errors, but it also
corrects single-bit errors on the fly, transparently. Unlike
parity memory, which uses a single bit to provide protection
to eight bits, ECC uses larger groupings: 7 bits to protect
32 bits, or 8 bits to protect 64 bits [18]. For convenience,
we call such a block of 32 bits or 64 bits an ECC-group.
ECC requires special chipset support. When supported and
enabled, ECC can function using ordinary parity memory
modules; this is the standard way that most motherboards
with ECC support operate. The chipset “groups” together
the parity bits of memory modules into the 7 or 8-bit block
needed for ECC.

Most ECC memory controllers support four modes: Dis-
abled, Check-Only, Correct-Error and Correct-and-Scrub.
In the Disabled mode, the memory controller disables all the
ECC functionalities. In the Check-Only mode, the memory
controller detects and reports single-bit and multi-bit errors,
but it does not correct them. With the Correct-Error mode
enabled, the memory controller not only detects single-bit
and multi-bit errors, but it also corrects single-bit errors.
This mode improves data integrity by seamlessly correct-
ing single-bit errors. With the Correct-and-Scrub mode en-
abled, the memory controller not only detects and corrects
errors, but it also scrubs memory periodically to check and
correct hardware errors. This mode provides the highest
data integrity.

ECC memory works as shown in Figure 1. At a write to
memory, the memory controller encodes the involved ECC-
groups using some device-specific coding algorithms. The
ECC “code” (7 or 8 bits) is stored with the data in mem-
ory. At a read to memory, or during memory scrubbing,
the memory controller reads the involved ECC-groups, in-
cluding both data and ECC codes. It also recomputes the
ECC codes based on the data just read and compares it with
the stored ECC codes. If they mismatch, the memory con-
troller automatically corrects single-bit errors, and reports
multi-bit errors to the processor using an interrupt, which is
delivered to the operating system.

To handle an ECC-error interrupt current operating sys-
tems, including both Linux and Microsoft Windows, simply
go to the panic mode or the blue screen and report an error
message to the end-user. The user has to reboot the machine
to solve the problem.
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Figure 1: Read/Write Operations for ECC Memory

2.2 Using ECC to Monitor Memory Accesses

2.2.1 Main Idea

Our work makes a novel use of ECC memory to monitor
memory accesses for software debugging. More specifi-
cally, we use ECC memory for two purposes: (1) detect-
ing illegal accesses (e.g., out-of-bound memory accesses,
or accesses to freed memory buffers) to monitored memory
locations; (2) pruning false positives in memory leak detec-
tion. More details about each specific usage are described
in Section 3 and 4.

Both usages require detection of accesses to some moni-
tored memory locations. To achieve this goal, we use ECC
protection in a way similar to page protection, which is
commonly exploited in shared virtual memory systems [20].
Even though ECC groups are either 32 bits or 64 bits in
granularity, using ECC for memory protection has to be at
cache-line granularity, because accesses to main memory
use this granularity.

The advantage of using ECC protection over using page
protection is that the former is at cache line granularity,
whereas the latter is at page granularity. Therefore, ECC
protection can significantly reduce the amount of false shar-
ing and padding space. In our experiments, we have com-
pared these two approaches quantitatively, and our results
show that ECC protection can reduce the amount of mem-
ory waste used for memory monitoring by up to 74 times
(see Section 6).

These advantages of ECC protection are also exploited
by some fine-grained distributed shared memory systems,
such as Blizzard [25]. Different from those works, we use
ECC protection for software debugging instead of imple-
menting cache coherence operations. Therefore, we have
different design trade-offs. In addition, they used special
ECC memory controllers, whereas we use a standard off-
the-shelf ECC memory controller, which has much more
limited functionality available to software. For example,
most commercial ECC memory controllers do not allow
software to directly access the ECC code. Moreover, un-
like page protection faults, operating systems do not deliver
the ECC-error interrupt to user-level programs. Therefore,

we need to first address all these challenges before we use
ECC for monitoring memory accesses to watched locations.

We modify the Linux operating system to provide three
new system calls: (1) WatchMemory(address, size), which
registers a memory region starting from address to be mon-
itored by SafeMem. The memory region and its size need to
be cache line aligned. (2) DisableWatchMemory(address),
which removes monitoring to the specified memory region.
(3) RegisterECCFaultHandler(function), which registers a
user-level ECC fault handler. When an ECC fault occurs,
the fault is delivered to this user-level handler.

In our work, we only need to detect the first access to
each monitored location because: (1) For memory corrup-
tion detection, the first access to a monitored location is a
bug. SafeMem then simply pauses program execution to al-
low programmers to attach an interactive debugger, such as
gdb, to check the program state and analyze the bug. (2) For
memory leak detection, the first access to a monitored loca-
tion indicates a false positive. Then this location no longer
needs to be monitored. Therefore, in both cases, the user-
level ECC fault handler of SafeMem can disable the mon-
itoring for the faulted lines using DisableWatchMemory()
system call.

2.2.2 Design Issues

Data Scrambling Since most commercial ECC memory
controllers do not allow software to directly modify an ECC
code, we use a special trick to “scramble” the ECC code
of a watched ECC-group. When WatchMemory is called,
SafeMem first disables the ECC functionality, and writes
the scrambled data into this ECC-group. It then flushes the
data from cache into memory. Since ECC is disabled, the
ECC code for this line remains the same, i.e., the old code.
Finally, SafeMem enables ECC. Figure 2 shows the pro-
cess of this trick. During the disable-enable period, we lock
the memory bus to avoid any other background memory ac-
cesses, such as those made by other processors or DMAs, so
that other memory locations are not affected by this Watch-
Memory operation. After this operation, the first access to
this location triggers an ECC fault because of the mismatch
between the old ECC code and the scrambled data.
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Figure 2: Implementation of WatchMemory

The data is not scrambled randomly. Instead, we use a
special scrambling scheme to ensure two properties: (1) The
scrambled data should trigger a multi-bit ECC fault instead
of a single-bit error, as most ECC memory can automati-
cally correct single bit errors without reporting to the oper-
ating system. (2) The scrambled data should have a unique
signature so that it can be easily differentiated from a real
hardware ECC error. In the prototype implementation of
SafeMem, we flip 3 fixed bits of the original data stored in
a watched line.

In addition, we also store the original data in a private
memory region of SafeMem in order to differentiate an ac-
cess fault from a real hardware memory error. With the
original data, the SafeMem ECC fault handler can recom-
pute the “scrambled” value and compare against the current
value stored in memory. If they do not match, it is a real
hardware ECC error. Otherwise, it is an access fault caused
by an access to this watched location.

Differentiate Hardware Errors from Access Faults The
main functionality of ECC memory is to detect memory
hardware errors, which does not interfere with our tech-
niques for two reasons. First, as we mentioned earlier, Safe-
Mem scrambles data in a special way. When an ECC fault
occurs, SafeMem first checks whether the line is monitored;
if so, SafeMem checks the data to see whether it matches the
scrambling signature. If yes, it is an access fault, otherwise,
it is a hardware error. Second, the data stored in monitored
regions is not useful because monitored regions are either
padded ends or leaked buffers. Therefore, even if the data is
modified because of a real hardware error, it is not critical
to the program’s execution. Moreover, the original data in
monitored regions is saved in SafeMem’s private memory.

Dealing with ECC Memory Scrubbing When the mem-
ory controller enables scrubbing, memory is scanned peri-
odically to check and correct hardware errors. Therefore,
special care needs to be taken in order to avoid undesired
ECC faults introduced by memory scrubbing. Since most
ECC memory controllers allow the OS to dynamically en-
able/disable scrubbing, SafeMem solves this problem by co-

ordinating with ECC memory controllers in the following
way: during scrubbing, SafeMem temporally unmonitors
all the watched regions and blocks the monitored program
until scrubbing finishes. Since scrubbing is infrequently
performed and only during idle periods, this will not sig-
nificantly affect performance. However, a better alternative
would be to scrub and unmonitor the memory at page gran-
ularity, which would require changes to ECC memory con-
trollers to signal the OS before each page scrubbing.

Dealing with Cache Effects To avoid the cache filtering
effect, the WatchMemory operation flushes the correspond-
ing cache line from the processor caches so that subsequent
accesses to this line must access memory and therefore trig-
ger the corresponding ECC fault. This technique also en-
sures that a write instruction to a watched line is also mon-
itored (even though writes to memory do not trigger ECC
checks). This is because a write to data that is not currently
in cache must first load the data from memory to cache, and
thereby triggers an ECC fault. After the first access is de-
tected, the line can remain in the processor cache without
being flushed because SafeMem only needs to detect the
first access to a watched line.

Dealing with Page Swapping Since ECC protection is
associated with physical memory, it can be affected by page
swapping which changes the virtual-to-physical page map-
ping. A simple way to address this problem is to pin mon-
itored pages: a page is pinned when any memory region
inside is monitored, and is unpinned when it has no mon-
itored memory regions. However, this method limits the
total amount of monitored memory. To solve this problem,
a better solution would be to modify the OS to unmonitor
all associated memory regions when a page is swapped out,
and re-monitor those regions when this page is swapped in.
For simplicity, we implement the first method in SafeMem.

2.2.3 Discussion

Unfortunately, ECC has several limitations that we cannot
overcome by simply using software tricks. Addressing these
limitations requires hardware changes. For example, even
though ECC protection is much finer grained than page pro-
tection, it is still larger than desired. In SafeMem, each dy-
namic buffer requires padding space of two cache lines. In
addition, each dynamic buffer size needs to be cache-line
aligned to avoid false sharing, which also wastes memory
space. If ECC protection could be done at word granularity,
such as in the Mondrian Memory Protection (MMP) [31],
the amount of memory waste could be further reduced. Un-
fortunately, Mondrian Memory Protection still does not ex-
ist in real hardware yet.
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Some aspects of our current ECC library are device-
specific. The reason is that most ECC memory controllers
export a narrow, limited interface to OS. Since our study
provides a strong motivation to utilize ECC for purposes
other than hardware memory error detection and correction,
we hope that the ECC-protection interface can be general-
ized to be more software-friendly, just like page protection.
In other words, the interface should include the following
two features: (1) An ECC memory controller allows the
OS to directly modify the ECC code associated with any
data. This feature is not only useful for applications like
SafeMem, but also allows software to dynamically fix some
transient memory errors without going to panic mode. (2)
An ECC memory controller can deliver precise interrupts of
ECC faults to the OS so that the OS can catch exactly the
faulted instruction. Even though SafeMem does not need
this feature for bug detection, this feature would allow Safe-
Mem to enhance its functionality, such as providing pro-
grammers with precise information regarding the occurred
bugs. With the above two features, SafeMem could be de-
signed with a better hardware-software layered architecture.

3 Detecting Memory Leaks

Not all memory leaks affect software reliability and avail-
ability. Trivial memory leaks (leaks that only happen several
times) result only in memory waste and a slight execution
slowdown due to increased paging. In contrast, continuous
memory leaks (non-stop leaking) can cause programs to run
out of virtual memory and eventually crash. Crashes are
especially catastrophic for long-running server programs,
such as web servers, because service unavailability is di-
rectly related to loss of business. Therefore, continuous
leaks are often exploited by malicious users to launch de-
nial of service attacks.

This paper focuses on continuous leaks because they
make software vulnerable. Our detection method first an-
alyzes the run-time dynamic memory usage behavior of a
program, then uses the learned behavior to detect outliers,
and finally exploits ECC-protection to prune false positives.

For the convenience of description, we use the following
terminology throughout this paper:

� Memory Object: a memory block allocated via mem-
ory allocation calls such as malloc, realloc, calloc, etc.

� Live Memory Object: a memory object that is not yet
deallocated.

� Lifetime of Memory Object: the period from the allo-
cation of a memory object to its deallocation.

� Memory Object Group: a group of memory objects.
In this paper, we use a tuple ������ �����	��
� to di-
vide memory objects into various groups, where ����

is the object’s size, and �����	��
 is the call-stack
signature1 when the object is allocated. Even though
it is possible to use other grouping methods, such as
program-specific types, our experiments show that our
grouping mechanism works well and does not require
any semantic information from programs.

3.1 Characteristics and Classification of Continu-
ous Memory Leaks

There are two main types of continuous memory leaks for
a memory object group, and each type has different charac-
teristics. The first type, called always leak (ALeak), refers
to leaks that always happen. In other words, the program
does not free a group of memory objects in all possible ex-
ecution paths. As a result, the number of memory objects
in this group grows rapidly, and each object has an infinite
lifetime. Detecting this type of memory leaks is relatively
easy since it has simple characteristics.

The second type, called sometimes leak (SLeak), refers to
leaks that sometimes happen. In other words, in some exe-
cution paths, the program deallocates the allocated memory
object, but in the other paths, the program does not free the
allocated memory object. Therefore, some memory objects
have finite lifetime whereas other objects of the same group
have infinite lifetime. The number of leaked memory ob-
jects grows slowly, but it can still lead to memory resource
exhaustion after a long period of time, resulting in program
crashes. The second type is much harder to detect since the
leak happens only in some execution paths.

Fortunately, based on our memory usage behavior anal-
ysis using several server programs, we found that most dy-
namic memory objects conform to some expected lifetime.
More specifically, the maximal lifetime of memory objects
that belong to the same group usually remains stable af-
ter some warm-up period. Therefore, if we can dynami-
cally capture the maximal lifetime for each object group, we
can detect outliers—memory objects whose lifetime signif-
icantly exceeds the expected maximal lifetime of the corre-
sponding object group.

Time here means the CPU time of the monitored pro-
gram, which excludes time used by other running programs
and time waiting for I/Os. Therefore, for server programs,
a long idle period between two consecutive client requests
would not affect our detection mechanism.

This observation is validated through statistical analysis
using three server programs. To measure the stability of
maximal lifetime for a memory object group, we introduce
a metric called WarmUpTime, which denotes how long it

1The call-stack signature is calculated by individually
applying the exclusive-OR and rotate functions to the return
addresses of the most recent four functions in the current
stack.
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Figure 3: Stability of maximal lifetime (MOG means Memory Object Group)

takes for this group’s maximal lifetime to become stable.
For a given memory object group, after the WarmUpTime,
objects that belong to this group never live longer than this
maximal lifetime.

Figure 3 shows the stability of maximal lifetime for three
server programs: ypserv, proftpd, and squid, which are later
used in our experiments to evaluate SafeMem. When we
collect statistics, we use normal inputs so the memory leak
bugs do not occur. Each curve on Figure 3 plots the cumula-
tive distribution of memory object groups whose WarmUp-
Time is smaller than a given value. For example, a point
��� �� on the curve indicates that �% of the memory object
groups in this program have reached the stable maximal life-
time after running for � seconds. Each memory object group
is labeled by a tuple ������ �����	��
�, described in the
previous subsection.

As shown in Figure 3, for all three programs, all memory
object groups reach their stable maximal lifetime quickly
in the very beginning of the program execution. We have
also run the programs much longer, but the results remain
the same. This validates our observation that the expected
maximal lifetime remains stable after some short warm-up
periods. Therefore, it can be used to detect potential mem-
ory leaks by dynamically monitoring each memory object’s
lifetime against the expected maximal lifetime associated
with the corresponding object group.

3.2 Detection Process

Based on the above observation, SafeMem detects these two
types of continuous memory leaks on-the-fly during pro-
duction runs. The detection process includes three steps:
(1) Dynamically analyze the memory usage behavior of
the monitored program; (2) Detect potential memory leaks
based on observed usage characteristics; (3) Use ECC pro-
tection to prune false positives.

Each of the three steps adds only a small overhead be-
cause step 1 and step 2 are performed periodically and only
at memory allocation or deallocation time instead of every
memory access, and step 3 is performed only for those rare
memory leak suspects. The first access to a suspect disables
ECC monitoring for this memory object.

3.2.1 Step1: Memory Usage Behavior Collection

For each memory object group, SafeMem dynamically col-
lects its allocation/deallocation behavior. More specifically,
SafeMem records two types of information: (1) lifetime
information and (2) memory usage information. The life-
time information includes the current maximal lifetime and
how long the maximal lifetime has been stable (stableTime).
Once again, time here is measured using the CPU time.

The memory usage information includes the number of
current live objects, the last allocation time, and the total
memory space currently occupied by this memory object
group. For each live memory object, it also records its al-
location time. All live objects within the same group are
linked together using a double-linked list.

At each memory allocation, the information associated
with the corresponding memory object group is updated.
More specifically, a new live object is added to this mem-
ory object group, and the number of current live objects is
incremented by one. The last allocation time and the to-
tal memory space currently occupied by this memory object
group are also updated accordingly.

Similarly, the information is also updated at each memory
deallocation. First, the lifetime of the deallocated object is
calculated by subtracting the current time by its allocation
time. If the lifetime is smaller than or within some tolerable
range (based on a pre-defined threshold) from the maximal
lifetime associated with the corresponding object group, the
maximal lifetime remains unchanged, and its stableTime is
incremented by the elapsed CPU processing time from the
last update. Otherwise, the maximal life time is updated to
be this object’s lifetime and the stableTime is reset to zero.
Finally, other information, such as the number of current
live objects and the total memory space currently occupied
by this memory object group, is also updated.

This step is implemented by wrapping the memory allo-
cation/deallocation functions such as malloc(), calloc(), re-
alloc(), free(), etc. For programs that use their own memory
allocators, we wrap their allocation and free functions.
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3.2.2 Step2: Outlier Detection

The detection techniques are different for different types
of memory leak. For each memory object group, it first
checks whether this group has ever called deallocation be-
fore. If so, it follows the detection procedure for SLeaks
(sometimes-leak). Otherwise, it continues the process of
ALeak (always-leak) detection.

To detect ALeaks, SafeMem monitors the memory usage
behavior. It first checks whether the number of live objects
of each object group exceeds some given threshold. If so,
it then checks whether the memory usage by this group is
continuously growing. This is done by checking the last
allocation time associated with this group. If the last allo-
cation time is long time ago (compared to the current time),
the memory usage is not dynamically growing. This is un-
likely to be memory leaks. Instead, it might be the case
that the program allocates many objects at initialization time
and these objects are used throughout the entire execution.
However, if the last allocation time is very recent, it indi-
cates that the memory usage is still growing. Therefore, this
group of memory objects are leak suspects, which should be
monitored using ECC protection for false positive pruning.

To detect SLeaks, SafeMem monitors the lifetime of each
live object. An object is singled out as a suspect to be mon-
itored using ECC protection if two conditions hold: (1) this
object has been alive for more than two times its expected
maximal lifetime, and (2) the maximal lifetime for the cor-
responding object group has been relatively stable for a pe-
riod of time (longer than a given threshold). If condition 2
is not true, no outliers will be singled out because the detec-
tion confidence is very low in such cases. Because all live
memory objects of the same group are linked in the order
of their allocation time, SafeMem only needs to check the
top few oldest memory objects’ lifetimes to detect potential
SLeaks.

The detection process is triggered after a warm-up pe-
riod, and is periodically performed only at memory allo-
cation/deallocation time. More specifically, at each mem-
ory allocation/deallocation, if the elapsed time from the last
check is greater than a pre-defined parameter, called the
checking-period, the detection process is performed. There-
fore, this step has a very small overhead.

It is safe to perform the detection process only at mem-
ory allocation/deallocation time. If the program has not per-
formed any allocation/deallocation for a long time, there is
no need to trigger the detection process because the mem-
ory usage is not actively growing. Therefore, even if some
memory objects have already been leaked, it will not cause
the program to crash since the memory usage has stopped
growing. As mentioned before, our study focuses on de-
tecting continuous memory leaks that can affect system re-
liability and availability.

3.2.3 Step3: False Positive Pruning Using ECC Protec-
tion

When an object is marked as a suspect during Step 2, it
is monitored using ECC protection to prune false positives
from real leaks. This is based on the observation that if
a suspect is accessed again, it is unlikely to be a memory
leak. If it has never been accessed for a threshold of time, it
is reported as a memory leak.

The pruning procedure works as follows. Each suspect is
monitored by calling WatchMemory. The first access to this
suspect will trigger the ECC protection handler which then
removes this object from the suspect list and turns off the
ECC monitoring for this object. If this suspect is an SLeak
suspect, this object’s allocation time is reset to the current
time to catch possible future leaks (an object can become a
suspect again if it continues to live longer than the expected
maximal lifetime). The maximal lifetime associated with
this object group is then updated to be the current living
time of this suspect to avoid other similar false positives.

The pruning process does not impose significant over-
head since it is only performed on rare suspects. In addi-
tion, only the first access to a suspect needs to pay the extra
overhead of triggering and executing the ECC fault handler.

4 Detecting Memory Corruptions

Memory corruption can be caused by many reasons, among
which buffer overflow and accesses to freed memory are
two of the most common. Buffer overflow is a particularly
important type of memory corruption because it is often
exploited by viruses to attach and execute malicious code.
Therefore, SafeMem focuses on detecting buffer overflows
and accesses to freed memory, both of which are also the
major types of bugs detected by Purify.

To detect buffer overflow, SafeMem pads the two ends
of each buffer and then uses ECC protection to guard these
paddings; any accesses to the padding are reported as buffer
overflow bugs. The current implementation of SafeMem
uses a cache line as the padding unit. It could easily use
longer paddings, but our experiments on applications with
buffer overflow bugs show that the current setting is good
enough. To reduce false sharing, each memory buffer is
cache line aligned. When a buffer is deallocated, the ECC
monitoring of its paddings is disabled.

To detect accesses to freed memory, SafeMem uses ECC
protection to watch all freed memory buffers. An access
to such a buffer will trigger the ECC fault handler which
reports this access as a bug. When a freed memory buffer
is reallocated, ECC monitoring for this buffer will be dis-
abled. Similar to buffer overflow detection, each memory
buffer and its size need to be cache line-aligned to avoid
false sharing.
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The overhead to detect both types of memory corruption
is relatively small because it only needs an extra system call
at the memory allocation/deallocation time. Since most pro-
grams do not have very frequent allocation/deallocation, the
overhead imposed by SafeMem is small, as shown in our
experimental results (See Section 6).

ECC protection can also be used to detect other types of
bugs, even though the current implementation of SafeMem
does not support them yet. For example, accesses to unini-
tialized objects could also be detected using ECC protec-
tion. After a memory buffer is allocated, it can be protected
using ECC protection. The first write to this buffer would
disable the ECC protection, but the first read would be de-
tected and reported as a bug.

5 Methodology

5.1 Platform

Our experiments are conducted on a real system with a 2.4
GHz Pentium processor, an ECC memory controller with
the Intel E7500 chipset [18], and 1 GByte of memory. Our
operating system extensions (the three new system calls) are
added into Linux kernel 2.4.20. SafeMem is implemented
as a shared library and can be dynamically preloaded in ad-
vance to avoid recompilation of the tested programs (unless
the programs use their own memory allocators, in which
case we need to do some simple changes to intercept their
memory allocation/deallocation calls).

In our evaluation, we compare the time overhead of Safe-
Mem to Purify [15], a state-of-the-art dynamic bug detec-
tion tool. Purify can detect memory corruption and mem-
ory leak bugs. More specifically, in order to find memory-
access errors, Purify maintains two bits for each byte of
memory to track its status: allocated or freed, and ini-
tialized or uninitialized. Purify checks each memory op-
eration against its status and reports illegal accesses. As
for memory leaks, at some point during program execu-
tion or when the tested program exits, Purify applies an al-
gorithm similar to the conventional mark-and-sweep algo-
rithm [15], which utilizes conservative pointer tracking to
scan the whole heap. Performing such an expensive opera-
tion adds large overhead and also significantly perturbs the
program’s response time, especially for server programs.
Therefore, these tools are always used for in-house debug-
ging instead of during production runs.

We evaluate seven different real-world, buggy applica-
tions shown on the Table 1, from complicated network
server daemons, such as squid and proftpd, to simple com-
mon utilities, e.g., gzip. We can divide these tested appli-
cations into two groups: one containing memory leaks, and
the other containing memory corruption bugs.

Based on these applications, we have conducted two sets

of experiments. The first set evaluates the functionality of
SafeMem in detecting bugs, and the second set compares
the overhead of SafeMem to Purify’s using bug-free runs
of the tested applications (with normal inputs). In addition,
we also evaluate the benefits of ECC protection in reducing
memory waste and pruning false positives.

Bugs Application LOC Description

ypserv1 11,200 a NIS server
Memory proftpd 68,700 a ftp server

Leak squid1 95,000 a Web proxy cache server
ypserv2 9,700 a NIS server

Memory gzip 8,900 a compression utility
Corruption tar 34,000 an archiving utility

squid2 93,000 a Web proxy cache server

Table 1: Tested Applications (LOC means lines of code.
squid1 and squid2 are different versions of squid, but one
contains memory leaks and the other contains a memory
corruption bug. Similarly, ypserv1 and ypserv2 are different
versions of ypserv, but one contains ALeaks and the other
contains SLeaks).

Even though several previous studies [23] have directly
compared their tools with Purify for detecting only one type
of bug, memory corruption, we do note that Purify can
check for other types of bugs, such as accesses to unini-
tialized variables, which are not detected by SafeMem. Un-
fortunately, the current version of Purify does not provide
options to allow us to disable these checks to make the com-
parison fair. However, based on our experience and un-
derstanding of Purify’s techniques, disabling these checks
would not reduce its overhead significantly. After all, Purify
needs to monitor every memory access no matter whether
it is for detecting memory corruption or for detecting ac-
cesses to uninitialized variables. Moreover, this does not
have much impact on the interpretation of our results since
SafeMem has a substantial overhead reduction (by orders of
magnitudes) over Purify.

6 Results

6.1 Microbenchmark Results

First we conduct some microbenchmarks to measure the
cost of the ECC monitoring system calls. Table 2 shows
the cost for the WatchMemory() and DisableWatchMem-
ory() system calls on our machine. The costs for these two
calls are relative cheap (less than 2 microseconds), compa-

Calls Time(microseconds)
ECC WatchMemory 2.0

Protection DisableWatchMemory 1.5

Page Protection mprotect 1.02

Table 2: Time for the ECC system calls
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Bugs Application Bug SafeMem Overhead(%) of Detecting Purify Reduction
Detected? Only ML Only MC ML + MC Overhead (%) by SafeMem

ypserv1 YES 1.0 4.2 6.0 941 157X
Memory proftpd YES 0.9 2.6 3.6 2093 581X

Leak squid1 YES 5.6 7.8 13.7 1782 130X
(ML) ypserv2 YES 0.7 10.5 11.5 1308 114X

Memory gzip YES 0.3 2.2 3.0 4979 1660X
Corruption tar YES 0.7 1.0 1.6 475 297X

(MC) squid2 YES 6.1 8.1 14.4 1720 119X

Table 3: Time overhead (%) comparison between SafeMem and Purify

rable to the page protection call mprotect() provided by the
standard Linux system. Ours are slightly higher than mpro-
tect because our calls need to pin (unpin) the page in the
virtual memory system.

6.2 Overall Results

Table 3 shows the overall results of SafeMem with seven
buggy applications. First, SafeMem can detect all the tested
bugs (both memory leaks and memory corruption). This
shows that SafeMem is effective in achieving its expected
functionality.

We also compare SafeMem’s overhead with Purify’s. For
fair comparison, SafeMem enables both memory leak detec-
tion and memory corruption detection for all experiments,
even though each application has only one type of bug. To
avoid disturbance by the bugs, we use normal inputs when
we measure overheads so the bugs do not occur and program
can run correctly to completion.

As shown in Table 3 (column “ML+MC”), SafeMem
adds only 1.6%-14.4% overhead for all tested applications,
a factor of 114-1660 times smaller than Purify’s overhead
(4.8X - 49.8X). For example, for gzip SafeMem adds only
3.0% overhead, whereas Purify slows down this application
by a factor of 49.8. This is because SafeMem does not need
to monitor each memory access. Instead, it relies on ECC
protection and intelligent memory usage behavior analysis
to detect memory corruption and memory leaks. In con-
trast, Purify needs to intercept every memory access in or-
der to detect memory corruption, and needs to do a mark-
and-sweep over the entire memory space in order to detect
memory leaks. Our small overhead indicates that SafeMem
can be used to detect memory leaks and memory corruption
during production runs.

We further measure SafeMem’s overhead for detecting
only memory leaks and detecting only memory corrup-
tion, respectively. The memory leak detection overhead
comes mainly from the information collection and analy-
sis, whereas the memory corruption overhead comes mainly
from the ECC monitoring and unmonitoring. Table 3 also
shows that overhead caused by memory corruption detec-
tion is more than that caused by memory leak detection.
This is because memory corruption detection needs to en-
able ECC monitoring at each buffer allocation and disable

ECC monitoring at each deallocation. Memory leak detec-
tion, however, only enables monitoring for the suspected
memory objects, which usually is many fewer than the total
number of allocated memory objects.

6.3 Benefits of ECC Protection

Table 4 shows the benefit of ECC protection over page pro-
tection in reducing memory waste for padding and align-
ment. As shown on this table, ECC-protection adds only
0.084%-334% of total memory overhead (not necessarily
used at the same time) for the tested applications, whereas
page-protection has 6.06%-231.78X of memory space over-
head! In other words, ECC-protection can reduce the mem-
ory waste of page-protection by a factor of 64-74! This
shows that ECC protection is a better mechanism to use for
detecting memory leaks and memory corruption.

Bugs Application Memory Overhead(%) Reduction
ECC- Page-Protection by ECC

ypserv1 57 3900 68X
Memory proftpd 35 2357 67X

Leak squid1 26.4 1950 74X
ypserv2 3.6 233 64X

Memory gzip 0.084 6.06 72X
Corruption tar 334 23178 69X

squid2 28.7 2120 73X

Table 4: Comparison of space overhead (%) of ECC-
protection based approach vs. page-protection based ap-
proach. The overhead is calculated over each applications’
actual memory usage throughout the whole execution.

6.4 Effects of ECC-Protection in False Pruning
for Memory Leaks

Table 5 reports the effects of ECC-protection in false prun-
ing for memory leaks. The results show that this pruning
mechanism is very effective: it is able to reduce the number
of false positives from 2-13 to 0-1. For example, for squid1,
without this pruning scheme, SafeMem would have intro-
duced 13 false positives instead of 1 false positive, which is
much harder for programmers. SafeMem does not have any
false positives in memory corruption detection because any
accesses to padding areas or freed memory buffers are true
memory corruption.
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Application False Positives
Before Pruning After Pruning

ypserv1 7 0
proftpd 9 0
squid1 13 1

ypserv2 2 0

Table 5: False memory leaks reported before and after using
ECC-protection (No false positives for memory corruption
detection by SafeMem)

7 Related Work

7.1 Memory Leak Detection

Much research has been conducted on addressing the
memory leak problem. Garbage collection [30, 4] is a
commonly-used approach to avoid memory leaks in pro-
grams. However, it works safely only for type-safe lan-
guages such as Java. Therefore, for server programs that
are typically written in C/C++, this method is seldom used.
In addition, garbage collection also incurs high overhead to
perform mark-sweep operations. Such high overhead can
significantly perturb the response time of server programs.
Another method relies on language support. For example,
linear types allow only one reference to each dynamically
allocated object [29]. Once a linear-typed variable is read,
its content is nullified. Even though memory management
is simplified with this method, it is difficult to use such se-
mantics to write programs.

So far two approaches have been proposed to detect
memory leaks for server programs written in C/C++. The
first approach uses static program analysis to catch poten-
tial memory leaks without executing the program. Ex-
amples of static tools include PREfix [5], METAL [14]
and Clouseau [16]. Clouseau is a recently proposed static
checker that has improved previous static tools by avoid-
ing global pointer aliasing analysis using an object owner-
ship model. Promising results have been shown for using
this tool to detect many memory leaks in C/C++ programs.
However, similar to other static checkers, this tool has a lot
of false positives since it does not have the accurate infor-
mation available only during execution. In addition, as the
authors of Clouseau have acknowledged, this tool cannot
handle type casting, pointer arithmetic, arrays of pointers,
address of a pointer member field in a class or structure,
concurrent execution and exception handling [16]. These
limitations significantly restrict its usage in detecting mem-
ory leaks for large server programs. In contrast, SafeMem
does not have these restrictions since it is based on memory
usage behavior analysis instead of program static analysis.

The other approach detects memory leaks dynamically at
run-time. Examples of dynamic tools include the state-of-
the-art Purify [15] and Valgrind [26]. These tools moni-
tor every dynamically allocated memory object, and report

leaked memory by mark-sweeping the virtual memory for
unreferenced objects. While these tools do not suffer from
the same limitations as static tools, mark-sweeping the en-
tire virtual address space can add significant overhead, es-
pecially for server programs that usually have large address
spaces for buffering or caching. During a mark-sweeping
operation, the execution of the program needs to pause
to avoid inconsistency, which makes the service unavail-
able during the entire mark-sweeping operation. Therefore,
these tools are always used for in-house debugging instead
of during production runs. Our experiments have shown that
SafeMem has significantly less overhead than Purify.

7.2 Memory Corruption

Many tools have been proposed for detecting memory cor-
ruption. They can be classified into static tools and dynamic
tools. In this section, we briefly discuss those that are not
described in the earlier sections.

Static tools check for memory corruption statically us-
ing program analysis. For example, LCLint [11] is an
annotation-assisted lightweight static checking tool. It has
been extended by Evans and Larochelle [12]. They exploit
semantic comments that are added to source code and stan-
dard libraries to detect likely buffer overflow. CSSV, pro-
posed by Sagiv et al. in [10], statically detects unsafe
string operations in C programs with the aid of procedure
summaries. Though more accurate, writing procedure sum-
maries imposes an extra burden on the programmer.

Dynamic tools check for memory corruption at run time.
Examples of dynamic tools include Purify [15], CCured [23,
7], SafeC [1], Jones and Kelly’s tool [19], and Stack-
Guard [9]. StackGuard focuses only on stack smashing
bugs, ignoring other types of memory corruption.

Purify instruments the object code at link time and does
not require source code changes. However, to detect mem-
ory corruption bugs, such as buffer overflow or accesses to
freed memory, Purify needs to intercept every memory ac-
cess, which incurs very high overhead, up to a factor of 50.

Jones and Kelly’s tool [19], PointGuard [8], SafeC [1]
and CRED [24] can detect buffer overflows by dynamically
checking each pointer dereference. However, these tools
require pointer-object associations in order to find whether
a pointer is out-of-bounds. These tools fail when such as-
sociations are not available (because of fine-grained pointer
manipulation through various type-casting) or when the bug
does not violate pointer-type/object association (such as a
wrong pointer assignment bug caused by copy-paste). Our
tool does not have such limitations, since SafeMem does not
require any pointer-object association. It simply detects in-
valid accesses to monitored areas, no matter what variable
name such an access uses.

CCured [23, 7] is a hybrid static and dynamic bug detec-
tion tool. It first attempts to enforce a strong type system
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in C programs via static analysis. Portions of the program
that cannot be guaranteed by the CCured type system are
instrumented with run-time checks to monitor the safety of
executions. Cyclone [13] is very similar. It changes the
pointer representation to detect pointer dereference error.
In addition to the same limitations as SafeC and CRED,
CCured and Cyclone require non-trivial changes to appli-
cations’ source code to conform to their C standard. In
contrast, SafeMem requires little change to programs. In
addition, SafeMem can also detects memory leaks.

iWatcher [32] is another related work. It can also monitor
accesses to watched locations. Even though it imposes less
overhead than ECC protection, it requires extension to the
existing microprocessor. In contrast, SafeMem does not re-
quire any extension and can work in existing systems with
ECC memory support.

7.3 Other Related Work

Compiler lifetime analysis has been used in the garbage col-
lection [3, 17] as an optimization to shift some of the run-
time overhead to compile-time. Dynamic lifetime analy-
sis has also been used in the garbage collection [21, 27]
and dynamic memory allocation [2]. Based on profiling in-
formation, previous work divides memory objects into two
groups: short-lived and long-lived, and applies faster mem-
ory allocation or garbage collection methods to short-lived
objects. Our method for memory leak detection is based
on dynamic lifetime analysis. Instead of improving per-
formance as done by previous work, our work focuses on
detecting memory leaks, which requires more accurate life-
time information and more intelligent lifetime analysis.

As we mentioned earlier in Section 2, our work is
also related to previous research on shared virtual mem-
ory systems such as IVY [20], especially those on fine-
grained distributed shared memory systems (DSMs) such
as Blizzard [25]. Those works use page-protection or ECC
protection to implementation cache-coherence operations,
whereas our work uses it for software debugging. There-
fore, the design trade-offs are different.

8 Conclusions

This paper presents an approach called SafeMem that makes
a novel use of ECC memory for detecting memory leaks and
memory corruption, two major forms of software bugs that
contribute significantly toward software vulnerabilities. Our
approach does not require any new hardware extensions and
can work with existing systems with ECC memory, which
is commonly used in modern systems. Moreover, we also
present a new method that uses intelligent memory usage
behavior analysis to detect memory leaks.

We have evaluated SafeMem using seven real-world
buggy applications. Our results show that SafeMem can
detect all tested bugs with only 1.6%-14.4% overhead, 2-
3 orders of magnitude smaller than the commonly used
commercial tool, Purify. These results indicate that Safe-
Mem can be used for on-the-fly detection of memory leaks
and memory corruption during production runs. Moreover,
our results also show that ECC protection can reduce the
amount of wasted memory by a factor of 64-74 compared
to page protection. Finally, ECC protection is also very ef-
fective in pruning false positives for memory leak detection.

We plan to extend our work in several dimensions in
the future. First, we have evaluated SafeMem with a lim-
ited number (only seven) of applications since it is very
difficult to find real-world applications that contain well-
documented bugs (e.g. what inputs to use in order to gen-
erate the bug). Second, we plan to compare SafeMem with
other tools. Unfortunately, most existing tools are not pub-
licly available, and some available tools are either unable to
support C/C++ programs or require significant modification
to applications to conform to their standard. Third, we plan
to investigate how to use ECC memory for other software
debugging problems.
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