
BugBench: Benchmarks for Evaluating Bug Detection Tools
Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou and Yuanyuan Zhou

Department of Computer Science
University of Illinois at Urbana Champaign, Urbana, IL 61801

ABSTRACT
Benchmarking provides an effective way to evaluate different
tools. Unfortunately, so far there is no good benchmark suite to
systematically evaluate software bug detection tools. As a result,
it is difficult to quantitatively compare the strengths and limita-
tions of existing or newly proposed bug detection tools.

In this paper, we share our experience of building a bug bench-
mark suite called BugBench. Specifically, we first summarize the
general guidelines on the criteria for selecting representative bug
benchmarks, and the metrics for evaluating a bug detection tool.
Second, we present a set of buggy applications collected by us,
with various types of software bugs. Third, we conduct a pre-
liminary study on the application and bug characteristics in the
context of software bug detection. Finally, we evaluate several ex-
isting bug detection tools including Purify, Valgrind, and CCured
to validate the selection of our benchmarks.

1 Introduction

1.1 Motivation
Software bugs account for more than 40% system failures [20],
which makes software bug detection an increasingly important re-
search topic. Recently, many bug detection tools have been pro-
posed, with many more expected to show up in the near future.
Facing ever so many tools, programmers need a guidance to se-
lect tools that are most suitable for their programs and occurring
failures; and researchers also desire a unified evaluation method to
demonstrate the strength and weakness of their tools versus others.
All these needs strongly motivate a representative, fair and com-
prehensive evaluation benchmark suite for the purpose of evaluat-
ing software bug detection tools.

Benchmark is a standard of measurement or evaluation, and
an effective and affordable way of conducting experiments [28].
A good all-community accepted benchmark suite has both tech-
nique and sociality impact. In the technical aspect, evaluations
with standard benchmarks are more rigorous and convincing; al-
ternative ideas can be compared objectively; problems overlooked
in previous research might be manifested in benchmarking. In
the social aspect, building benchmark enforces the collaboration
within community and help the community to form a common un-
derstanding of the problem they are facing [26]. There are many
successful benchmark examples, such as SPEC (Standard Perfor-
mance Evaluation Corporation) benchmarks [27], and TPC series
(Transaction Processing Council) [29], both of which have been
widely used by the corresponding research and product develop-
ment communities.

However, in the software bug detection area, there is no widely-
accepted benchmark suite to evaluate existing or newly proposed
methods. As a result, many previous studies either use syn-
thetic toy-applications or borrow benchmarks (such as SPEC and
Siemens) from other research areas. While such evaluation might
be appropriate to use for proof of concept, it hardly provides a
solid demonstration of the unique strength and shortcomings of
the proposed method. Being aware of this problem, some stud-
ies [5, 23, 32] use real buggy applications for evaluation, which

makes the proposed tools much more convincing. Unfortunately,
based on our previous experience of evaluating our own bug de-
tection tools [18, 24, 32, 33], finding real applications with real
bugs is a time-consuming process, especially since many bug re-
port databases are not well documented for our purposes, i.e., they
only report the symptoms but not the root causes. Furthermore,
different tools are evaluated with different applications, making it
hard to cross-compare tools with similar functionality.

Besides benchmarking, the evaluation criteria of software bug
detection tools are also not standardized. Some work evaluated
only the execution overhead using SPEC benchmarks, completely
overlooking the bug detection functionality. In contrast, some
work [16, 18] did much more thorough evaluation. They not only
reported false positives and/or false negatives, but also provided
the ranking of reported bugs.

As the research area of software bug detection starts boom-
ing with many innovative ideas, the urgency of a unified evalua-
tion method with a standard benchmark suite has been recognized,
as indicated by the presence of this workshop. For example, re-
searchers at IBM Haifa [6] advocate building benchmarks for test-
ing and debugging concurrent programs. Similarly, although not
formally announced as benchmark, a Java application set, HEDC
used in [31], is shared by a few laboratories to compare the effec-
tiveness of data race detection methods.

1.2 Our Work
Benchmark suite building is a long-term, iterative process and
needs the cooperation from all over the community. In this pa-
per, we share our experience of building a bug benchmark suite
as a vehicle to solicit feedbacks. We plan to release the current
collection of buggy applications soon to the research community.
Specifically, this paper reports our work on bug benchmark design
and collection in the following aspects:
(1) General guidelines on bug benchmark selection criteria
and evaluation metrics: By learning from successful bench-
marks in other areas and prior unsuccessful bug benchmark tri-
als, we summarize several criteria that we follow when selecting a
buggy application into our benchmark suite. In addition, based on
previous research experience and literature research in software
bug detection, we also summarize a set of quantitative and quali-
tative metrics for evaluating bug detection tools.
(2) A C/C++ bug benchmark suite BugBench: By far, we have
collected 17 C/C++ applications for our BugBench and we are still
looking for more applications to enrich the suite. All of the appli-
cations are from the open source community and contain various
software defects including buffer overflows, stack smashing, dou-
ble frees, uninitialized reads, memory leaks, data races, atomic
violations, semantic bugs, etc. Some of these buggy applications
have been used by our previous work [18, 24, 32, 33], and also
forwarded by us to a few other research groups at UCSD, Purdue,
etc in their studies [7, 22].
(3) A preliminary study of benchmark and bug characteris-
tics: We have studied the characteristics of several benchmarks
that contain memory-related bugs, including memory access fre-
quencies, malloc frequencies, crash latencies (the distance from
the root cause to the manifestation point), etc., which would af-
fect the overhead and bug-detection capability of a dynamic bug



detection tool. To our best knowledge, ours is one of the first in
studying buggy application characteristics in the context of soft-
ware bug detection.
(4) A preliminary evaluation of several existing tools: To val-
idate our selection of benchmarks and characteristics, we have
conducted a preliminary evaluation using several existing tools in-
cluding Purify [12], Valgrind [25] and CCured [23]. Our prelimi-
nary results show that our benchmarks can effectively differentiate
the strengths and limitations of these tools.

2 Lessons from Prior Work
2.1 Successful Benchmark in Other Areas
SPEC (Standard Performance Evaluation Cooperative) was
founded by several major computer vendors in order to “provide
the industry with a realistic yardstick to measure the performance
of advanced computer systems” [3]. To achieve this purpose,
SPEC has very strict application selection process. First, candi-
dates are picked from those that have significant use in their fields,
e.g. gcc from compiler field, and weather prediction from scien-
tific computation field. Then, candidates are checked for their clar-
ity and portability over different architecture platforms. Qualified
candidates will be analyzed for detailed dynamic characteristics,
such as instruction mix, memory usage, etc. Based on these char-
acteristics, SPEC committee decides whether there are enough di-
versity and little redundancy in the benchmark suite. After sev-
eral iterations of the above steps, a SPEC-benchmark is finally
announced.
TPC (Transaction Processing Council) was founded in the mid-
dle 80’s to satisfy the demand of comparing numerous database
management systems. TPC benchmark shares some com-
mon properties as that in SPEC, i.e. representative, diverse,
and portable, etc. Take TPC-C (an OLTP benchmark) as an
example[17]. To be representative, TPC-C uses five real-world
popular transactions: new order, payment, delivery, order status,
and stock level. In terms of diversity, these transactions cover al-
most all important database operations. In addition, TPC-C has
a comprehensive evaluation metric set. It adopts two standard
metrics: new-order transaction rate and price/performance, to-
gether with additional tests for ACID properties, e.g. whether the
database can recover from failure. All these contribute to the great
success of TPC-C benchmark.

2.2 Prior Benchmarks in Software Engineering
and Bug Detection Areas

Recently, much progress has been made on benchmarking in soft-
ware engineering-related areas. CppETS [26] is a benchmark suite
in reverse engineering for evaluating “factor extractors”. It pro-
vides a collection of C++ programs, each associated with a ques-
tion file. Evaluated tools will answer the questions based on their
factor extracting results and get points from their answers. The fi-
nal score from all test programs indicates the performance of this
tool. This benchmark suite is a good vehicle to objectively evalu-
ate and compare factor extractors.

The benchmark suites more related to bug detection are
Siemens benchmark suite [11] and PEST benchmark suite [15]
for software testing. In these benchmark suites, each application is
associated with some buggy versions. Better testing tools can dis-
tinguish more buggy versions from correct ones. Although these
benchmark suites provide a relatively large bug pool, most bugs
are semantic bugs. There is almost no memory-related bugs and
definitely no multi-threading bugs. Furthermore, the benchmark
applications are very small (some are less than 100 line of code),
hence cannot represent real bug detection scenarios and can hardly

be used to measure time overhead. Therefore, they are not suitable
for serving as bug detection benchmarks.

In the bug detection community, there is not much work done in
benchmarking. Recently, researchers in IBM Haifa [14] propose
building multithreading program benchmarks. However, their ef-
forts are unsuccessful as also acknowledged in their following pa-
per [6], because they rely on students to purposely generate buggy
programs instead of using real ones.

3 Benchmarking Guideline

3.1 Classification of Software Bugs
In order to build good bug benchmarks, we first need to classify
software bugs. There are different ways to classify bugs [1, 15], in
this section we make classification based on different challenges
the bug exposes to the detection tools. Since our benchmark suite
cannot cover all bug types, in the following we only list the bug
types that are most security critical and most common. They are
also the design focus of most bug detection tools.
Memory related bugs Memory related bugs are caused by im-
proper handling of memory objects. These bugs are often ex-
ploited to launch security attack. Based on US-CERT vulner-
ability Notes Database [30], they contribute the most to all re-
ported vulnerabilities since 1991. Memory-related bugs can be
further classified into: (1) Buffer overflow: Illegal access beyond
the buffer boundary. (2) Stack smashing: Illegally overwrite the
function return address. (3) Memory leak: Dynamically allocated
memory have no reference to it, hence can never be freed. (4)
Uninitialized read: Read memory data before it is initialized. The
reading result is illegal. (5) Double free: One memory location
freed twice.
Concurrent bugs Concurrent bugs are those that happen only
in multi-threading (or multi-processes) environment. They are
caused by ill-synchronized operations from multiple threads. Con-
current bugs can be further divided into following groups: (1) Data
race bugs: Conflicting accesses from concurrent threads touch
the shared data in arbitrary order. (2) Atomicity-related bugs: A
bunch of operations from one thread is unexpectedly interrupted
by conflicting operations from other threads. (3) Deadlock: In re-
source sharing, one or more processes permanently wait for some
resources and can never proceed any more.

An important property of concurrent bugs is un-deterministic,
which makes them hard to be reproduced. Such temporal sensitiv-
ity adds extra difficulty to bug detection.
Semantic bugs A big family of software bugs are semantic bugs,
i.e. bugs that are inconsistent with the original design and the
programmers’ intention. We often need semantic information to
detect these bugs.

3.2 Classification of Bug Detection Tools
Different tools detect bugs using different methods. A good
benchmark suite should be able to demonstrate the strength and
weakness of each tool. Therefore, in this section, we study the
classification of bug detection tools, by taking a few tools as ex-
amples and classifying them by two criteria in Table 1.

Static Dynamic Model Checking
Programming-rule PREfix [2] Purify [12] VeriSoft[9]
based tools RacerX [4] Valgrind [25] JPFinder[13]
Statistic-rule CP-Miner [18] DIDUCE [10] CMC[21]
based tools D. Engler’s [5] AccMon [32]

Liblit’s [19]
Annotation-based ESC/Java [8]

Table 1: Classification of a few detection tools



As shown in Table 1, one way to classify tools is based on
the rules they use to detect bugs. Most detection tools hold
some “rules” in mind: code violating the rules is reported as
bug. Programming-rule-based tools use rules that should be
followed in programming, such as “array pointer cannot move
out-of-bound”. Statistic-rule-based approaches learn statistically
correct rules (invariants) from successful runs in training phase.
Annotation-based tools use programmer-written annotations to
check semantic bugs.

We can also divide tools into static, dynamic and model check-
ing. Static tools detect bugs by static analysis, without requiring
code execution. Dynamic tools are used during execution, analyz-
ing run-time information to detect bugs on-the-fly. They add run-
time overhead but are more accurate. Model checking is a formal
verification method. It was usually grouped into static detection
tools. However, recently people also use model checking during
program execution.

3.3 Benchmark Selection Criteria
Based on the study in section 2 and 3.1, 3.2, we summarize fol-
lowing bug detection benchmark selection criteria. (1) Represen-
tative: The applications in our benchmark suite should be able to
represent real buggy applications. That means: First, the appli-
cation should be real, implemented by experienced programmers
instead of novices. It is also desirable if the application has signifi-
cant use in practice. Second, the bug should also be real, naturally
generated, not purposely injected. (2) Diverse: In order to cover
a wide range of real cases, the applications in benchmark should
be diverse in the state space of some important characteristics, in-
cluding bug types; some dynamic execution characteristics, such
as heap and stack usage, the frequency of dynamic allocations,
memory access properties, pointer dereference frequency, etc; and
the complexity of bugs and applications, including the bug’s crash
latency, the application’s code size and data structure complex-
ity, etc. Some of these characteristics will be discussed in detail
in section 4.2. (3) Portable: The benchmark should be able to
evaluate tools designed on different architecture platforms, so it is
better to choose hardware-independent applications. (4) Accessi-
ble: Benchmark suites are most useful when everybody can easily
access them and use them in evaluation. Obviously, proprietary
applications can not meet this requirement, so we only consider
open source code to build our benchmark. (5) Fair: The bench-
mark should not bias toward any detection tool. Applying above
criteria, we can easily see that benchmarks like SPEC, Siemens
are not suitable in our context: many SPEC applications are not
buggy at all and Siemens benchmarks are not diverse enough in
code size, bug types and other characteristics.

In addition to the above five criteria designed for selecting ap-
plications into the bug benchmark suite, application inputs also
need careful selection. A good input set should contain both cor-
rect inputs and bug-triggering inputs. Bug-triggering inputs will
expose the bug and correct inputs can be used to calculate false
positives and enable the overhead measurement in both buggy runs
and correct runs. Additionally, a set of correct inputs can also be
used to unify the training phase of invariant-based tools.

3.4 Evaluation Metrics
The effectiveness of a bug detection tool has many aspects. A
complete evaluation and comparison should base on a set of met-
rics that reflect the most important factors. As shown in Table 2,
our metric set is composed of four groups of metrics, each repre-
senting an important aspect of bug detection.

Most metrics can be measured quantitatively. Even for some
traditionally subjective metric, such as “pinpoint root cause”, we
can measure it quantitatively by the distance from the bug root
cause to the bug detection position in terms of dynamic and/or

Functionality Metrics Overhead Metrics
Bug Detection False Positive Time Overhead
Bug Detection False Negative Space Overhead
Easy to Use Metrics Static Analysis Time
Reliance on Manual Effort Training Overhead
Reliance on New Hardware Dynamic Detection Overhead
Helpful to Users Metrics
Bug Report Ranking
Pinpoint Root Cause?

Table 2: Evaluation metric set
static instruction numbers (we call it Detection Latency). Some
metrics, such as manual effort and new hardware reliance, will be
measured qualitatively.

We should also notice that, the same metric may have different
meanings for different types of tools. That is the reason that we list
three different types of overhead together with the time and space
overhead metrics. We will only measure static analysis time for
static tools; measure both training and dynamic detection over-
head for statistical-rule-based tools and measure only dynamic
detection overhead for most programming-rule-based tools. The
comparison among tools of the same category is more appropriate
for some metrics. When comparing tools of different categories,
we should keep the differences in mind.

4 Benchmark
4.1 Benchmark Suite
Based on the criteria in section 3.3, we have collected 17 buggy
C/C++ programs from open source repositories. These programs
contain various bugs including 13 memory-related bugs, 4 concur-
rent bugs and 2 semantic bugs 1. We have also prepared different
test cases, both bug-triggering and non-triggering ones, for each
application. We are still in the process of collecting more buggy
applications.

Table 3 shows that all applications are real open-source appli-
cations with real bugs and most of them have significant use in
their domains. They have different code sizes and have covered
most important bug types.

As we can see from the table, the benchmark suite for memory-
related bugs is already semi-complete. We will conduct more de-
tailed analysis for them in the following sections. Other types
of bugs, however, are incomplete yet. Enriching BugBench with
more applications on other types of bugs and more analysis on
large applications remains as our future work.

4.2 Preliminary Characteristics Analysis
An important criterion for a good benchmark suite is its diversity
on important characteristics, as we described in section 3.3. In this
section, we focus on a subset of our benchmarks (memory-related
bug applications) and analyze their characteristics that would af-
fect dynamic memory bug detection tools.

Dynamic memory allocation and memory access behaviors are
the most important characteristics that have significant impact on
the overheads of dynamic memory-related bug detection tools.
This is because many memory-related bug detection tools inter-
cept memory allocation functions and monitor most memory ac-
cesses. In table 4, we use frequency and size to represent dy-
namic allocation properties. As we can see, in 8 applications, the
memory allocation frequency ranges from 0 to 769 per Million In-
structions and the size ranges from 0 to 6.0 MBytes. Such large
range of memory allocation behaviors will lead to different over-
heads in dynamic bug detection tools, such as Valgrind and Purify.
In general, the more frequent of memory allocation, the larger

1some applications contain more bugs than we describe in Table 3.



Name Program Source Description Line of Code Bug Type
NCOM ncompress-4.2.4 Red Hat Linux file (de)compression 1.9K Stack Smash
POLY polymorph-0.4.0 GNU file system ”unixier” 0.7K Stack Smash &

(Win32 to Unix filename converter) Global Buffer Overflow
GZIP gzip-1.2.4 GNU file (de)compression 8.2K Global Buffer Overflow
MAN man-1.5h1 Red Hat Linux documentation tools 4.7K Global Buffer Overflow
GO 099.go SPEC95 game playing (Artificial Intelligent) 29.6K Global Buffer Overflow

COMP 129.compress SPEC95 file compression 2.0K Global Buffer Overflow
BC bc-1.06 GNU interactive algebraic language 17.0K Heap Buffer Overflow

SQUD squid-2.3 Squid web proxy cache server 93.5K Heap Buffer Overflow
CALB cachelib UIUC cache management library 6.6K Uninitialized Read
CVS cvs-1.11.4 GNU version control 114.5K Double Free

YPSV ypserv-2.2 Linux NIS NIS server 11.4K Memory Leak
PFTP proftpd-1.2.9 ProFTPD ftp server 68.9K Memory Leak

SQUD2 squid-2.4 Squid web proxy cache 104.6K Memory Leak
HTPD1 httpd-2.0.49 Apache HTTP server 224K Data Race
MSQL1 msql-4.1.1 MySQL database 1028K Data Race
MSQL2 msql-3.23.56 MySQL database 514K Atomicity
MSQL3 msql-4.1.1 MySQL database 1028K Atomicity
PSQL postgresql-7.4.2 PostgreSQL database 559K Semantic Bug

HTPD2 httpd2.0.49 Apache HTTP server 224K Semantic Bug
Table 3: Benchmark suite

Name Malloc Freq. Allocated Heap Usage Memory Access Memory Read Symptom Crash Latency
(# per MInst) Memory Size vs. Stack Usage (# per Inst) vs. Write (# of Inst)

NCOM 0.003 8B 0.4% vs. 99.5% 0.848 78.4% vs. 21.6% No Crash NA
POLY 7.14 10272B 23.9% vs. 76.0% 0.479 72.6% vs. 27.4% Varies on Input∗ 9040K∗

GZIP 0 0B 0.0% vs. 100% 0.688 80.1% vs. 19.9% Crash 15K
MAN 480 175064B 85.1% vs. 14.8% 0.519 70.9% vs. 20.1% Crash 29500K
GO 0.006 364B 1.6% vs. 98.3% 0.622 82.7% vs. 17.3% No Crash NA
COMP 0 0B 0.0% vs. 100% 0.653 79.1% vs. 20.9% No Crash NA
BC 769 58951B 76.6% vs. 23.2% 0.554 71.4% vs. 28.6% Crash 189K
SQUD 138 5981371B 99.0% vs. 0.9% 0.504 54.2% vs. 45.8% Crash 0

Table 4: Overview of the applications and their characteristics (*:The crash latency is based on the input that will cause the crash.)

overhead would be imposed by such tools. To reflect the mem-
ory access behavior, we use access frequency, read/write ratio and
heap/stack usage ratio. Intuitively, access frequency directly influ-
ences the dynamic memory bug detection overhead: the more fre-
quent memory accesses, the larger the checking overhead. Some
tools use different policies to check read and write accesses and
some tools differentiate stack and heap access, so all these ratios
are important to understand the overhead. In table 4, the access
frequencies of our benchmark applications change from 0.479 to
0.848 access per instruction and heap usage ratio from 0 to 99.0%.
Both show a good coverage. Only the read/write ratio seems not
to change much within all 8 applications, which indicates the need
to further improve our benchmark suite based on this.

Obviously, the bug complexity may directly determines the
false negatives of bug detection tools. In addition, the more dif-
ficult to detect, the more benefits a bug detection tool can pro-
vide the programmers. While it is possible to use many ways to
measure complexity (which we will do in the future), we use the
symptom and crash latency to measure this property. Crash la-
tency is the latency from the root cause of a bug to the place where
the application finally crashes due to the propagation of this bug.
If the crash latency is very short, for example, right at the root
cause, even without any detection tool, programmers may be able
to catch the bug immediately based on the crash position. On the
other hand, if the bug does not manifest until a long chain of error
propagation, detecting the bug root cause would be much more
challenging for both programmers and all bug detection tools. As
shown in Table 4, the bugs in our benchmarks manifest in different
ways: crash or silent errors. For applications that will crash, their
crash latency varies from zero latency to 29 million instructions.

5 Preliminary Evaluation
In order to validate the selection of our bug benchmark suite, in
this section, we use BugBench to evaluate 3 popular bug detec-
tion tools: Valgrind [25], Purify [12] and CCured [23]. All these
three are designed to detect memory-related bugs, so we choose
8 memory-relate buggy applications from our benchmarks. The
evaluation results are shown in Table 5.

In terms of time overhead, among the three tools, CCured al-
ways has the lowest overhead, because it conducted static analysis
beforehand. Purify and Valgrind have similar magnitude of over-
head. Since Valgrind is implemented based on instruction emula-
tion and Purify is based on binary code instrumentation, we do not
compare the overheads of these two tools. Instead, we show how
an application’s characteristics affect one tool’s overhead. Since
our bug benchmark suite shows a wide range of characteristics,
the overheads imposed by these tools also vary from more than
100 times of overhead to less than 20% overhead. For example,
the application BC has the largest overhead in both Valgrind and
Purify, as high as 119 times. The reason is that BC has very high
memory allocation frequency, as shown in Table 4. On the other
hand, POLY has very small overhead due to its smallest memory
access frequency as well as its small allocation frequency.

In terms of bug detection functionality, CCured successfully
catches all the bugs in our applications and also successfully points
out the root cause in most cases. Both Valgrind and Purify fail to
catch the bugs in NCOM and COMP. The former is a stack buffer
overflow and the latter is a one-byte global buffer overflow. Val-
grind also fails to catch another global buffer overflow in GO and
has long detection latencies in the other three global buffer over-



Catch Bug? False Positive Pinpoint The Root Cause Overhead Easy to Use
(Detection Latency(KInst)1)

Valgrind Purify CCured Valgrind Purify CCured Valgrind Purify CCured Valgrind Purify CCured Valgrind Purify CCured
NCOM No No Yes 0 0 0 N/A N/A Yes 6.44X 13.5X 18.5% Easiest Easy Moderate
POLY Vary2 Yes Yes 0 0 0 No(9040K)2 Yes Yes 11.0X 27.5% 4.03% Easiest Easy Moderate
GZIP Yes Yes Yes 0 0 0 No(15K) Yes Yes 20.5X 46.1X 3.71X Easiest Easy Moderate
MAN Yes Yes Yes 0 0 0 No(29500K) Yes Yes 115.6X 7.36X 68.7% Easiest Easy Hard
GO No Yes Yes 0 0 0 N/A Yes Yes 87.5X 36.7X 1.69X Easiest Easy Moderate
COMP No No Yes 0 0 0 N/A N/A Yes 29.2X 40.6X 1.73X Easiest Easy Moderate
BC Yes Yes Yes 0 0 0 Yes Yes Yes 119X 76.0X 1.35X Easiest Easy Hardest
SQUD Yes Yes N/A3 0 0 N/A3 Yes Yes N/A3 24.21X 18.26X N/A3 Easiest Easy Hardest

Table 5: Evaluation of memory bug detection tools. (1: Detection latency is only applicable when fail to pinpoint the root cause; 2: Valgrind’s
detection result varies on inputs. Here we use the input by which Valgrind fails to pinpoint root cause; 3: We fail to apply CCured on Squid)

flow applications: POLY, GZIP and MAN. The results indicate
that Valgrind and Purify handle heap objects much better than they
do on stack and global objects.

As for POLY, we tried different buggy inputs for Valgrind and
the results are interesting: if the buffer is not overflowed signif-
icantly, Valgrind will miss it; with moderate overflow, Valgrind
catches the bug after a long path of error propagation, not the root
cause; only with significant overflow, Valgrind can detect the root
cause. The different results are due to POLY’s special bug type:
first global corruption and later stack corruption.

Although CCured performs much better than Valgrind and Pu-
rify in both overhead and functionality evaluation, the tradeoff is
its high reliance on manual effort in code preprocessing. As shown
in the “Easy to Use” column of Table 5, among all these tools, Val-
grind is the easiest to use and requires no re-compilation. Purify
is also fairly easy to use, but requires re-compilation. CCured is
the most difficult to use. It often requires fairly amount of source
code modification. For example, in order to use CCured to check
BC, we have worked about 3 to 4 days to study the CCured policy
and BC’s source code to make it satisfy the CCured’s language
requirement. Moreover, we fail to apply CCured on a more com-
plicated server application: SQUD.

6 Current Status & Future Work
Our BugBench is an ongoing project. We will release these appli-
cations together with documents and input sets through our web
page soon. We welcome feedbacks to refine our benchmark.

In the future, we plan to extend our work in several dimensions.
First, we will enrich the benchmark suite with more applications,
more types of bugs based on our selection criteria and characteris-
tic analysis (the characteristics in Table 4 show that some impor-
tant benchmark design space is not covered yet). We are also in
the plan of designing tools to automatically extract bugs from bug
databases (e.g. Bugzilla) maintained by programmers, so that we
can not only get many real bugs but also gain deeper insight into
real large buggy applications. Second, we will evaluate more bug
detection tools, which will help us enhance our BugBench. Third,
we intend to add some supplemental tools, for example, program
annotation for static tools, and scheduler and record-replay tools
for concurrent bug detection tools.

REFERENCES
[1] B. Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold

Co., 1990.
[2] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for find-

ing dynamic programming errors. Softw. Pract. Exper., 30(7):775–802,
2000.

[3] K. M. Dixit. The spec benchmarks. Parallel Computing, 17(10-11),
1991.

[4] D. Engler and K. Ashcraft. RacerX: Effective, static detection of race
conditions and deadlocks. In SOSP, Oct. 2003.

[5] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: A general approach to inferring errors in systems code.
In SOSP ’01, pages 57–72, 2001.

[6] Y. Eytani and S. Ur. Compiling a benchmark of documented multi-
threaded bugs. In IPDPS, 2004.

[7] L. Fei and S. Midkiff. Artemis: Practical runtime monitoring of appli-
cations for errors. Technical Report TR-ECE05-02, Purdue University,
2005.

[8] C. Flanagan, K. Leino, M. Lillibridge, C. Nelson, J. Saxe, and R. Stata.
Extended static checking for java, 2002.

[9] P. Godefroid, R. S. Hanmer, and L. J. Jagadeesan. Model checking with-
out a model: An analysis of the heart-beat monitor of a telephone switch
using verisoft. In ISSTA, pages 124–133, 1998.

[10] S. Hangal and M. S. Lam. Tracking down software bugs using automatic
anomaly detection. In ICSE ’02, May 2002.

[11] M. J. Harrold and G. Rothermel. Siemens Programs, HR Variants. URL:
http://www.cc.gatech.edu/aristotle/Tools/subjects/.

[12] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. In Usenix Winter Technical Conference, Jan. 1992.

[13] K. Havelund and J. U. Skakkebæk. Applying model checking in java
verification. In SPIN, 1999.

[14] K. Havelund, S. D. Stoller, and S. Ur. Benchmark and framework for
encouraging research on multi-threaded testing tools. In IPDPS, 2003.

[15] James R. Lyle, Mary T. Laamanen, and Neva M. Carlson. PEST:
Programs to evaluate software testing tools and techniques. URL:
www.nist.gov/itl/div897/sqg/pest/pest.html.

[16] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler. Correlation exploita-
tion in error ranking. In SIGSOFT ’04/FSE-12, pages 83–93, 2004.

[17] C. Levine. TPC-C: an OLTP benchmark. URL:
http://www.tpc.org/information/sessions/sigmod/sigmod97.ppt, 1997.

[18] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A tool for finding
copy-paste and related bugs in operating system code. In OSDI, 2004.

[19] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via
remote program sampling. In PLDI, pages 141–154, 2003.

[20] E. Marcus and H. Stern. Blueprints for high availability. John Willey
and Sons, 2000.

[21] M. Musuvathi, D. Park, A. Chou, D. Engler, and D. L. Dill. CMC: A
pragmatic approach to model checking real code. In OSDI, Dec. 2002.

[22] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously
recording program execution for deterministic replay debugging. In
ISCA’05, 2005.

[23] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe
retrofitting of legacy code. In POPL, Jan. 2002.

[24] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-memory for
detecting memory leaks and memory corruption during production runs.
In HPCA ’05, 2005.

[25] J. Seward. Valgrind. URL: http://www.valgrind.org/.
[26] S. E. Sim, S. Easterbrook, and R. C. Holt. Using benchmarking to ad-

vance research: a challenge to software engineering. In ICSE ’03, pages
74–83. IEEE Computer Society, 2003.

[27] Standard Performance Evaluation Corporation. SPEC benchmarks.
URL: http://www.spec.org/.

[28] W. F. Tichy. Should computer scientists experiment more? Computer,
31(5):32–40, 1998.

[29] Transaction Processing Council. TPC benchmarks. URL:
http://www.tpc.org/.

[30] US-CERT. US-CERT vulnerability notes database. URL:
http://www.kb.cert.org/vuls.

[31] C. von Praun and T. R. Gross. Object race detection. In OOPSLA, 2001.
[32] P. Zhou, W. Liu, F. Long, S. Lu, F. Qin, Y. Zhou, S. Midkiff, and J. Tor-

rellas. AccMon: Automatically Detecting Memory-Related Bugs via
Program Counter-based Invariants. In MICRO ’04, Dec. 2004.

[33] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iWatcher: Efficient
Architecture Support for Software Debugging. In ISCA ’04, June 2004.


