IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO.3, MARCH 2006

CP-Miner: Finding Copy-Paste and
Related Bugs in Large-Scale Software Code

Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou, Member, IEEE

Abstract—Recent studies have shown that large software suites contain significant amounts of replicated code. It is assumed that
some of this replication is due to copy-and-paste activity and that a significant proportion of bugs in operating systems are due to copy-
paste errors. Existing static code analyzers are either not scalable to large software suites or do not perform robustly where replicated
code is modified with insertions and deletions. Furthermore, the existing tools do not detect copy-paste related bugs. In this paper, we
propose a tool, CP-Miner, that uses data mining techniques to efficiently identify copy-pasted code in large software suites and detects
copy-paste bugs. Specifically, it takes less than 20 minutes for CP-Miner to identify 190,000 copy-pasted segments in Linux and

150,000 in FreeBSD. Moreover, CP-Miner has detected many new bugs in popular operating systems, 49 in Linux and 31 in FreeBSD,

most of which have since been confirmed by the corresponding developers and have been rectified in the following releases. In
addition, we have found some interesting characteristics of copy-paste in operating system code. Specifically, we analyze the
distribution of copy-pasted code by size (number lines of code), granularity (basic blocks and functions), and modification within copy-
pasted code. We also analyze copy-paste across different modules and various software versions.

Index Terms—Software analysis, code reuse, code duplication, debugging aids, data mining.

1 INTRODUCTION

1.1 Motivation

RECENT studies [2], [3], [4] have shown that a large
portion of code appears to be duplicated in software.
For example, Kapser and Godfrey [4], using a code clone
detection tool called CCFinder [5], found that 12 percent of
the Linux file system code (279K lines) was involved in code
cloning activity. Baker [2] found that, in the complete source
of the X Window system (714K lines), 19 percent of the code
was identified as duplicates. Duplicated code is likely to
result from copy-paste activity because it can significantly
reduce programming effort and time by reusing a piece of
code rather than rewriting similar code from scratch. This
practice is common, especially in device drivers of operat-
ing systems where the algorithms are similar. In addition,
performance enhancement, coding style, and accidents are
also the reasons why large systems contain a large portion
of duplicated code [6].

Using abstractions such as functions and macros to
improve software maintenance might remove code duplica-
tion; however, much duplicated code will likely remain for
two main reasons. First, some changes are usually necessary
in different copies and copy-paste is much easier and faster
than abstraction. Second, functions may impose higher
overhead in execution.

While one can imagine augmenting software develop-
ment tools and editors with copy-paste tracking, this
support does not currently exist. Without such tracking, it

o The authors are with the Department of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, IL 61801.
E-mail: {zli4, shanlu, myagmar, yyzhou}@uiuc.edu.

Manuscript received 2 Aug. 2005; revised 10 Jan. 2006; accepted 13 Jan. 2006;
published online DD Mmmm, YYYY.

Recommended for acceptance by M. Harman.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0210-0805.

0098-5589/06/$20.00 © 2006 IEEE

is difficult to tell whether a duplicated code segment is
really the result of copy-paste activity. For simplicity, in this
paper, we use the term “copy-pasted code” to refer to
duplicated code in general and the term “copy-paste” refers
to copy-and-paste activity.

Copy-pasted code is prone to introducing errors. For
example, Chou et al. [7] found that, in a single source file
under the Linux drivers/i2o directory, 34 out of 35 errors
were caused by copy-paste. One of the errors was copied in
10 places and another in 24. They also showed that many
operating system errors are not independent because
programmers are ignorant of system restrictions in copy-
pasted code. In our study, we have detected 49 copy-paste
related bugs in the latest version of Linux and 31 in
FreeBSD. Most of these bugs were previously unreported.

One of the major reasons why copy-paste introduces bugs
is that programmers forget to modify identifiers (variables,
functions, types, etc.) consistently throughout the pasted
code. This mistake will be detected by a compiler if the
identifier is undefined or has the wrong type. However, these
errors often slip through compile-time checks and become
hidden bugs that are very hard to detect.

Fig. 1a shows an example of a new bug detected by
CP-Miner in the latest version of Linux (2.6.6). We reported
this bug to the Linux kernel community and it has been
confirmed and fixed by the kernel developers [8]. In this
example, the loop in lines 111-118 was copied from lines 92-
99. In the new copy-pasted segment (lines 111-118), the
variable prom_phys_total is replaced with prom_prom_taken in
most of the cases except the one in line 117 (shown in bold
font). As a result, the pointer prom_prom_taken[iter].theres_
more incorrectly points to the element of prom_phys_total
instead of prom_prom_taken. This bug is a semantic error and,
therefore, it cannot be easily detected by memory-related bug
detection tools, including static checkers [9], [10], [11], [12] or
dynamic tools such as Purify [13], Valgrind [14], and CCured
[15]. Besides this bug, CP-Miner has also detected many other

Published by the IEEE Computer Society

(linux-2.6.6/arch/sparc64/prom/memory.c)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

68 void __init prom_meminit(void)

69 {
...... 245 {
92 for(iter=0; iter<num_regs; iter++) { 246
93 prom_phys_total[iter].start_adr = 247
94 prom_reg_memlist[iter].phys_addr; 248
95 prom_phys_total[iter].num_bytes = 249
96 prom_reg_memlist[iter].reg_size; 250
97 prom_phys_total[iter].theres_more = 251)
98 &prom_phys_total[iter+1];
9 }

111 for(iter=0; iter<num_regs; iter++) {
112 prom_prom_taken[iter].start_adr =

257 }

(linux-2.6.6/arch/m68k/mac/iop.c)
244 void __init iop_preinit(void)

if (macintosh_config->scc_type == MAC_SCC_IOP) {
if (macintosh_config->ident == MAC_MODEL_IIFX) {
iop_base[IOP_NUM_SCC]=(struct mac_iop *) SCC_IOP_BASE_IIFX;
} else {
iop_base[IOP_NUM_SCC]=(struct mac_iop *)SCC_IOP_BASE_QUADRA;

252 iop_base[IOP_NUM_SCC]->status_ctrl = 0x87;

258 if (macintosh_config->adb_type == MAC_ADB_IOP) {

259 if (macintosh_config->ident == MAC_MODEL_IIFX) {
iop_base[IOP_NUM_ISM]=(struct mac_iop *) ISM_IOP_BASE_IIFX;

} else {
iop_base[IOP_NUM_ISM]=(struct mac_iop *)ISM_IOP_BASE_QUADRA;

iop_base[IOP_NUM_SCC]->status_ctrl = 0;
// should be:iop_base[IOP_NUM _ISM]->status_ctrl = 0;

113 prom_reg_memlist[iter].phys_addr;

114 prom_prom_taken[iter].num_bytes = 260

115 prom_reg_memlist[iter].reg_size; 261

116 prom_prom_taken[iter].theres_more = 262

117 &prom_phys_totalliter+1]; // bug 263}
// should be: &prom_prom_takeniter+1]; 264

118 }

143 } 269 }

// bug

(b)

Fig. 1. Copy-paste related bugs in Linux 2.6.6 detected by CP-Miner. These bugs have been confirmed and fixed by Linux kernel developers.
(a) Detected in file /arch/sparc64/prom/memory.c. A similar bug is also detected in file/arch/sparc/prom/memory.c. (b) Detected in file /arch/m68k/

mac/iop.c.

similar bugs caused by copy-paste in Linux, FreeBSD,
PostgreSQL, and Web Apache.

Another copy-paste related bug detected by CP-Miner is
shown in Fig. 1b. In this example, the segment in lines 258-
269 was copied from lines 246-257. Each segment initializes
different IOPs (I/O processors) specified by constants
IOP_NUM_SCC (= 0) and IOP_NUM_ISM (= 1), respec-
tively. However, the identifier IOP_NUM_SCC in line 264 is
not changed to IOP_NUM_ISM accordingly and it results in
a wrong initial state of IOPs. This bug would incorrectly
overwrite the value (0x87) of iop_base[IOP_NUM_SCC]->
status_ctrl by 0. This cannot be detected by existing bug
detection tools because it is not a simple buffer overflow
bug (since IOP_NUM_SCC equals 0), incorrect pointer
manipulation, or free memory access. If known by mal-
icious users who plan a security attack, this bug may cause
the server to crash.

It is a challenging task to efficiently extract copy-pasted
code in large software suites such as an operating system.
Even though several previous studies [16], [17] have
addressed the related problem of detecting plagiarism, they
are not suitable for detecting copy-pasted code. Those tools,
such as the commonly used JPlag [18], were designed to
measure the degree of similarity between a pair of
programs in order to detect plagiarism. If these tools were
to be used to detect copy-pasted code in a single program
without any modification, they would need to compare all
possible pairs of code fragments. For a program with
n statements, a total of O(n?) pairwise comparisons' would
need to be performed. This complexity is certainly

1. Considering comparison between the pair of code fragments with
k statements, there are (n—k+1) different fragments. So, there are
("’5*1) = O(n?) possible pair comparisons. Since k can be 1,2,...,%, the
total number of pairwise comparisons is O(n?).

impractical for software with millions of lines of code, such
as Linux and FreeBSD. Of course, it is possible to modify
these tools to identify copy-pasted code in single software,
but the modification is not trivial and straightforward. For
example, a new dynamic programming algorithm may be
integrated into the original detection algorithm, which
would require significant effort.

So far, only a few tools have been proposed to identify
copy-pasted code in a single program. Examples of such
tools include Moss [19], [20], Dup [2], CCFinder [5], and
others [6], [21]. Most of these tools suffer from some or all of
the following limitations:

1. Efficiency. Most existing tools are not scalable to large
software suites such as operating system code because
they consume a large amount of memory and take a
long time to analyze millions of lines of code.

2. Tolerance to modifications. Most tools cannot deal with
modifications in copy-pasted code. Some tools [3],
[22] can only detect copy-pasted segments that are
exactly identical. Such modifications are very com-
mon in standard practice. Our experiments with
CP-Miner show that about one third of copy-pasted
segments contain insertion or modification of one to
two statements.

3. Bug detection. Although some existing tools report
copy-pasted code, they cannot detect copy-paste
related bugs.

1.2 Our Contributions

In this paper, we present CP-Miner, a tool that uses data
mining techniques to efficiently identify copy-pasted code in
large software suites including operating system code and
also detects copy-paste related bugs. It requires no

LI ET AL.: CP-MINER: FINDING COPY-PASTE AND RELATED BUGS IN LARGE-SCALE SOFTWARE CODE 3

modification or annotation to the source code of the
software being analyzed. Our work makes three main
contributions:

1. A scalable copy-paste detection tool for large
software suites. CP-Miner can efficiently find
copy-pasted code in large software suites including
operating system code. Our experimental results
show that it takes less than 20 minutes for CP-Miner
to detect 200,000 and 150,000 unique copy-pasted
segments that account for about 22 percent and
20 percent of the source code in Linux and FreeBSD
(each with more than 3 million lines of code),
respectively. Additionally, it takes less than one
minute to detect copy-pasted segments in Apache
web server and PostgreSQL, accounting for about
18 percent and 22 percent of the total source code,
respectively.

Compared to CCFinder [5], CP-Miner is able to

find 17-52 percent more copy-pasted segments in the
four test applications because CP-Miner can tolerate

statement insertions and modifications.

2. Detection of bugs associated with copy-paste.
CP-Miner can detect copy-paste related bugs such
as the bugs shown in Fig. 1, most of which are hard
to detect with existing static or dynamic bug
detection tools. Specifically, CP-Miner has detected
49 new bugs in the latest version of Linux, 31 in
FreeBSD, 5 in Web Apache, and 2 in PostgreSQL.
These bugs had not been reported before.

We have reported these bugs to the correspond-

ing developers. So far, most of these bugs have been
confirmed and fixed by Linux and FreeBSD devel-
opers and have been rectified in the following

releases.

3. Statistical study of copy-pasted code distribution
in operating system code. Few earlier studies have
been conducted on the characteristics of copy-paste
in large software suites. Our work found some
interesting characteristics of copy-pasted code in
Linux and FreeBSD. Our results indicate that:

a. copy-pasted segments are usually not too large,
most with 5-16 statements;

b. although more than 50 percent of copy-
pasted segments have only two copies, a
few (6.3-6.7 percent) copy-pasted segments are
copied more than eight times;

c. there are a significant number (11.3-13.5 percent)
of copy-pasted segments at function granularity
(copy-paste of an entire function);

d. most (65-67 percent) copy-pasted segments
require renaming at least one identifier and 23-
27 percent of copy-pasted segments have in-
serted, modified (excluding renaming), or de-
leted one statement;

e. different OS modules have very different per-
centages of copy-pasted code: drivers, arch, and
crypt have higher percentage of copy-paste than
other modules in Linux; and

f. as the operating system code evolves, the
amount of copy-paste also increases, but the
coverage percentage of copy-pasted code re-
mains relatively stable over the recent versions
of Linux and FreeBSD.

2 RELATED WORK AND BACKGROUND

2.1 Detection of Copy-Pasted Code

Since copy-pasted code segments are usually similar to the
original ones, detection of copy-pasted code involves
detecting code segments that are identical or similar.

Previous techniques for copy-paste detection can be
roughly classified into three categories: 1) string-based, in
which the program is divided into strings (typically lines) and
these strings are compared against each other to find
sequences of duplicated strings [2], [23]; 2) parse-tree-based,
in which pattern matching is performed on the parse-tree of
the code to search for similar subtrees [6], [24], [25]; 3) token-
based, in which the program is divided into a stream of tokens
and duplicate token sequences are identified [5], [18].

Dup, proposed by Baker [2], finds all pairs of matching
parameterized code fragments. A code fragment matches
another if both fragments are contiguous sequences of
source lines with some consistent identifier mapping
scheme. Because this approach is line-based, it is sensitive
to lexical aspects such as the presence or absence of new
lines. In addition, it does not find noncontiguous copy-
pastes. CP-Miner does not have these shortcomings.

Johnson [23] proposed using a fingerprinting algorithm
on a substring of the source code. In this algorithm,
signatures calculated per line are compared in order to
identify matched substrings. As with line-based techniques,
this approach is sensitive to minor modifications made in
copy-pasted code.

Baxter et al. [6] proposed a tool that transforms source
code into abstract-syntax trees (AST) and detects copy-paste
by finding identical subtrees. Similarly to other tools, it
cannot perform robustly when modifications are made in
copy-pasted segments.

Komondoor and Horwitz [24] proposed using a program
dependence graph (PDG) and program slicing to find
isomorphic subgraphs and code duplication. Although this
approach is successful at identifying copies with reordered
statements, its running time is very long. For example, it
takes 1.5 hours to analyze only 11,540 lines of source code of
bison, much slower than CP-Miner. Another slow PDG-
based approach is found in [26].

Kontogiannis et al. [25] built an abstract pattern match-
ing tool to identify probable matches using Markov models.
This approach does not find copy-pasted code. Instead, it
only measures similarity between two programs.

Mayrand et al. [27] used an Intermediate Representation
Language to characterize each function in the source code
and detect copy-pasted function bodies that have similar
metric values. This tool does not detect copy-paste at other
granularity such as segment-based copy-paste, which
occurs more frequently than function-based copy-paste, as
shown in our results.

Some copy-paste detection techniques are too coarse-
grained to be useful for our purpose. JPlag [18], Moss [20],

and sif [28] are tools to find similar programs among a given
set. They have been commonly used to detect plagiarism.
Most of them are unscalable for detecting copy-pasted code
in a single large program.

Some graphical tools were proposed to understand code
similarities in different programs (or in the same program)
visually. Dotplots, proposed by Church and Helfman [29],
can visualize similar code by tokenizing the code into lines
and placing a dot in coordinates (7, j) on a 2D graph, if the
ith input token matches jth input token. Similarly, Duploc
proposed by Ducasse et al. [3] provides a scatter plot
visualization of copy-pastes (detected by string matching of
lines) and also textual reports that summarize all discov-
ered sequences. Both Dotplots and Duploc only support line
granularity. In addition, they can only detect identical
duplicates and do not tolerate renaming, insertions, and
deletions.

Our tool, CP-Miner, is token-based. This approach has
advantages over the other two. First, a string-based
approach does not exploit any lexical information, so it
cannot deal with simple modifications such as identifier
renaming. Second, using parse trees can introduce false
positives because two segments with identical syntax trees
may not be copy-pasted. Therefore, it also has to compare
the subtrees by matching tokens. This method is not
scalable because the complexity of comparing sequences
of trees is O(N?). Although the scalability issue of parse-
tree-based method can be tackled by hashing subtrees [6], it
cannot perform robustly when the duplicated code contains
modifications. CP-Miner also leverages some source code
level and syntax information to make the analysis more
accurate. This will be described in detail in Section 3.1.

Most previous copy-paste detection tools do not suffi-
ciently address the limitations described in Section 1. Most
of them consume too much time or memory to be scalable to
large applications or do not tolerate modifications made in
copy-pasted code. In contrast, CP-Miner can address both
challenges by using frequent subsequence mining techni-
ques (described in Section 3.1).

2.2 Detecting Software Bugs

Many tools have been proposed for detecting software
bugs. One approach is dynamic checking that detects bugs
during execution. Examples of dynamic tools include Purify
[13], Valgrind [14], DIDUCE [30], Eraser [31], and CCured
[15]. Dynamic tools provide more accurate results but may
introduce significant overheads during execution. More-
over, they can only find bugs on the execution paths. Most
dynamic tools cannot detect bugs in operating systems.

Another approach is to perform checks statically.
Examples of this approach include explicit model checking
[12], [32], [33] and program analysis [10], [11], [34]. Most
static tools require significant work from programmers to
write specifications or annotate source code. But, the
advantage of static tools is that they add no overhead
during execution and they can find bugs that may not occur
in the common execution paths. A few tools do not require
annotations, but they focus on detecting other types of bugs
instead of copy-paste related bugs.

Our tool, CP-Miner, is a static tool that can detect copy-
paste related bugs, without requiring any annotations by

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

programmers. CP-Miner complements other bug detection
tools because it is based on a different observation: finding
bugs caused by copy-paste. Some copy-paste related bugs
can be found by previous tools if they lead to buffer
overflow or some obvious memory corruption, but many of
them, especially semantic ones, cannot be found by
previous tools.

Our work is motivated by and related to Chou et al.’s
empirical analysis of operating systems errors [7]. Their
study gave an overall error distribution and evolution
analysis in operating systems and found that copy-paste is
one of the major causes of bugs. Our work presents a tool
for detecting copy-pasted code and related bugs in large-
scale software including operating system code. Many of
these bugs, such as the two shown in Fig. 1, cannot be
detected by their tools.

2.3 Frequent Subsequence Mining

CP-Miner is based on frequent subsequence mining (also called
frequent sequence mining), which is an association analysis
technique to discover frequent subsequences in a sequence
database [35]. Frequent subsequence mining is an active
research topic in data mining [36]. It has broad applications,
including mining motifs in DNA sequences, analysis of
customer shopping behavior, etc.

A sequence is an abstraction over elements which appear
in a consecutive order. A subsequence is any subset of these
elements which appear in the same order, that is, the
elements of a subsequence may be interleaved in the
original sequence. The notion of a frequent subsequence is
one which is interleaved in a number of sequences. The
sequence in which a given subsequence appears is called a
supporting sequence. The number of the sequences in which a
subsequence so appears is known as its support. Qualifica-
tion of a subsequence as a frequent subsequence is therefore
determined by setting a threshold, called min_support, such
that all subsequences whose support is greater than or
equal to this value are considered frequent.

For example, a sequence database D has five sequences:

D = {abced, abecf, agbch, abijc, aklc}.

The number of occurrences of subsequence abc is 4 and
sequence agbch is one of abc’s supporting sequences. If
min_support is specified as 4, the frequent subsequences are
{a:5,b:4,¢:5,ab: 4, ac: 5, be: 4, abe: 4}, where the numbers are
the supports of the subsequences.

CP-Miner uses a recently proposed frequent subse-
quence mining algorithm called CloSpan (Closed Sequential
Pattern Mining) [36], which outperforms most previous
algorithms. Closed subsequence is the subsequence whose
support is different from the support of its supersequences.
In other words, nonclosed subsequences can be inferred
from their supersequences with the same support. CloSpan
consists of two main stages: 1) using a depth-first search
procedure to generate a candidate set of frequent sub-
sequences that includes all the closed frequent subse-
quences and 2) pruning the nonclosed subsequences from
the candidate set. The computational complexity of CloSpan
is O(n?) if the maximum length of frequent sequences is
constrained by a constant.

LI ET AL.: CP-MINER: FINDING COPY-PASTE AND RELATED BUGS IN LARGE-SCALE SOFTWARE CODE 5

CloSpan produces only closed frequent subsequences
rather than all frequent subsequences since any nonclosed
subsequence can be inferred from its supersequence. In
the example above, the frequent subsequences are
{a:5,b:4,¢:5,ab: 4, ac: 5, bc: 4, abe: 4} if the min_support is 4,
but we only need to produce the closed subsequences
{ac: 5, abe: 4}. This feature significantly reduces the number
of frequent subsequences generated, especially for long
frequent subsequences.

There are two main ideas to improve the mining
efficiency in CloSpan. The first idea is based on an obvious
observation that if a sequence is frequent, then all of its
subsequences are frequent. For example, if a sequence abc is
frequent, all of its subsequences {a,b,c,ab,ac,bc} are
frequent. CloSpan recursively produces a longer frequent
subsequence by concatenating every frequent item with a
shorter frequent subsequence that has already been
obtained in the previous iterations.

To better explain this idea, let us consider an example.
Let L, denote the set of frequent subsequences with length
n. In order to get L,, we can join the sets L, and L,. For
example, suppose we have already computed L; and L, as
shown below. In order to compute L3, we can first compute
L by concatenating a subsequence from L, and an item
from Lq:

Ll = {a7 ba C}a
Ly = {ab, ac, be},
L = Ly x Ly = {aba, abb, abc, aca, ach, acc, bea, beb, bee}.

For greater efficiency, CloSpan does not join the sequences
in set L, with all the items in L;. Instead, each sequence in
L, is concatenated only with the frequent items in its suffix
database. Suffix database for a subsequence s is composed of
all suffixes of the sequences containing s in the original
database. In our example, for the frequent sequence ab in
Ly, its suffix database is D, = {ced, ecf, ch,ijc} and only cis
a frequent item in D, (its support is equal to
min_support = 4), so ab is only concatenated with ¢ and
then we get a longer sequence abc that belongs to L.

The second idea is used to efficiently evaluate whether a
concatenated subsequence is frequent or not. It tries to avoid
searching through the whole database. Instead, it only checks
suffix databases that can be created by scanning the whole
database once at the beginning and then updated when
frequent subsequences are generated. In the above example,
for each sequence s in L, CloSpan checks whether it is
frequent or not by searching the suffix database D;,. If the
number of its occurrences is greater than min_support, s is
added into L3, which is the set of frequent subsequences of
length 3. CloSpan continues computing L, from L3, Ls from
Ly, and so on until no more subsequences can be added into
the set of frequent subsequences. In the example above, the
algorithm stops at Ly = {abc} since there is no frequent items
in suffix database D, = {ed, f, h}, where Dy, can be easily
obtained from suffix database D, = {ced, ecf, ch,ijc} with-
out scanning the whole database D again.

Recently, we have used CloSpan to detect block correla-
tions in storage systems [37]. We do not discuss the CloSpan
algorithm in more detail as it can be found in [36].

3 CP-MINER

CP-Miner has two major functions: detecting copy-pasted
code segments and finding copy-paste related bugs. It
requires no modification in the source code of the software
being analyzed. The following two subsections describe the
design of each function.

3.1 Identifying Copy-Pasted Code

To detect copy-pasted code, CP-Miner first converts the
problem into a frequent subsequence mining problem. It
then uses an enhanced algorithm of CloSpan to find basic
copy-pasted segments. Finally, it prunes false positives that
are unlikely to be real copy-pasted code and then composes
larger copy-pasted segments. For convenience, we refer to a
group of code segments that are similar to each other as a
copy-paste group.

CP-Miner can detect copy-pasted segments efficiently
because it uses frequent subsequence mining techniques
that can avoid many unnecessary or redundant compar-
isons. To map our problem to a frequent subsequence
mining problem, CP-Miner first maps a statement to a
number, with similar statements being mapped to the same
number (described in Section 3.1.1). Then, a basic block (i.e.,
a straightline piece of code without any jumps or jump
targets in the middle) becomes a sequence of numbers. As a
result, a program is mapped into a database of many
sequences. By mining the database using CloSpan, we can
find frequent subsequences that occur at least twice in the
sequence database. These frequent subsequences are exactly
copy-pasted segments in the original program. By applying
some pruning techniques, we can find basic copy-pasted
segments, which then can be combined with neighboring
ones to compose larger copy-pasted segments.

CP-Miner is capable of handling modifications in copy-
pasted segments for two reasons. First, similar statements
are mapped into the same value. This is achieved by
mapping all identifiers (variables, functions, types, etc.) of
the same type into the same value, regardless of their actual
names. This relaxation tolerates identifier renaming in
copy-pasted segments. Even though false positives may
be introduced during this process, they are addressed later
through various pruning techniques, such as identifier
mapping (described in Section 3.1.4). Second, a frequent
subsequence can be interleaved in its supporting sequences.
Since the mining algorithm allows arbitrary interleaving
gaps in the sequences, we enhance the basic mining
algorithm, CloSpan, to support gap constraints in frequent
subsequences. This enhancement allows CP-Miner to
tolerate one to two statement insertions, deletions, or
modifications in copy-pasted code, ignoring an arbitrarily
long different code segment that is unlikely to be copy-
pasted code. Insertions and deletions are symmetric
because a statement deletion in one copy can also be seen
as an insertion in the other copy. Modification is a special
case of insertion. Basically, the modified statement can be
treated as if both segments have an inserted statement.

The main steps in the process of identifying copy-pasted
segments include:

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

1. Parsing source code. Parse the given source code and
build a sequence database (a collection of se-
quences). In addition, information regarding basic
blocks and block nesting levels is also passed to the
mining algorithm.

2. Mining for basic copy-pasted segments. The enhanced
frequent subsequence mining algorithm is applied to
the sequence database to find basic copy-pasted
segments.

3. Prunming false positives. Some code segments appear to
be duplicated due to their similarity in syntax
structure, but are actually not duplicated code.
These code segments are false positives. Various
techniques are used to weed them out.

4. Composing larger copy-pasted segments. Larger copy-
pasted segments are identified by combining con-
secutive smaller ones. The combined copy-pasted
segments are fed back to Step 3 to prune false
positives. This is necessary because the composite
segment may not be copy-pasted, even though its
components are.

Like other copy-paste detection tools, CP-Miner can only
detect copy-pasted segments, but cannot tell which segment
is the original and which is copy-pasted from the original.
Fortunately, this is not a significant limitation because, in
most cases, it is enough for programmers to know which
segments are similar to each other. Moreover, our bug
detection method described in Section 3.2 does not rely on
such differentiation. Additionally, if programmers really
need the differentiation, navigating through RCS versions
could help in figuring out which segment is the original copy.

3.1.1 Parsing Source Code

The main purpose of parsing source code is to build a
sequence database (a collection of sequences) in order to
convert the copy-paste detection problem to a frequent
subsequence mining problem. Comments are not consid-
ered normal statements in CP-Miner and are thereby
filtered by our parser. Comments are valuable information
to indicate genuine copying. For example, plagiarism
detection tools can use them as clues in code where
identifiers have been renamed. CP-Miner can be enhanced
by exploiting such information to increase the confidence of
copy-paste detection. The current prototype of the
CP-Miner parser only works for programs written in C or
C++, but it is not difficult to adapt to other programming
languages by using the corresponding parsers with a little
modification.

A statement is mapped to a number by first tokenizing
its components, such as variables, operators, constants,
functions, keywords, etc. To tolerate identifier renaming in
copy-pasted segments, identifiers of the same type (such as
variable, function, type, etc., not data type) are mapped into
the same token. Notice that the variables with different data
type are mapped into the same token because the data types
in copy-pasted code segments can be changed (e.g., the
variables can be changed from int to float and other data
types); similarly, all function names are mapped into the
same token. Constants are handled in the same way as
identifiers: Constants are mapped into the same token.

STATEMENT HASH
68 void __init prom_meminit(void) 35487793
69 {
92 for(iter=0; iter<num_regs; iter++) { 67641265
93 prom_phys_total[iter].start_adr = 133872016
94 prom_reg_memlist[iter].phys_addr;
95 prom_phys_total[iter].num_bytes = 133872016
96 prom_reg_memlist[iter].reg_size;
97 prom_phys_total[iter].theres_more = |82589171
98 &prom_phys_total[iter+1];
99 }
111 for(iter=0; iter<num_regs; iter++) { 67641265
112 prom_prom_taken[iter].start_adr = 133872016
113 prom_reg_memlist[iter].phys_addr;
114 prom_prom_taken[iter].num_bytes = |133872016
115 prom_reg_memlist[iter].reg_size;
116 prom_prom_taken([iter].theres_more = | 82589171
117 &prom_phys_total [iter+1];
118 }
143 }

Fig. 2. An example of hashing statements.

However, operators and keywords are handled differently,
with each one mapped into a unique token. After all the
components of a statement are tokenized, a hash value
digest is computed using the “hashpjw” hash function
proposed by Weinberger (see [38]), chosen for its low
collision rate. Fig. 2 shows the hash value for each statement
in the example shown in Fig. 1a of Section 1. As shown in
this figure, the statement in lines 93-94 and the statement in
lines 112-113 have the same hash values.

After each statement is mapped, the program becomes
a long sequence of numbers. Unfortunately, the frequent
subsequence mining algorithms need a collection of
sequences (a sequence database), as described in
Section 2.3, so we need a way to cut this long sequence
into many short ones. One simple method is to use a fixed
cutting window size (e.g., every 20 statements) to break
the long sequence into many short ones. This method has
two disadvantages. First, some frequent subsequences
across two or more windows may be lost. Second, it is
not easy to decide the window size: If it is too long, the
mining algorithm would be very slow; if too short, too
much information may be lost on the boundary of two
consecutive windows.

Instead, CP-Miner uses a more elegant method to
perform the cutting. It takes advantage of some simple
syntax information and uses a basic programming block as
a unit to break the long sequence into short ones. The idea
for this cutting method is that a copy-pasted segment is
usually either a part of a basic block or consists of multiple
basic blocks. In addition, basic blocks are usually not too
long to cause performance problems in CloSpan. Although
it also exploits syntax information, it is different from the
parse-tree-based approach (described in Section 2.1) in that
CP-Miner does not compare the structure of abstract syntax
trees and, thus, avoids the high complexity in the parse-
tree-based approach.

By using a basic block as the cutting unit, CP-Miner can
first find basic copy-pasted segments and then compose
larger ones from smaller ones. Since different basic blocks
have a different number of statements, their corresponding
sequences also have different lengths. But, this is not a

LI ET AL.: CP-MINER: FINDING COPY-PASTE AND RELATED BUGS IN LARGE-SCALE SOFTWARE CODE 7

problem for CloSpan because it can deal with sequences of
different sizes. The example shown in Fig. 2 is converted
into the following collection of sequences:

(35487793)
(67641265)
(133872016, 133872016, 82589171)
(67641265)
(133872016, 133872016, 82589171)

Besides a collection of sequences, the parser also passes
to the mining algorithm the source code information of each
sequence. Such information includes 1) the nesting level of
each basic block, which is later used to guide the
composition of larger copy-pasted segments from smaller
ones and 2) the file name and line number, which is used to
locate the copy-pasted code corresponding to a frequent
subsequence identified by the mining algorithm. We also
keep the source code identifiers associated with each
hashed statement to later apply identifier mapping between
code segment pairs without parsing the source code again.

3.1.2 Mining for Basic Copy-Pasted Segments

After CP-Miner parses the source code of a given program,
it generates a sequence database with each sequence
representing a basic block. In the next step, it applies the
frequent subsequence mining algorithm, CloSpan, on this
database to find frequent subsequences with support value
of at least 2, which corresponds to code segments that have
appeared in the program at least twice. In the example
shown in Fig. 2, CP-Miner would find (133872016,
133872016, 82589171) as a frequent subsequence because it
occurs twice in the sequence database. Therefore, the
corresponding code segments in lines 111-118 and lines 92-
99 are basic copy-pasted segments.

Unfortunately, the mining process is not as straightfor-
ward as it would seem. The main reason is that the original
CloSpan algorithm was not designed exactly for our
purpose nor were other frequent subsequence mining
algorithms. Most existing algorithms, including CloSpan,
have the following two limitations that we had to overcome
in CloSpan to make it applicable for copy-paste detection:

1. Adding gap constraints in frequent subsequences.
In most existing frequent subsequence mining
algorithms, frequent subsequences are not necessa-
rily contiguous in their supporting sequences. For
example, sequence abdec provides one support for
subsequence abc, even though abc does not appear
contiguously in abdec. This property in frequent
sequence mining provides CP-Miner with the cap-
ability of finding some true copy-paste with slight
modification and challenge to tolerating false posi-
tives introduced by too much difference in a code
segment.

To address this problem, we modified CloSpan
to add a gap constraint in frequent subsequences.
CP-Miner only mines for frequent subsequences
with a maximum gap not larger than a given

threshold, called max_gap. If the maximum gap of
a subsequence in a sequence is larger than
maz_gap, this sequence is not “supporting” this
subsequence. For example, for the sequence data-
base D = {abced, abecf, agbch, abijc, aklc}, the sup-
port of subsequence abc is 1 if maz_gap equals 0 and
the support is 3 if maz_gap equals 1.

The gap constraint with maxz_gap = 0 means that
no statement insertiond or deletions are allowed in
copy-paste, whereas the gap constraint with
max_gap =1 or max_gap =2 means that one or
two statement insertions/deletions are tolerated in
copy-paste.

2. Matching frequent subsequences to copy-pasted
segments. The original CloSpan algorithm outputs
only frequent subsequences and their corresponding
support values, but not the supporting sequences
that contain them. To identify copy-pasted code, we
need to output the supporting sequences for each
frequent subsequence.

We enhanced CloSpan to address this problem.
When CP-Miner generates a frequent subsequence, it
maintains a list of IDs of its supporting sequences. In
the above example, CP-Miner outputs two frequent
subsequences: (67641265) and (133872016,
133872016, 82589171), each with their supporting
sequence IDs, based on which the locations of the
corresponding basic copy-pasted segments (file
name and line numbers) can be identified.

3.1.3 Composing Larger Copy-Pasted Segments

Since every sequence fed to the mining algorithm repre-
sents a basic block, a basic copy-pasted segment may only
be a part of a larger copy-pasted segment. Therefore, it is
necessary to combine a basic copy-pasted segment with its
neighbors to construct a larger one, if possible.

The composition procedure is very straightforward. CP-
Miner maintains a candidate set of copy-paste groups
which initially includes all of the basic copy-pasted
segments that survive the pruning procedure described in
Section 3.1.4. For each copy-paste group, CP-Miner checks
their neighboring code segments to see if they also form a
copy-paste group. If so, the two groups are combined
together to form a larger one. This larger copy-paste group
is checked against the pruning procedure. If it can survive
the pruning process, it is added to the candidate set and the
two smaller ones are removed. Otherwise, the two smaller
ones still remain in the set and are marked as “nonexpand-
able.” CP-Miner repeats this process until all groups in the
candidate set are nonexpandable.

3.1.4 Pruning False Positives

It is possible that copy-pasted segments discovered by the
mining algorithm or the composition process may contain
false positives. The main cause of false positives is the
tokenization of identifiers (variable, function, type, etc.) in
order to tolerate identifier-renaming in copy-paste. Since
identifiers of the same type are mapped into the same
token, it is possible to identify false copy-pasted segments.
For example, all statements similar to z = y + z would have
the same hash value, which can introduce many false

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

positives. To prune false positives, CP-Miner has applied
several techniques to both basic and composed copy-pasted
segments. The pruning techniques are described below.

1.

Pruning unmappable segments. This technique is
used to prune false positives introduced by the
tokenization of identifiers. This is based on the
observation that if a programmer copy-pastes a code
segment and then renames an identifier, he/she
would most likely rename this identifier in all its
occurrences in the new copy-pasted segment. There-
fore, we can build an identifier mapping that maps
old names in one segment to their corresponding
new ones in the other segment that belongs to the
same copy-paste group. In the example shown in
Fig. 2, variable prom_phys_total is changed into
prom_prom_taken (except the bug on line 117). The
original source identifiers, instead of tokens, are
used here for the mapping from one code segment to
the other. This source code-level information ob-
tained from the parsing phase is maintained together
with each hashed sentence stored in our sequence
database.

A mapping scheme is consistent if there are very
few conflicts that map one identifier name to two or
more different new names. If no consistent identifier
mapping can be established between a pair of copy-
pasted segments, they are likely to be false positives.

To measure the degree of conflict, CP-Miner uses
a metric called ConflictRatio, which records the
conflict ratio for an identifier mapping between two
candidate copy-pasted segments. For example, vari-
able A from segment 1 is changed to multiple
identifiers (usually just in one or two identifiers) in
segment 2. From these multiple identifiers, we first
pick out the one that has the largest number of
occurrences in A’s corresponding positions. Suppose
this identifier is a. Then, we calculate what percen-
tage of A in segment 1 is NOT mapped to a in
segment 2, where conflict happens. If A is mapped to
a in 75 percent of its occurrences in segment 2, but
25 percent of its occurrences is changed into other
variables, the ConflictRatio of mapping A from
segment 1 to segment 2 is 25 percent. Similarly, if
only 25 percent of A in segment 1 is mapped to a in
segment 2, the ConflictRatio of mapping A from
segment 1 to segment 2 is 75 percent. Here, the
ConflictRatio is asymmetric among the code seg-
ment pair, so CP-Miner calculates the values in both
directions of mapping. The ConflictRatio for the
whole mapping scheme between these two segments
is the weighted sum of Conflict Ratio of the mapping
for each unique identifier. The weight for an
identifier A in a given code segment is the fraction
of occurrences of A over the total occurrences of all
identifiers. If Conflict Ratio for two candidate copy-
pasted segments (in either one of the mapping
directions) is higher than a predefined threshold,
these two code segments are filtered as false
positives. In our experiments, we set the threshold
to be 60 percent.

2. Pruning tiny segments. Our mining algorithm may
find tiny copy-pasted segments that consist of only
one to two simple statements. If such a tiny segment
cannot be combined with neighboring segments to
compose a larger segment, it is removed from the
candidate set. This is based on the observation that
copy-pasted segments are usually not very small
because programmers cannot save much program-
ming effort by copy-pasting tiny code segments.

CP-Miner measures the size of a segment by the
number of tokens in it. This metric is more
appropriate than the number of statements because
the length of statements is highly variable. If a single
statement is very complicated with many tokens, it is
still possible for programmers to copy-paste it.

To prune tiny segments, CP-Miner uses a tunable
parameter called min_size. If the number of tokens
in a pair of copy-pasted segments is fewer than
min_size, this pair is removed.

3. Pruning overlapped segments. The concatenation
approach for constructing larger segments will
inevitably lead to many segments which overlap. If
a pair of candidate copy-pasted segments overlap
with each other, they are considered false positives.
To avoid such false positives, CP-Miner stops
extending the pair of copy-pasted segments once
they overlap. For some program structures, such as
the switch statement, which contain many pairs of
self-similar segments, pruning overlapped segments
can avoid most of the false positives in switch
statements.

4. Pruning segments with large gaps. Besides the
mining procedure for basic copy-pasted segments,
the gap constraint is also applied to composed ones.
When two neighboring segments are combined, the
maximum gap of the newly composed large segment
may become larger than a predefined threshold,
max_total_gap. If this is true, the composition is
invalid. So, the newly composed one is not added
into the candidate set and the two smaller ones are
marked as nonexpandable in the set.

Of course, even after such rigorous pruning, false
positives may still exist. However, we have manu-
ally examined 100 random copy-pasted segments
reported by CP-Miner for Linux, and only a few false
positives (eight) are found. Therefore, the precision
of our algorithm is around 92 percent. We can only
manually examine each identified copy-pasted seg-
ment because there are no traces that record the
programmers’ copy-paste activity during the devel-
opment of the software.

3.1.5 Computational Complexity of CP-Miner

CP-Miner can extract copy-pasted code directly from a
single software with total complexity of O(n?) in the worst
case (where n is the number of lines of code) and the
optimizations further improve its efficiency in practice. For
example, CP-Miner can identify more than 150,000 copy-
pasted segments from 3-4 million lines of code in less than
20 minutes, as shown in our results in Section 5.3. In
CP-Miner, we break very large basic blocks into small

LI ET AL.: CP-MINER: FINDING COPY-PASTE AND RELATED BUGS IN LARGE-SCALE SOFTWARE CODE 9

TABLE 1
Identifier Mapping in Fig. 1a Example

Identifiers in segment I
(line 92-99)
iter (9)
num_reg (1)
prom_phys_total (4)

Identifiers in segment I1
(line 111-118)
iter (9)
num_reg (1)
prom_prom_taken (3);
prom_phys_total (1)
prom_reg_memlist (2)

prom_reg_memlist (2)

The number after each identifier indicates the number of occurrences.

blocks with at most 30 statements before feeding them to
the mining algorithm. Therefore, the depth of the search
tree is at most 30. With this constraint of the search tree, the
mining complexity of CP-Miner is O(n?) in the worst case,
as described in Section 2.3. Furthermore, the optimizations
described in Section 2.3 make it more efficient in both time
and space than the worst case.

3.2 Detecting Copy-Paste Related Bugs

As we have mentioned in Section 1, one of the main causes
of copy-paste related bugs is that programmers forget to
modify identifiers consistently after copy-pasting. Once we
get the mapping relationship between identifiers in a pair of
copy-pasted segments (see Section 3.1.4), we can find the
inconsistency and report these copy-paste related bugs.
Table 1 shows the identifier mapping for the example
described in Section 1.

For an identifier that appears more than once in a copy-
pasted segment, it is consistent when it always maps to the
same identifier in the other segment. Similarly, it is
inconsistent when it maps to multiple identifiers. In
Table 1, we can see that prom_phys_total is mapped
inconsistently because it maps to prom_prom_taken three
times and prom_phys_total once. All the other variable
mappings are consistent.

Unfortunately, inconsistency does not necessarily indi-
cate a bug. If the amount of inconsistency is high, it may
indicate that the code segments are not copy-pasted.
Section 3.1.4 describes how we prune unmappable copy-
pasted segments.

Therefore, the challenge is to decide when an incon-
sistency is likely to be a bug rather than a false positive of
copy-paste. To address this challenge, we need to consider
the programmers’ intentions. In practice, following differ-
ent intentions may cause different identifier inconsistency
as follows (take identifier A in segment 1 copied to
segment 2 as example): 1) The programmer intends to
change every A to another identifier, say a. He/she
conducts this change in most places, but forgets some
corner positions. This type of mistake happens quite often.
2) The programmer intends to maintain exactly the same A
in segment 2, but he carelessly changes some A to other
identifiers. 3) The programmer intends to change A to
several different identifiers in segment 2 and inconsistency
happens during such modification.

Analyzing the three cases above, we found that if a
programmer changes an identifier in most places but
forgets to change it in a few places, the unchanged identifier

is very likely to be a bug. In other words, “forget-to-change”
is more likely to be a bug than an intentional “change.” For
example, if, in some cases, an identifier A is mapped into a
and, in other cases, it is mapped into @' (both a and o' are
different from A), it is a bug with a low probability because
the programmer is likely to intentionally change A to several
names due to functionality requirements. On the other
hand, if A is changed into a in most cases but remains
unchanged only in a few cases, the unchanged places are
likely to be bugs.

In order to verify this intuition, we also tried to
implement CP-Miner to report those copy-pasted segments
where programmers changed an identifier in some occur-
rences but most of the occurrences remained unchanged.
We rank the reports based on the “changed ratio,” similar to
the UnchangedRatio described in the following. By manu-
ally verifying the top 100 reports for Linux, we only found
two of them are real bugs. The false positive rate is much
higher than the first case (see Section 5.2). To this end, the
current version of CP-Miner only addresses the first case
because it is more likely to happen than the second case and
relatively easier to detect than the third case.

Based on the above observation, CP-Miner reexamines
each nonexpandable copy-paste group after running
through the pruning and composing procedures. For each
pair of copy-pasted segments, it uses a metric called
UnchangedRatio to detect bugs in an identifier mapping.
We define

NumUnchanged

Unch dRatio =
nchangedRatio NumTotal

where NumUnchanged is the number of occurrences in
which a given identifier is unchanged and NumTotal is the
total number of occurrences of this identifier in a given
copy-pasted segment. UnchangedRatio can be any value
between 0 and 1 (inclusive). Especially, UnchangedRatio =
0 means that all occurrences of the identifier have been
changed, while UnchangedRatio = 1 means that all of its
occurrences remain unchanged. Therefore, the lower the
UnchangedRatio, the more likely it is a bug unless
UnchangedRatio = 0. Note that UnchangedRatio is different
from ConflictRatio. The former only measures the ratio of
unchanged occurrences, whereas the latter measures the
ratio of conflicts. In the example shown in Table 1,
UnchangedRatio for prom_phys_total is 0.25, whereas all
other identifiers have UnchangedRatio = 1.

CP-Miner uses a threshold for UnchangedRatio to
detect bugs, denoted as UnchangedRatioThreshold. If
UnchangedRatio for an identifier is not zero and not larger
than UnchangedRatioThreshold, the unchanged occur-
rences are reported as bugs. Notice that UnchangedRatio
for a pair of segments has two different directions. Because
we cannot tell which segment is the original one, CP-Miner
calculates in both directions. When CP-Miner reports a bug,
the corresponding identifier mapping information is also
provided to programmers to help in debugging. In the
example shown in Table 1, identifier prom_phys_total on
line 117 is reported as a bug.

It is possible to further extend CP-Miner’s bug detection
engine. For example, it might be useful to exploit variable

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

TABLE 2
Software Evaluated in Our Experiments

Software version | #files #LOC
Linux 2.6.6 6,497 | 4,365,124
FreeBSD 5.2.1 7,114 | 3,299,622
Apache 2.0.49 479 223,886
PostgreSQL | 7.4.2 553 458,058

correlations. Assume variable A always appears in close
range to another variable B and a always appears very close
to b. So, if, in a pair of copy-pasted segments, A is renamed
to a, B then should be renamed to b with high confidence.
Any violation of this rule may indicate a bug. But, the
current version of CP-Miner has not exploited this idea,
which remains as future work.

4 METHODOLOGY

We have evaluated the effectiveness of CP-Miner with large
software, including Linux, FreeBSD, Apache Web server,
and PostgreSQL, in our experiment. The number of files
(only C files) and the number of lines of code (LOC) for the
software are shown in Table 2.

We set the thresholds used in CP-Miner as follows: The
minimum copy-pasted segment size min_size is 30 tokens.
We also vary the gap constraints: 1) When maz_gap =0,
CP-Miner only identifies copy-pasted code with identifier-
renaming; 2) when maz_gap =1 and maz_total_gap = 2, it
means that CP-Miner allows copy-pasted segments with
insertion and deletion of one statement between any two
consecutive statements, and a total of two statement
insertions and deletions in the whole segment. We use
setting 2) by default because it permits a reasonable size of
modification after copy-paste and will not cause too many
false positives.

We define CP% to measure the percentage of copy-paste
in given software (or a given module):

#LOC in copy-pasted segments
#LOC in the software suite or the module

CP% = x 100%.

In our experiments in identifying copy-pasted code in the
four software suites above, we also compare CP-Miner with a
recently proposed tool, called CCFinder [5]. Similarly to our
tool, CCFinder also tokenizes identifiers, keywords, constant,
operators, etc. But, differently from our tool, it uses a suffix
tree algorithm instead of a data mining algorithm. Therefore,
it cannot tolerate statement insertions and deletions in copy-
pasted code. Our results show that CP-Miner detects 17-
52 percent more copy-pasted code than CCFinder. In
addition, CCFinder does not filter incomplete, tiny copy-
pasted segments, which are very likely to be false positives.
CCFinder does not detect copy-paste related bugs, so we
cannot compare this functionality between them.

In our experiments, we ran CP-Miner and CCFinder on
an Intel Xeon 2.4GHz machine with 2GB memory.

TABLE 3

The Number of Copy-Pasted Segments and CP%
Software max_gap =0 max_gap = 1

#Segments | CP% | #Segments | CP%
Linux 122,282 | 15.3% 198,605 | 22.3%
FreeBSD 101,699 | 14.9% 153,230 | 20.4%
Apache 4,155 | 13.1% 6,196 | 17.7%
PostgreSQL 12,105 | 16.5% 16,662 | 22.2%

5 CP-MINER BaAsic RESULTS

We first present the basic results of CP-Miner in this section,
including the number of copy-pasted segments, the number
of detected copy-pasted bugs, CP-Miner overhead, compar-
ison with CCFinder, and effects of threshold setting. The
statistical results of copy-paste characteristics in Linux and
FreeBSD will be presented in Section 6.

5.1 Overall Results

5.1.1 Detecting Copy-Pasted Code

CP-Miner has found a significant number of copy-pasted
segments in the evaluated software. With maz_gap = 2, the
total amount of copy-paste accounts for 17.7-22.3 percent of
the source code in these software suites, with Apache being
the lowest, 17.7 percent, and Linux being the highest,
22.3 percent. Table 3 shows the numbers of copy-pasted
segments and C'P% for these software suites. As shown in
this table, in Linux and FreeBSD, there are more than
100,000 and 120,000 copy-pasted segments without any
statement insertion (max_gap = 0), which account for about
15 percent of the source code. We have manually examined
the identified copy-pasted segments in one of the Linux
modules (file system) and found very few (only three) false
positives out of 90 identified copy-pasted segments (with
maz_gap = 1). The large number of copy-pasted segments
motivates a support in integrated development environ-
ments (IDEs) such as Eclipse, Microsoft Visual Studio, and
NetBeans to maintain copy-pasted code.

Our results also show that a large percentage (30-
50 percent) of copy-pasted segments have statement inser-
tions and modifications. For example, when max_gapis 1, CP-
Miner finds 62.4 percent more copy-pasted segments in
Linux. In FreeBSD, the C'P% increases from 14.9 percent to
20.4 percent when max_gap is relaxed from 0 to 1. These
results show that previous tools, including CCFinder, which
cannot tolerate statement insertions and modifications,
would miss a lot of copy-paste.

By increasing maxz_gap from 1 to 2 or higher, we can
further relax the gap constraint. Due to space limitations,
we do not show those results here. Also, the number of false
positives will increase with max_gap. Our manual examina-
tion results with the Linux file system module indicate that
false positives are low with maz_gap = 1, and relatively low
with max_gap = 2.

5.1.2 Detecting Copy-Paste Related Bugs

CP-Miner has also reported many copy-paste related bugs in
the evaluated software. Since the bugs reported by CP-Miner
may not be real bugs, we verify each one manually and then

LI ET AL.: CP-MINER: FINDING COPY-PASTE AND RELATED BUGS IN LARGE-SCALE SOFTWARE CODE 11

TABLE 4
Copy-Paste Related Bugs Reported by CP-Miner
(UnchangedRatioThreshold = 0.4) and Bugs Verified by Us with
High Confidence, Most of Which Were Confirmed and Fixed by
Corresponding Developers after We Reported

Software bugs bugs | false positives | unconfirmed
reported | verified | (1) | (2) | (3)

Linux 421 49 151 | 41 | 57 123

FreeBSD 443 31 307 | 41 | 30 34

Apache 17 5 3 1|6 2

PostgreSQL 74 2 13 | 10 | 43 6

The false alarms include three categories: 1) incorrectly matched
segments, 2) exchangeable orders, and 3) others. The first two
categories can be pruned, which remains as our future work.

report to the corresponding developer community those bugs
that we suspect to be real bugs with high confidence. The
numbers of bugs detected by CP-Miner and verified bugs are
shown in Table 4. The results are achieved by setting the
UnchangedRatioT hreshold to be 0.4.

Both Linux and FreeBSD have many copy-paste related
bugs. So far, we have verified 49 and 32 bugs in the latest
versions of Linux and FreeBSD. Most of these bugs had
never been reported before. We have reported these bugs to
the kernel developer communities. Most of the Linux bugs
have been confirmed and fixed in the following releases by Linux
kernel developers and the others are still in the process of being
confirmed.

Since Apache and PostgreSQL are much smaller com-
pared to Linux and FreeBSD, CP-Miner found many fewer
copy-paste related bugs. We have verified six bugs for
Apache and two bugs for PostgreSQL with high confidence.
One bug in Apache was immediately fixed by the Apache
developers after we reported it to them.

5.2 False Positives in Bug Detection

Table 4 also shows the number of false positives reported by
CP-Miner in bug detection. These false positives are mostly
caused by the following two major reasons and can be
further pruned in our future work:

1. Incorrectly matched copy-pasted segments. In some
copy-pasted segments that contain multiple “case/if ”
blocks, there are many possible combinations for
these contiguous copy-pasted blocks to compose
larger ones. Since CP-Miner simply follows the
program order to compose larger copy-pastes, it is
likely that a wrong combination might be chosen. As
a result, identifiers are compared between two
incorrectly matched copy-pasted segments, which
results in false positives.

These false positives can be pruned if we use
more semantic information of the identifiers in these
segments. The segments with a number of “case/if ”
blocks usually contain a lot of constant identifiers,
but our current CP-Miner treats them as normal
variable names. If we use the information of these
constants to match “case/if” blocks when composing
larger copy-pasted segments, it can reduce the
number of incorrectly matched segments and most
false positives can be pruned.

TABLE 5
Execution Time and Memory Space of CP-Miner

Software maz_gap =0 max_gap = 1
Time(s) | Space(MB) | Time(s) | Space(MB)
Linux 770 438 1164 527
FreeBSD 615 334 1155 459
Apache 14 27 15 30
PostgreSQL 32 44 38 57

2. Exchangeable orders. In a copy-paste pair, the
orders of some statements or expressions can be
switched. For example, a segment with several
similar statements such as “al=bl; a2=b2;” is the
same as “a2=b2; al=bl;” The current version of
CP-Miner simply compares the identifiers in a pair
of copy-pasted segments in strict order and, there-
fore, a false alarm might be reported. In Linux,
41 false positives are caused by such exchangeable
orders.

These false positives can be pruned if we relax the
strict order comparison by further checking whether
the corresponding “changed” identifiers are in the
neighboring statements/expressions.

5.3 Time and Space Overheads

CP-Miner can identify copy-pasted code in large-scale
software code very efficiently. The execution time of CP-
Miner is shown in Table 5. CP-Miner takes 11-20 minutes to
identify 101,699-198,605 copy-pasted segments in Linux and
FreeBSD, each with 3-4 millions of lines of code. It takes less
than 1 minute to detect copy-pasted segments in Apache
and PostgreSQL with more than 200,000 lines of code.

CP-Miner is also space-efficient. For example, it takes
less than 530MB to find copy-pasted code in Linux. For
Apache and PostgreSQL, CP-Miner only consumes
27-57 MB of memory.

5.4 Comparison with CCFinder

We have compared CP-Miner with CCFinder [5]. CCFinder
has similar execution time as CP-Miner, but CP-Miner
discovers many more copy-pasted segments. In addition,
CCFinder cannot detect copy-paste related bugs. As we
explained in Section 4, CCFinder allows identifier-renam-
ing, but not statement insertions. In addition, CCFinder
does not have as rigorous pruning operations as CP-Miner.
For example, CCFinder reports many tiny copy-pasted
segments fewer than 30 tokens, which are too simple to be
worth copy-pasting. In addition, it also includes incomplete
statements in copy-pasted segments, which is very unlikely
to be the case in practice.

CP-Miner can identify 17-52 percent more copy-pasted
code than CCFinder because CP-Miner can tolerate state-
ment insertions and modifications. Table 6 compares the
CP% identified by CP-Miner and CCFinder. The results
with CP-Miner are achieved using the default threshold
setting (min_size = 30 and max_gap = 1). For fair compar-
ison, we also filter those tiny, incomplete segments from
CCFinder’s output. The results show that around 25 percent
of copy-paste is pruned after filtering.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

TABLE 6
CP% Comparison between CP-Miner and CCFinder
Software CCFinder | CP-Miner
Linux 14.7%(19.8%) 22.3%
FreeBSD 14.5%(19.6%) 20.4%
Apache 11.8%(15.3%) | 17.0%
PostgreSQL | 18.5%(23.8%) 21.7%

For CCFinder, the first number is the result after pruning those tiny,
incomplete segments, and the second number in () is the result before
pruning.

5.5 Effects of Threshold Settings

Segment Size Threshold. Fig. 3 shows the effect of
segment-size threshold min_size on CP%. As expected,
the C'P% decreases when min_size increases because more
copy-pasted segments are pruned. The results also show
that the decrement slows down when min_size is in the
range of 30-100 (tokens), which indicates that not too many
copy-segments’ sizes fall in this range. This implies that
segments with fewer than 30 tokens are very likely to be
false positives, whereas those with more than 40 tokens are
very likely to be copy-paste.

Unchanged Ratio Threshold. Fig. 4 shows the effect of
threshold UnchangedRatioT hreshold on the number of bugs
reported. Since UnchangedRatio > 0.5 means thatatleasthalf
of the identifiers are not changed after copy-paste, these
unchanged identifiers are unlikely “forget-to-change” and,
s0, it cannot indicate a copy-paste related error. Therefore, we
only show the errors with UnchangedRatioT hreshold < 0.5.

As expected, more errors are reported by CP-Miner when
UnchangedRatioT hreshold increases. Specifically, the num-
ber of errors reported increases gradually when the threshold
is less than 0.25 and then increases sharply when the
threshold € (0.25,0.35). We found that most of the errors
with high UnchangedRatio turn out to be false bugs during
our verification. For example, CP-Miner reports many errors
where only one out of three identifiers is unchanged
(UnchangedRatio = 0.33). However, it cannot strongly sup-
port that it is a copy-paste related bug. In order to prune such
false bugs, we can further analyze the identifiers in the
context of the copy-pasted segments (e.g., the whole func-
tion). We leave this improvement as future work.

6 SrtATISTICS OF COPY-PASTE IN OS CODE

This section presents the statistical results on copy-paste
characteristics in large-scale software code. Our results

35
30 N
25 1\
20
15
10

CP%

20 30 40 50 60 70 80 90 100
min_size

Fig. 3. Effects of min_size on CP%.

500

B Linux
£ 40 FreeBSD /7]
o = Apache

2 350 > PostgreSQL

@ 300

3 250 /

Qo

5 200

E too

2 S0 s

0
0.050.10.150.2 0.25 0.3 0.35 0.4 0.45
UnchangedRatioThreshold

Fig. 4. Effects of UnchangedRatioThreshold on errors reported. Since
Linux and FreeBSD are much larger than Apache and PostgreSQL, the
numbers of bugs in the former two applications are also significantly
more than the latter two, especially when the threshold increases.

include the distribution of copy-pasted segments across
different group sizes, segment sizes, granularity, amount of
changes, modules, and versions.

6.1 Copy-Pasted Segment Size and Granularity

Fig. 5 illustrates the distribution of copy-pasted segments
with different sizes (in terms of the number of statements).
The results show that most (60-64 percent) copy-pasted
segments are not very large, with only 5-16 statements.
Only a few (0.2-5.0 percent) copy-pasted segments have
more than 64 statements. In particular, Fig. 5a shows that
most (35-40 percent) copy-paste groups contain five to eight
statements in each segment. Fig. 5b shows similar char-
acteristics: Copy-pasted segments with five to eight state-
ments cover about 7-10 percent of the source code.

Fig. 6 shows the distribution of copy-paste group size.
About 60 percent of copy-paste groups contain only two
segments, which indicates that there are only two copies
(original and replicated) for most copy-pasted code. But
still, 40 percent of the copy-pasted code groups contain at
least three segments, which indicates that a lot of code is
replicated more than once.

We found that 4.0-6.7 percent of copy-pasted segments
are copy-pasted more than seven times. If a bug is detected
in one of the copies, it is very difficult for programmers to
remember fixing the bug in the other seven or more copies.
This motivates a tool that can automatically fix other copy-
pasted segments once a programmer fixes one segment.

Table 7 shows the number of copy-pasted segments at
basic-block and function granularity. Our results show that
only 3-11.8 percent of all copy-pasted segments are basic
blocks, which indicates that programmers are less likely to
copy-paste basic blocks than whole functions because some
of them are too simple to be worth copy-pasting.

More interestingly, there are many (11.3-19.2 percent)
copy-pasted segments at function granularity. The reason is
that many functions provide similar functionality, such as
reading data from different types of I/O devices. Those
functions can be copy-pasted with some modifications, such
as replacing parameters’ data types. This motivates some
refactoring tools [39] to better maintain these copy-pasted
functions.

6.2 Modifications in Copy-Pasted Segments

Fig. 7 shows how many identifiers are changed in copy-
pasted segments. Since, in some cases, there are more than
two segments in each copy-paste group, we only present

LI ET AL.:

S
S

CP-MINER: FINDING COPY-PASTE AND RELATED BUGS IN LARGE-SCALE SOFTWARE CODE

13

@ %]
. 8 2
325000 Linux 315000 FreeBSD 3 1000 Apache 3 2000 PostgreSQL
o o o [
O 20000 ©12000+ O 800 G 1600
815000 B 9000 8 600 B 1200 .
17 17} 7] 7}
310000 < 6000 < 400 g 800
4 5000 4 30001 4. 200 1 400
g o s o S o g o
8 N O © N ¥ O © (6] N O © N S ©O ©) <t 0O © N ¥ O © 8 N < O © N S O ©
* I 1 1T — ® © & #* I 1 1T — ® © q * I 1 7T -~ ® © o 4 I 1 T — ® © a
- M W | | L ws o= - M 0 | | [- M O | | [= == - M 0 | | [= =
D~ M | A o~ M | A D~ M | A o~ M | A
Size of Segment (#Statements) Size of Segment (#Statements) Size of Segment (#Statements) Size of Segment (#Statements)

Linux FreeBSD

Apache

PostgreSQL

=}
3\
1
1o}
©

©
3V
=

A

==}
3N
T
0
©

Size of Segment (#Statements)

Fig. 5. Size distribution of copy-pasted segments. Due to the overlap of copy-pasted segments that have different segment sizes and also belong to
different copy-paste groups, the sum of all CP% does not equal the overall CP%. (a) The number of copy-paste groups with various segment sizes
(number of statements). (b) The CP% with various segment sizes (number of statements).

75 Linux 75 FreeBSD 75 Apache 75 PostgreSQL

ko ko) o) ko
60 60 60 T 60
o 45 o 45 o 45 o 457
330 3 30 3 30 3 301
O 15 O 15 O 15 O 151

g N MO < 0 © C(I> ©o © 0 N O T 1 © QID o © 0 NN T 1 © clo o © g N O < 0 © o? ©o ©

~ OI'> A ~ 017 A ~ 0|7 A ~ OI') A

Size of Group (#Segments) Size of Group (#Segments) Size of Group (#Segments) Size of Group (#Segments)

Fig. 6. Copy-paste group size distribution (in terms of the number of segments in each copy-paste group). Each bar represents the percentage of
copy-paste groups that contains the corresponding number of segments.

the distribution in the best case: comparing the most similar
pair of segments from each copy-paste group. Each bar
includes two parts: one with no statement insertion and the
other with one statement insertion.

The results indicate that 59-76 percent of copy-pasted
segments require identifier-renaming. For example, in
Linux, 27 percent of copy-pasted segments are identical
and 8 percent of segments are almost identical with only
one statement inserted. The remaining 65 percent of the
copy-pasted segments in Linux rename at least one
identifier. Such results motivate a tool to support consis-
tently renaming identifiers in copy-pasted code.

6.3 Copy-Pasted Code across Modules
Different modules in an application have different char-
acteristics of copy-paste. In this subsection, we analyze the

TABLE 7
Distribution of Copy-Paste Granularity: Numbers and
Percentages of Copy-Pasted Segments at Different Granularity

Software basic block function

Linux 17,818 (9.0%) | 26,744 (13.5%)
FreeBSD 13,999 (9.1%) | 17,254 (11.3%)
Apache 733 (11.8%) 1,189 (19.2%)
PostgreSQL | 494 (3.0%) 2,280 (13.7%)

Note here the percentage is not CP%. It is calculated by comparing to
the total number of copy-pasted segments.

copy-pasted code across different modules in operating
system code. We split Linux into nine categories: arch
(platform specific), fs (file system), kernel (main kernel),
mm (memory management), net (networking), sound
(sound device drivers), drivers (device drivers other than
networking and sound device), crypto (cryptography), and
others (all other code). For FreeBSD, modules are also split
into nine categories: sys (kernel sources), lib (system
libraries), crypto (cryptography), usr.sbin (system adminis-
tration commands), usr.bin (user commands), sbin (system
commands), bin (system/user commands), gnu, and others.

6.3.1 Distribution of Copy-Pasted Code in Modules

Fig. 8 shows the number and C'P% of copy-pasted segments
in different modules of Linux and FreeBSD. The CP% is
computed based on the size of each corresponding module,
instead of the entire software suite.

Fig. 8a shows that most copy-pasted code in Linux and
FreeBSD is located in one or two main modules. For
example, modules “drivers” and “arch” account for
71 percent of all copy-pasted code in Linux and module
“sys” accounts for 60 percent in FreeBSD. This is because
many drivers are similar and it is much easier to modify a
copy-paste of another driver than writing one from scratch.
For example, the SCSI drivers in Linux for a series of
QLogic devices (ISP2100, ISP2200, ISP2300, ISP2322,
ISP6312, ISP6322, etc.) are very similar to each other, each

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

Linux FreeBSD Apache PostgreSQL
50 Z Gap=1 W Gap=0 | 50 % Gap=1 W Gap=0 | 50 % Gap=1 W Gap=0 | 50 % Gap=1 W Gap=0

2401
2]
P

) 0 - D10 -
0- 0- @ 0- 0-
0 1 2 3 4 5 >5 0 1 2 3 4 5 55 0 1 2 383 4 5 55 0 1 2 83 4 5 55

of Identifiers Renamed # of Identifiers Renamed

of Identifiers Renamed # of Identifiers Renamed

Fig. 7. Distribution of identifiers changed in copy-pasted segments. Each bar represents the percentage of segments that have the corresponding
number of renamed identifiers. Each bar has two parts: “Gap = 0” and “Gap = 1” represent the copy-pasted segments with no and one statement

modifications, respectively.

of which is based on the driver for the previous series of
device with a little changes.

Fig. 8b shows that a large percentage (20-28 percent) of
the code in Linux is copy-pasted in the modules “arch,”
“crypto,” and the device driver modules including “net,”
“sound,” and “drivers.” The “arch” module has a lot of
copy-pasted code because it has many similar submodules
for different platforms. The device driver modules contain a
significant portion of copy-pasted code because many
devices share similar functionalities. Additionally, “crypto”
is a very small module (less than 10,000 LOC), but the main
cryptography algorithms consist of a number of similar
computing steps, so it contains a lot of copy-pasted code.
Our results indicate that more attention should be paid to
these modules because they are more likely to contain copy-
paste related bugs.

In contrast, the modules “mm” and “kernel” contain
much less copy-pasted code than others, which indicates
that it is rare to reuse code in kernels and memory
management modules.

6.3.2 Copy-Pasted Code within/across Modules

The code in a module can be copy-pasted within the
module itself or from other modules. Table 8 shows how
much code is copy-pasted within the module itself or across
different modules.

Linux . FreeBSD
& 600 850
2 500 2 40
5400 g30
Eggg £ 20
d 6]
8 100 o M
- 0 - 00 ccec e s>w
j— - 1’4
S22EEEEES #8058 0556 58
« 3 32 >< 225 ° £
~ » 5 6 ©° Q«g: ©
Module Module
(a)
20 Linux 3('L| FreeBSD
25 25
o 2 s 2
s & 15
Oy Oy
5 5
S©eBTETT LS go2occce2
§ §ES3g8e 7o gap e 52
£ 85673 S5 3 B
©]
Module Module

Fig. 8. Copy-pasted code in different modules. (a) The number of copy-
pasted lines. (b) CP%.

Most copy-pasted code is within the same module, as
indicated by the bold numbers in Table 8. The percentage of
copy-pasted code within a module is usually greater than
15 percent and it is greater than 20 percent in some cases.
Meanwhile, the percentage of code that is copy-pasted
across different modules is usually lower than 4 percent,
much lower than the percentage within a module.

The exceptional case is that 4.6 percent of the code in the
“sound” module in Linux is copy-pasted from “drivers.”
The reason is that the “sound” module was originally one of
the submodules in the “drivers” module before it was
separated since version 2.5.5. Therefore, the “sound”
module still contains a lot of duplicate code from the
“drivers” module.

6.4 Copy-Paste Evolution

Fig. 9 shows that the amount of copy-pasted code increases
as the operating system code evolves. For example, Fig. 9a
shows the amount of copy-pasted code in Linux from
version 1.0 to 2.6.6 over time. As Linux’s code size increases
from 141,000 to 4.4 million lines, copy-pasted code also
keeps increasing from 23,000 to 975,000 lines.

In terms of C'P%, the percentage of copy-pasted code
also steadily increases along software evolution. For
example, Fig. 9a shows that CP% in Linux increases from
16.2 percent to 22.3 percent in Linux from version 1.0 to
2.6.6 and Fig. 9c shows that CP% in FreeBSD increases from
17.5 percent to 21.7 percent from version 2.0 to 4.10.
However, the CP% remains relatively stable over the
several recent versions for both Linux and FreeBSD. For
example, the CP% for FreeBSD has been staying at around
21-22 percent since version 4.0.

Most of the growth of CP% comes from a few modules,
including “drivers” and “arch” in Linux and “sys” in
FreeBSD. Fig. 9b shows copy-pasted code in the module
“drivers” individually through multiple versions. The
percentage of copy-pasted code increases more rapidly in
this module than in the entire software suite. For example,
in version 1.0, the CP% is only 11.9 percent in this module,
but it increases to 20.4 percent in version 2.2.0. This is
probably because Linux supports more and more similar
device drivers during this period.

7 CONCLUSIONS

This paper presents a tool called CP-Miner that uses data
mining techniques to efficiently identify copy-pasted code
in large software including operating systems and also

LI ET AL.: CP-MINER: FINDING COPY-PASTE AND RELATED BUGS IN LARGE-SCALE SOFTWARE CODE 15

TABLE 8
Copy-Paste Code within a Module and across Modules: (a) Linux 2.6.6 and (b) FreeBSD 5.2.1
Module (LOC) arch | fs | kernel | mm | net | sound | drivers | crypto | others
arch (724858) 251 | 14 05 |03] 1.1 1.3 32 0.1 0.8
fs (475946) 14 |165| 0.6 | 05| 1.7 1.2 2.2 0.0 0.7
kernel (30629) 30 | 1.8 79 |06 | 23 1.6 2.8 0.1 0.8
mm (23490) 26 | 22 0.8 |62 1.7 1.1 2.0 0.0 0.7
net (334325) 1.8 | 25 1.1 0.7 1207 | 2.1 3.7 0.1 1.0

sound (373109) 23 | 20 1.0 [06|22 | 274 4.6 0.2 1.1
drivers (2344594) | 2.3 | 1.7 06 |04 18 2.0 214 0.1 0.6
crypto (9157) 23 | 22 03 |01 11 1.5 2.5 26.1 22
others (49016) 38 | 1.9 08 |04 | 1.7 1.5 2.6 0.3 15.2

(@)
Module (LOC) sys | lib | crypto | usr.sbin | usr.bin | sbin | bin | gnu | others
sys (1767368) 225 15 1.1 1.5 1.2 1.0 | 03 | 0.6 0.8
lib (291132) 33 (181 | 1.8 1.4 1.2 07 103 1|05 0.9
crypto (392020) | 2.1 | 1.6 | 16.7 1.5 1.2 1.0 | 04 | 09 | 09

usr.sbin (310949) | 3.5 | 2.5 22 17.7 3.8 28 | 1.0 | 1.6 2.5
usr.bin (236952) | 2.6 | 1.8 1.7 34 119 | 22 | 1.2 | 1.1 1.9
sbin (112284) 3.1 | 20 1.7 35 3.1 169 | 1.2 | 1.1 22
bin (47008) 1.3 | 1.0 2.0 2.0 23 1.8 1109 | 0.8 1.6
gnu (64996) 28 | 1.7 2.0 1.7 1.6 09 | 07 |145] 1.1
others (76913) 29 | 24 2.0 33 3.1 26 | 1.0 | 1.2 | 127

(b)
Each number in the table represents the C' P% of code copy-pasted from another module. For example, in (a), the number at row “arch” and column
“arch” represents that 25.1 percent of the code in module “arch” is copy-pasted within the module itself; the number at row “arch” and column
“drivers” represents that 3.2 percent of the code in module “arch” is copy-pasted from/to another module “drivers.” Note that these tables are
asymmetric because CP% is related to the size of the row element module.

Version Version
o o o o o o o o o O
> 23 ® oo B Q@ 9 Q8 Qg © Qs ® oo 1y o o a8 9@
e am AT S NV B B e am DT S VS S B]
5 - - N NN ANy o o o NN a N 30 25 -~ - (U QURNAY) N o o N NN a N 30
T = tota: oo) L(.)(.; T T —T— T 5 = tota: o8) L.O.C — — T
----&--- total copy-paste ---&--- total copy-paste
4 F % 25 2F % 25
1S S 1 20 Q 20
Q 3¢} N Q 15¢ R
c 15 o c 15 o
2 Ll © 2 1t ©
= 10 s 10
1r st i b8 0.5 o tpnppts bt
DA ey
o e oo 0 oo poepptlei T . o
01/94 01/96 01/98 _ 01/00 01/02 01/04 01/94 01/96 01/98 _ 01/00 01/02 01/04
Time Time
(a) (b)
Version Version
°© - o« e o N wr oF ° - 2 o uwre 9
o o o (] < < <t I T < 25 o [3Y o] < < < I S < 30
5 T T T T T T — 30 . T T T T T T — T —T
—e— total LOC —e— total LOC
,,,,,,, . I .
, | % total copy-pasted LOC 1 25 o | T gEOpReseAloe 4
o o 20 o 120
Q 3¢} 2 Q 15 2
c 15 o c 15 o
2 (5} 2 o
= 2t = 1+
= 10 = 10
1+ s 0.5 15
N — SNV YN WY, SV P A,AAAWA(—AM'M’A'M’A
o Lt A . o oo pet T k N
01/94 01/96 01/98 _ 01/00 01/02 01/04 01/94 01/96 01/98 _ 01/00 01/02 01/04
Time Time
(c) (d)

Fig. 9. Copy-pasted code in Linux and FreeBSD through various versions. The x-axis (version number) is drawn in time scale with the corresponding
release time. The versions of Linux we analyze are from 1.0 to the current version 2.6.6. The versions of FreeBSD include the main branch from 2.0
to 4.10. (a) Linux 1.0-2.6.6. (b) “Drivers” in Linux. (c) FreeBSD 2.0-4.10. (c) “Sys” in FreeBSD.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

detects copy-paste related bugs. Specifically, it takes less
than 20 minutes for CP-Miner to identify 190,000 and
150,000 copy-pasted segments that account for 20-22 percent
of the source code in Linux and FreeBSD. Moreover,
CP-Miner has detected 49 and 31 copy-paste related bugs
with an acceptable false positive rate in the latest versions of
Linux and FreeBSD, respectively. Compared to CCFinder
[5], CP-Miner finds 17-52 percent more copy-pasted
segments because it can tolerate statement insertions and
modifications in copy-paste. In addition, we have shown
some interesting characteristics of copy-pasted codes in
Linux and FreeBSD, including distribution of copy-paste by
different segment sizes (number of lines of code), granu-
larity (basic blocks and functions), and modification. We
also analyze copy-paste across different modules and
various software versions.

Our results indicate that maintaining copy-pasted code
would be very useful for programmers because it is
commonly used in large-scale software such as operating
system code and it can easily introduce hard-to-detect bugs.
We hope our study motivates IDEs such as Eclipse,
Microsoft Visual Studio, and NetBeans to provide function-
ality to maintain copy-pasted code and automatically detect
copy-paste related bugs.

Even though CP-Miner focuses only on “forget-to-
change” bugs caused by copy-paste, copy-paste can intro-
duce many other types of bugs. For example, after the copy-
paste operation, the programmer forgets to add some
statements that are specific to the new copy-pasted
segment. However, such bugs are hard to detect because
detecting them relies on semantic information. It is
impossible to guess what the programmer would want to
insert or modify. Another type of copy-paste related bug is
caused by programmers forgetting to fix a known bug in all
copy-pasted segments. They may fix only one or two
segments, but forget to change it in the others. Our tool
CP-Miner can detect simple cases of this type of error. But,
if the fix is too complicated, CP-Miner would miss the bug
because the modified code segment becomes too different
from the other copies to be identified as copy-paste. To
overcome this problem would require support from IDEs
such as Eclipse, Microsoft Visual Studio, NetBeans, etc.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
and James Larus (Microsoft Research Lab) for their
invaluable feedback. They appreciate Professor Jiawei Han
and his group for their CloSpan mining algorithm. This
work was supported by an IBM Faculty Award, US
National Science Foundation (NSF) CNS-0347854 (career
award), NSF CCR-0305854 grant, and NSF CCR-0325603
grant. The experiments were conducted on equipment
provided through the IBM SUR grant. An earlier version
of this paper [1] appeared in the Proceedings of the Sixth
Symposium on Operating System Design and Implementation.

REFERENCES

[1] Z.1Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A Tool for
Finding Copy-Paste and Related Bugs in Operating System Code,”

(2]

B3]

(4]

(5]

[6]

(71

(8]
]

[10]

(11]

(12]

[13]

(14]

[15]

[16]

(171

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

[20]

(27]

Proc. Symp. Operating System Design and Implementation, pp. 289-
302, 2004.

B.S. Baker, “On Finding Duplication and Near-Duplication in
Large Software Systems,” Proc. Second Working Conf. Reverse Eng.,
p- 86, 1995.

S. Ducasse, M. Rieger, and S. Demeyer, “A Language Independent
Approach for Detecting Duplicated Code,” Proc. Int’l Conf.
Software Maintenance, pp. 109-118, 1999.

C. Kapser and M.W. Godfrey, “Toward a Taxonomy of Clones in
Source Code: A Case Study,” Evolution of Large-Scale Industrial
Software Applications, Sept. 2003.

T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multi-
linguistic Token-Based Code Clone Detection System for Large
Scale Source Code,” IEEE Trans. Software Eng., vol. 28, no. 7,
pp. 654-670, July 2002.

1.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
Detection Using Abstract Syntax Trees,” Proc. Int’l Conf. Software
Maintenance, p. 368, 1998.

A. Chou, J. Yang, B. Chelf, S. Hallem, and D.R. Engler, “An
Empirical Study of Operating System Errors,” Proc. Symp.
Operating Systems Principles, pp. 73-88, 2001.

“Linux Kernel Mailing List,” http://lkml.org, year?

A. Chou, B. Chelf, D.R. Engler, and M. Heinrich, “Using Meta-
Level Compilation to Check FLASH Protocol Code,” Proc. Int’l
Conf. Architectural Support for Programming Languages and Operating
System, pp. 59-70, 2000.

D. Engler and K. Ashcraft, “RacerX: Effective, Static Detection of
Race Conditions and Deadlocks,” Proc. ACM Symp. Operating
Systems Principles, pp. 237-252, 2003.

S. Hallem, B. Chelf, Y. Xie, and D. Engler, “A System and
Language for Building System-Specific, Static Analyses,” Proc.
ACM SIGPLAN Conf. Programming Language Design and Implemen-
tation, pp. 69-82, 2002.

M. Musuvathi, D. Park, A. Chou, D.R. Engler, and D.L. Dill,
“CMC: A Pragmatic Approach to Model Checking Real Code,”
Proc. Symp. Operating Systems Design and Implementation, Dec. 2002.
R. Hastings and B. Joyce, “Purify: Fast Detection of Memory Leaks
and Access Errors,” Proc. Winter USENIX Conf., pp. 158-185, Dec.
1992.

N. Nethercote and J. Seward, “Valgrind: A Program Supervision
Framework,” Proc. Third Workshop Runtime Verification, 2003.

J. Condit, M. Harren, S. McPeak, G.C. Necula, and W. Weimer,
“CCured in the Real World,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, pp. 232-244,
2003.

S. Grier, “A Tool that Detects Plagiarism in Pascal Programs,”
Proc. 12th SIGCSE Technical Symp. Computer Science Education,
pp. 15-20, 1981.

H.T. Jankowitz, “Detecting Plagiarism in Student Pascal Pro-
grams,” Computer |., vol. 31, no. 1, pp. 1-8, 1988.

L. Prechelt, G. Malpohl, and M. Philippsen, “Finding Plagiarisms
among a Set of Programs with JPlag,” J. Universal Computer Science,
vol. 8, no. 11, pp. 1016-1038, Nov. 2002.

A. Aiken, “Moss: A System for Detecting Software Plagiarism,”
http://www.cs.berkeley.edu/aiken/moss.html, year?

S. Schleimer, D.S. Wilkerson, and A. Aiken, “Winnowing: Local
Algorithms for Document Fingerprinting,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, pp. 76-85, 2003.

B.S. Baker, “A Program for Identifying Duplicated Code,”
Computing Science and Statistics, vol. 24, pp. 49-57, 1992.

J.H. Johnson, “Substring Matching for Clone Detection and
Change Tracking,” Proc. Int’l Conf. Software Maintenance, pp. 120-
126, 1994.

J.H. Johnson, “Identifying Redundancy in Source Code Using
Fingerprints,” Proc. Conf. Centre for Advanced Studies on Collabora-
tive Research, Oct. 1993.

R. Komondoor and S. Horwitz, “Using Slicing to Identify
Duplication in Source Code,” Proc. Eighth Int'l Symp. Static
Analysis, 2001.

K. Kontogiannis, M. Galler, and R. DeMori, “Detecting Code
Similarity Using Patterns,” Working Notes Third Workshop Al and
Software Eng.: Breaking the Toy Mold, 1995.

J. Krinke, “Identifying Similar Code with Program Dependence
Graphs,” Proc. Eighth Working Conf. Reverse Eng., 2001.

J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the
Automatic Detection of Function Clones in a Software System
Using Metrics,” Proc. Int’l Conf. Software Maintenance, p. 244, 1996.

LI ET AL.: CP-MINER: FINDING COPY-PASTE AND RELATED BUGS IN LARGE-SCALE SOFTWARE CODE 17

(28]

[29]

[30]

(31]

(32]

(33]

[34]

(35]

[30]

(371

(38]

(39]

U. Manber, “Finding Similar Files in a Large File System,” Proc.
USENIX Winter 1994 Technical Conf., pp. 1-10, 1994.

K.W. Church and J.I. Helfman, “Dotplot: A Program for Exploring
Self-Similarity in Millions of Lines of Text and Code,” J.
Computational and Graphical Statistics, 1993.

S. Hangal and M.S. Lam, “Tracking Down Software Bugs Using
Automatic Anomaly Detection,” Proc. Int’l Conf. Software Eng.,
May 2002.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A Dynamic Data Race Detector for Multithreaded
Programs,” ACM Trans. Computer Systems, vol. 15, no. 4, pp. 391-
411, 1997.

D. Engler, D.Y. Chen, and A. Chou, “Bugs as Inconsistent
Behavior: A General Approach to Inferring Errors in Systems
Code,” Proc. ACM Symp. Operating Systems Principles, pp. 57-72,
2001.

U. Stern and D.L. Dill, “Automatic Verification of the SCI Cache
Coherence Protocol,” Proc. Conf. Correct Hardware Design and
Verification Methods, pp. 21-34, 1995.

J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M.
Sridharan, “Efficient and Precise Datarace Detection for Multi-
threaded Object-Oriented Programs,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, pp. 258-269,
2002.

R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc.
11th Int’l Conf. Data Eng., 1995.

X. Yan, J. Han, and R. Afshar, “CloSpan: Mining Closed
Sequential Patterns in Large Datasets,” Proc. SIAM Int'l Conf.
Data Mining, May 2003.

Z. Li, Z. Chen, SM. Srinivasan, and Y. Zhou, “C-Miner: Mining
Block Correlations in Storage Systems,” Proc. Third USENIX Conf.
File and Storage Technologies, pp. 173-186, 2004.

A.V. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques
and Tools. Addison-Wesley, 1986.

R.E. Johnson and W.F. Opdyke, “Refactoring and Aggregation,”
Proc. Int’l Symp. Object Technologies for Advanced Software, pp. 264-
278, 1993.

a member of the IEEE.

Zhenmin Li received the BE and ME degrees in
computer science from Tsinghua University,
China. He is a PhD student in the Department
of Computer Science, University of lllinois at
Urbana-Champaign. His research interests in-
clude computer systems, software reliability,
data mining, storage systems, and energy
management.

Shan Lu is a PhD student in the Department of
Computer Science, University of lllinois at
Urbana-Champaign. Her research interests in-
clude architectural and system support for soft-
ware debugging and system configuration
management.

Suvda Myagmar received the BS degree in
computer science from Concord College and the
MS degree in computer science from University
of lllinois at Urbana-Champaign. She is a
PhD student in the Department of Computer
Science, University of lllinois at Urbana-Cham-
paign. She is working on security issues of
software defined radios. Her research interests
include computer and network security, wireless
communications, and reconfigurable platforms.

Yuanyuan Zhou received the MA and
PhD degrees from Princeton University. She is
currently an assistant professor in the Depart-
ment of Computer Science, University of lllinois
at Urbana-Champaign (UIUC). Prior to UIUC,
she worked at NEC Research Institute as a
scientist from 2000 to 2002. Her main research
interests include database storage, architecture
and OS support for software debugging, power
management, and memory management. She is

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

