
ConSeq: Detecting Concurrency Bugs
through Sequential Errors

Wei Zhang1 Junghee Lim1 Ramya Olichandran1 Joel Scherpelz1 Guoliang Jin1

Shan Lu1 Thomas Reps1,2

1Computer Sciences Department, University of Wisconsin–Madison 2GrammaTech,Inc

{wzh,junghee,ramya,scherpel,aliang,shanlu,reps}@cs.wisc.edu

Abstract

Concurrency bugs are caused by non-deterministic interleavings
between shared memory accesses. Their effects propagate through
data and control dependences until they cause software to crash,
hang, produce incorrect output, etc. The lifecycle of a bug thus
consists of three phases: (1) triggering, (2) propagation, and (3)
failure.

Traditional techniques for detecting concurrency bugs mostly
focus on phase (1)—i.e., on finding certain structural patterns of in-
terleavings that are common triggers of concurrency bugs, such as
data races. This paper explores a consequence-oriented approach to
improving the accuracy and coverage of state-space search and bug
detection. The proposed approach first statically identifies potential
failure sites in a program binary (i.e., it first considers a phase (3)
issue). It then uses static slicing to identify critical read instructions
that are highly likely to affect potential failure sites through control
and data dependences (phase (2)). Finally, it monitors a single (cor-
rect) execution of a concurrent program and identifies suspicious
interleavings that could cause an incorrect state to arise at a critical
read and then lead to a software failure (phase (1)).

ConSeq’s backwards approach, (3)→(2)→(1), provides advan-
tages in bug-detection coverage and accuracy but is challenging to
carry out. ConSeq makes it feasible by exploiting the empirical ob-
servation that phases (2) and (3) usually are short and occur within
one thread. Our evaluation on large, real-world C/C++ applications
shows that ConSeq detects more bugs than traditional approaches
and has a much lower false-positive rate.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Testing Tools

General Terms Languages, Reliability

Keywords Software testing, concurrency bugs

1. Introduction

1.1 Motivations

Concurrency bugs are caused by non-deterministic interleavings
between shared memory accesses. They exist widely (e.g., 20%
of driver bugs examined in a previous study [50] are concurrency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’11, March 5–11, 2011, Newport Beach, California, USA.
Copyright c© 2011 ACM 978-1-4503-0266-1/11/03. . . $10.00

bugs) and are among the most difficult bugs to detect and diagnose.
They have caused real-world disasters such as the Therac-25 medi-
cal accident [29] and the 2003 Northeast blackout [52]. Today, they
are of increasing concern due to the pervasiveness of multi-core
machines. Effective approaches to detecting concurrency bugs be-
fore software is released are sorely desired.

Reliability research for sequential software has made tremen-
dous progress recently [9, 17, 41]. However, these successes have
not translated to the world of concurrency software, because con-
currency bugs are caused by a feature (namely, interleavings) not
found in sequential programs.

Interleavings are not only complicated to reason about, but
they also dramatically increase the state space of software. For
large real-world applications, each input easily maps to billions
of execution interleavings, and a concurrency bug may only be
exposed by one specific interleaving. How to analyze this huge
space selectively and expose hidden bugs is an open problem for
static analysis, model checking, and software testing.

To address this challenge, existing techniques for detecting con-
currency bugs are mostly guided by certain structural patterns of
interleavings that most frequently cause concurrency bugs. These
patterns include data races (conflicting accesses to a shared vari-
able) [12, 19, 42, 51, 64], simple atomicity violations (unserial-
izable interleavings of two small code regions) [33, 44, 56, 62],
context-switch bounded interleavings [7, 27, 38, 39], etc. Although
much progress has been made in this direction, fundamental limi-
tations remain:

(1) False negatives (are there other patterns of buggy interleav-
ings?). Many patterns have been proposed, while common real-
world bugs that cannot be covered by traditional patterns keep pop-
ping up, such as multi-variable concurrency bugs [25, 31, 34] and
order violations [32, 63], as shown in Figure 1.

(2) False positives (are these interleavings truly harmful?).
Only about 2–10% of true data races are harmful [8, 40]. A similar
rate holds for other interleaving patterns [44, 66]. Although inno-
vative training [11, 31, 33] and testing [39, 44, 53] can mitigate this
problem, lots of machine time and manual effort can be wasted on
false positives.

(3) User unfriendliness. Interleavings are complicated to reason
about. It is usually difficult for developers to judge whether a
suspicious-looking interleaving snippet is truly a bug, and if so,
how severe it is. Some commercial bug-detection tools choose
not to flag concurrency errors solely because the reported buggy
interleavings are too difficult to explain to developers [5]!

T h r e a d 1 T h r e a d 2l o c k (l) ;S 1 : g S c r i p t = a s p t ;u n l o c k (l) ;!l o c k (l) ;S 2 : g S c r i p t
Æ c o m p i l e () ;u n l o c k (l) ; l o c k (l) ;S 3 : g S c r i p t = N U L L ;u n l o c k (l) ;M o z i l l a n s X U L D o c u m e n t . c p p

T h r e a d 1 T h r e a d 2S 1 :p e n d i n g = T R U E ;!S 3 :w h i l e (p e n d i n g U V W X YS 2 : p e n d i n g = F A L S E ;
M o z i l l a m a c i o . c , m a c t h r . c

T h r e a d 1 T h r e a d 2S 1 : r u n n i n g U r l = N U L L ;S 2 : I n P r o g r e s s = F A L S E ;S 3 : i f (I n P r o g r e s s)i s B u s y = T R U E ;
M o z i l l a n s I m a p P r o t o c o l . c p pi f (i s B u s y)S 4 : N S _ A S S E R T (r u n n i n g U R L ,� i s B u s y , b u t n o U r l � U Y*(a) T h i s b u g i s n o t a r a c e ;i t i s a n a t o m i c i t y v i o l a t i o n [3 3 , 5 6] (b) T h i s b u g i s n o t a t o m i c i t y v i o l a t i o n o r r a c e ;i t i s a n o r d e r v i o l a t i o n [3 2] (c) T h i s i s n o t a t r a d i t i o n a l b u g ;i t i s a m u l t i � v a r i a b l e s y n c h r o n i z a t i o n p r o b l e m [3 1 , 3 5]

Figure 1. Bugs caused by various types of interleavings. (Solid and dotted arrows represent incorrect and correct interleavings, respectively.
*: In (c), S1→S2→S3→S4 is a correct and feasible execution order, because InProgress could be set to TRUE and runningURL to a
non-NULL URL string in between the execution of S2 and S3 by code not shown in the figure.)

1.2 Going beyond interleavings

ConSeq uses potential software failures to guide its search of the
interleaving space. It uses a consequence-oriented approach to bug
detection, which starts from the following observation 1:

Concurrency and sequential bugs have drastically different
causes but have mostly similar consequences.

For example, the three bugs in Figure 1 all start with compli-
cated interleavings, which cannot be detected by many existing de-
tectors [31], and end up as common errors and failures similar to
sequential bugs. The bug in Figure 1(a) is caused by an atomicity
violation and cannot be detected by race detectors [33]; it causes
a NULL-pointer dereference, and crashes in thread 1. The bug in
Figure 1(b) is caused by an order violation: S2 could unexpectedly
execute before S1, in which case the FALSE value of pending
would be overwritten too early. This problem cannot be fixed by
locks, and cannot be correctly detected by atomicity-violation or
race detectors [32]. It causes an infinite loop in thread 1. The
bug in Figure 1(c) has a different cause from the above two bugs.
Since S1→S2→S3→S4 and S3→S4→S1→S2 are both correct in-
terleavings, the specific order between S1’s and S4’s accesses to
runningUrl is not responsible for the software failure. Similarly,
the specific order between S2 and S3 does not matter. It is the un-
synchronized accesses to two correlated shared variables that lead
to an assertion failure. Sophisticated multi-variable concurrency-
bug detectors [31] were designed to detect this type of bug.

To better understand the above observation, Figure 2 depicts the
three-phase life cycle of a concurrency bug [28, 47]. After being
triggered by an incorrect execution order across multiple threads,
a concurrency bug usually propagates in one thread through a
short data/control-dependence chain, similar to one for a sequential
bug [21]. The erroneous internal state is propagated until an exter-
nally visible failure occurs. At the end, concurrency and sequen-
tial bugs are almost indistinguishable: no matter what the cause, a
crash is often preceded by a thread touching an invalid memory lo-
cation or violating an assertion; a hung thread is often caused by
an infinite loop; incorrect outputs are emitted by one thread, etc.
The only major class of concurrency errors that have substantially
different characteristics is deadlocks, which fortunately have been
thoroughly studied [24, 57].

Given the above observation and the trouble presented by the
enormous space of interleavings, we naturally ask, ”How can we
leverage the sequential aspects of concurrency bugs? Can we re-
verse the bug-propagation process and start bug detection from the
potential points of failure?” This approach, if doable, has the poten-

1 All the observations and characteristics mentioned here are discussed in
more detail in Section 3.

tial to leverage common error-propagation patterns shared between
concurrency and sequential bugs:

• In terms of false positives, the questions ‘is this a bug?’ and
‘how harmful is this bug?’ are easier to answer with this tech-
nique, because causing a failure is the criterion used for decid-
ing whether or not to report a bug.

• In terms of false negatives, it can provide a nice complement
to existing cause/interleaving-oriented detectors, because what
ConSeq detects is not limited to any specific interleaving pat-
tern.

• ConSeq’s reports are likely to be more accessible to developers
who are familiar with the effects/symptoms of sequential bugs.
Moreover, developers can now contribute to the bug-detection
process by writing per-thread consistency checks, and by spec-
ifying which potential failures are worth more attention.

The consequence-oriented approach to bug detection presents
many challenges. Backward analysis might be straightforward for
failure replay and diagnosis [1, 15, 46, 58, 65] when the failure
has already occurred. However, it is much more difficult for bug-
detection and testing, where we need to identify potential points of
bugs and failures. The problem we face is more similar to proving
whether a specific property in a concurrent program could be vio-
lated. This is known to be a hard problem in software verification,
even when attempted on small programs, and explains why little
work has been done in this direction. In this paper, we show that
it is possible to apply such techniques to large, real-world C/C++
programs (with millions of lines of source code and object files tens
of megabytes long).

1.3 Contributions

This paper proposes ConSeq, a consequence-oriented backward-
analysis framework to detect concurrency bugs. ConSeq starts its
detection by identifying potential failure sites in the program. It
then uses static analysis and run-time information collected from
correct runs to decide whether these failures could occur under
other interleavings. It can automatically and accurately detect con-
currency bugs—with various types of root causes—before they oc-
cur, including atomicity violations, order violations, anti-atomicity
violations, multi-variable synchronization problems, and others.

To carry out consequence-oriented bug-detection, ConSeq ad-
dresses two major challenges:

Challenge I: how to automatically identify potential error sites
before an error occurs? Naive solutions will identify either too
many (theoretically, every instruction could generate or acquire an
incorrect value) or too few (if limited to specific patterns) and cause
accuracy and coverage problems.

To fully leverage the similarity between concurrency and se-
quential bugs’ error/failure patterns, ConSeq statically identifies
five types of potential error sites that cover almost all major types

Figure 2. The common three-phase error-propagation process for most concurrency bugs.

Concurrency Bug Propagation & Characteristics ConSeq Bug Detection

Phase 1: Triggering
•involving a small # of shared Step 3: Find and test suspect interleavings
memory accesses (trace-based synchronization analysis)

Phase 2: Propagation
•mostly within one thread Step 2: Identify error-inducing reads
•mostly a short distance (static program slicing)

Phase 3: Errors & Failures
•mostly within one thread Step 1: Identify potential errors
•common error patterns (thread-local static analysis)

Table 1. Observations about concurrency bugs and corresponding components of ConSeq.

of concurrency bug failures (Stage I of ConSeq as shown in
Figure 2):2 (1) calls to assertions in the software (for assertion
crashes); (2) back-edge in loops (for infinite loop hangs); (3) calls
to output functions (for incorrect functionality failures), (4) calls to
error-message functions in the software (for various types of inter-
nal errors); (5) reads on global variables where important invariants
likely hold according to Daikon [17], a tool for inferring program
invariants (for miscellaneous errors and failures).

Challenge II: how to predict whether a potential error could oc-
cur in a future interleaving? Checking whether a specific property
can be violated in concurrent programs is an NP-hard problem [23]
and cannot be used for large real-world applications.

ConSeq addresses this challenge by exploiting two character-
istics of concurrency bugs: first, the error-propagation distance is
usually short in terms of data/control-dependence edges [21] (more
validation in Section 3); second, the cause of a concurrency bug
usually involves a specific ordering of just a few (two or three)
shared memory accesses [7, 32].

Specifically, ConSeq first uses static slicing to identify shared
memory reads that can impact each potential error site through
a short chain of control/data dependences (Stage II of ConSeq
in Figure 2). Then, after monitoring a correct run, ConSeq uses
execution-trace analysis and perturbation-based interleaving test-
ing to explore potential non-determinism around these reads (Stage
III of ConSeq in Figure 2). Non-determinism that could affect the
values acquired at those reads and lead to eventual errors and fail-
ures will be exposed effectively.

Overall, our work makes the following contributions:
(1) We report the results of a study of concurrency bugs’ error-

propagation characteristics. In a sample of 70 real-world concur-
rency bugs, we find that most non-deadlock concurrency bugs have
short propagation distances (59 out of 70). In addition, failures in
most concurrency bugs involve only one thread (66 out of 70).

(2) The work provides a new perspective on concurrency-bug
detection and testing, which is to start from potential consequences
and work backwards. It provides alternative interpretations for
some concurrency bugs with complicated causes that are difficult
to detect using traditional approaches, and sets up a nice connec-
tion with sequential bug-detection research, such as Daikon [17].

(3) We present a three-stage bug-detection framework that lever-
ages characteristics from all three phases of the concurrency-bug

2 We skip two types of failures that have been thoroughly studied: dead-
locks [24, 65] and crashes with memory errors [66].

propagation process (Table 1). This design separates the complex-
ity of inter-thread interleaving analysis and intra-thread propaga-
tion analysis, and makes it easy to leverage advanced static-analysis
techniques, such as slicing and loop analysis. Each stage of the
framework can be easily extended. In particular, programmers can
assist ConSeq by putting more consistency checks into their code,
such as assertions and error messages.

(4) We implemented these ideas in a bug-detection tool that can
analyze one correct run of a concurrent program and detect possible
bugs that could occur in the future.

We evaluated ConSeq on 11 real-world concurrency bugs in
seven widely used C/C++ open-source server and client applica-
tions. Results show that ConSeq is able to detect 10 out of 11
tested concurrency bugs, which cover a wide range of root causes,
from simple races and single-variable atomicity-violations to order-
violations, anti-atomicity violation bugs, multi-variable synchro-
nization problems, etc. For comparison, we evaluated a race detec-
tor and an atomicity-violation detector and found that they could
only detect 3 and 4 bugs, respectively. ConSeq detects these bugs
with high accuracy: it has about one-tenth the false-positive rate of
the race detector and the atomicity-violation detector.

We also found 2 new bugs in Aget, 2 new bugs in Click, and
one output non-determinism in Cherokee, for which bugs have not
been previously reported. We found a known infinite-loop bug in
a version of MySQL for which the bug had not been previously
reported. Experiments in which we used ConSeq together with
Daikon [17] show that ConSeq can detect complicated concurrency
bugs that previous tools cannot (e.g., a bug involving 11 threads and
21 shared variables). The performance of ConSeq is suitable for in-
house testing.

2. Background

A concurrent program’s execution is a mix of inter-thread commu-
nication and intra-thread calculation. Consequently, in rough terms
the error-propagation of concurrency bugs consists of three phases,
as shown in Figure 3.

Phase 1 is the triggering phase. A concurrency bug is triggered
by a specific execution order among a set of shared memory ac-
cesses (referred to as a buggy interleaving).

Phase 2 is the propagation phase. It starts with some read in-
structions that fetch problematic values from shared memory loca-
tions as a result of the buggy interleaving. In this paper, we will
refer to these instructions as critical reads. The effect of these val-

Figure 3. Error propagation in a concurrency bug.

ues begins to propagate, usually within one thread, through data and
control dependences. Note that the corresponding thread may read
many shared variables during the error-propagation phase, but only
those that impact the failure through control/data dependences are
considered to be ‘critical’. In this paper, we measure the distance
of error propagation through data- or control-dependence edges.
During this phase, some variable values begin to deviate from the
correct program state. These are called errors. Note that races and
atomicity violations do not belong to our definition of an error.

Phase 3 is the failure phase. Propagation leads to more severe
errors, and finally to an error with an externally visible symptom
(i.e., a failure) such as a crash or a hung process.

To simplify the discussion, the rest of the paper will refer to
instructions where failures/errors occur as failure/error sites. We
refer to the same set of instructions as potential error/failure sites
during correct runs, because they indicate sites of errors that might
occur in a different interleaving. We sometimes do not differentiate
failure sites from error sites, because failures can be considered to
be externally visible errors. Finally, we refer to the conditions that
judge whether a program has deviated from its correct states as
error conditions, as depicted in Figure 3.

3. Error-propagation study

This section reports on a study of the error-propagation process
of real-world concurrency bugs, which have not been well-studied
previously. The characteristics presented here have guided our de-
sign of ConSeq.

We manually studied a set of 70 non-deadlock concurrency
bugs that have been collected in previous work [32] from four
widely used open-source C/C++ applications (Mozilla, MySQL
database server, Apache web server, and OpenOffice), and made
the following observations.

Observation 1 Concurrency bugs’ failures mostly occur in one
thread. This is true for 66 out of the 70 examined bugs. The only
exceptions are four MySQL bugs that cause inconsistent behavior
between two threads: the thread that completes a database opera-
tion first finishes its logging second. The behavior of each thread is
correct. Only when comparing them with each other would we no-
tice the misbehavior—the global log puts them in a different order
from what really happened. For most bugs, propagation starts with
multiple threads and ends with one thread, as shown in Figure 2.

Observation 1 implies that bug detection can be divided into
separate stages of concurrency analysis and sequential analysis.

Observation 2 The failure patterns of concurrency bugs are sim-
ilar to those of sequential bugs. We see five patterns—assertion-
violation, error-message, incorrect outputs, infinite loop, and mem-
ory bugs—that contribute to 65 out of 70 failures. Errors become
externally visible for reasons similar to ones for sequential bugs.

Observation 2 implies that it is easy to identify potential failure
sites for concurrency bugs.

Observation 3 The propagation distance is usually short (re-
ferred to as the ‘short-propagation heuristic’). For 59 out of the
70 bugs, after the last critical read, failure occurs before the current
function exits. This trend is consistent across different applications

and different types of failures. Of course, the distance is also fre-
quently more than one data/control dependence step.

The rationale behind this observation is that there are usually
operations within a few dependence steps that have the potential
to cause an internal error to be visible externally. These include
pointer operations, I/Os, and sanity checks inserted by program-
mers. Our observation about concurrency bugs is consistent with
previous observations about other types of software/system defects
[21, 30] that have guided previous work on failure recovery [49]
and software replay [46].

Observation 3 implies that it is not difficult to look for causes
based on consequences. Of course, we can also see that the ap-
proach of looking for causes from consequences is not a panacea
for the challenges involved in detecting concurrency bugs. Those
concurrency bugs that have long propagation distances will be chal-
lenging to detect.

4. Overview of ConSeq

As shown in Figure 4, ConSeq uses a combination of static and dy-
namic analyses. It uses the following modules to create an analyzer
that works backwards along potential bug-propagation chains.

Error-site identifier: this static-analysis component processes
a program binary and identifies instructions where certain errors
might occur. For example, a call to assert fail is a potential
assertion-violation failure site. Currently, ConSeq identifies poten-
tial error sites for five types of errors (Section 5). Developers can
adjust the bug-detection coverage and performance of ConSeq by
specifying specific types of error sites on which to focus.

Critical-read identifier: this component uses static slicing to
find out which instructions that read shared memory are likely to
impact a potential error site. Note that static analysis is usually
not scalable for multi-threaded C/C++ programs. By leveraging the
short-propagation characteristic of concurrency bugs and the staged
design of ConSeq, our module is scalable to large C/C++ programs
(Section 6).

Suspicious-interleaving finder: this dynamic-analysis module
monitors one run of the concurrent program, which is usually
a correct run, and analyzes what alternative interleavings could
cause a critical read to acquire a different and dangerous value
(Section 7). By leveraging the characteristics of concurrency bugs’
root causes, this module is effective for large applications. Via this
module, ConSeq generates a bug report, which provides a list of
critical reads that can potentially read dangerous writes and lead to
software failures. Critical reads, dangerous writes, and the potential
failure sites are represented by their respective program counters
in the bug report. Additionally, the stack contents are provided to
facilitate programmers’ understanding of the bug report.

Suspicious-interleaving tester: this module tries out the de-
tected suspicious interleavings by perturbing the program’s re-
execution (Section 8). It helps expose concurrency bugs and
thereby improves programmers’ confidence in their program. Via
this module, ConSeq prunes false positives from the bug report,
and extends the report of each true bug with how to perturb the
execution and make the bug manifest.

Note that the boundaries of ConSeq’s static and dynamic analy-
sis are not fixed. Making the bug-detection technique scalable and
applicable to large C/C++ applications is a principle in ConSeq’s
design. ConSeq uses dynamic analysis to refine static-analysis re-
sults, and static analysis also takes feedback from run-time infor-
mation.

Before diving into the technical details of ConSeq, we use the
multi-variable concurrency bug shown in Figure 1(c) as an exam-
ple to demonstrate the work flow of ConSeq. When we apply Con-
Seq to the binary of the Mozilla mail client, ConSeq’s error-site
identifier identifies 200 assertions. One of them is the instruction

(P o t e n t i a l)E r r o r S i t ei d e n t i f i e r r e a dp r i n t fr e a da s s e r t" " " " "# # # # ## # # # #" " " " "# # # # ## # # # ## # # # ## # # # #
S t a t i c A n a l y s i s D y n a m i c A n a l y s i sS u s p e c t I n t e r l e a v i n gF i n d e r(l o g g i n g & t r a c e " a n a l y s i s)P r o g r a me x e c u t e o n c ec o r r e c t l yp r i n t fa s s e r t S u s p e c ti n t e r l e a v i n g s B u gr e p o r t sP r o g r a me x e c u t e w /p e r t u r b a t i o nS u s p e c t T e s t e rC r i t i c a lR e a dI d e n t i f i e rf e e d b a c k

Figure 4. An overview of the ConSeq architecture.

0x4f81d (i.e., the assertion-failure call site corresponding to S4
in Figure 1(c)). Next, ConSeq’s critical-read identifier statically
analyzes the control/data dependences leading to each assertion
identified above. In particular, instruction 0x4f7f2 (i.e., the read of
runningUrl in statement S4 in Figure 1(c)) is identified for the
assertion site 0x4f81d. The application is then executed. Not sur-
prisingly, no error occurs during the execution. ConSeq analyzes
the 31 executed critical reads one by one. It identifies an alterna-
tive interleaving that might cause instruction 0x4f7f2 to read an
assertion-violating value, NULL, defined by instruction 0x8062e5
(S1 in Figure 1(c)). Finally, ConSeq’s suspicious-interleaving
tester executes the program again and triggers a failure. In terms
of users’ involvement, ConSeq only requires a user to provide one
thing: a test suite. Users are also allowed to provide a list of func-
tion names of interest (such as the customized error-message func-
tion). ConSeq then will automate the whole bug-finding process
described above.

5. Identify potential error sites

The error-site identification module has three goals: (i) to identify
potential error sites automatically, (ii) to identify them before an
error occurs, and (iii) to accomplish (i) and (ii) with good accuracy
and coverage. This module provides the starting points for Con-
Seq’s backward concurrency-bug detection strategy and directly
affects the false-positive and false-negative rates of ConSeq. To
achieve its goals, ConSeq follows two design principles:

(1) Use static analysis instead of dynamic analysis. Errors rarely
occur during monitored runs of concurrent programs. Static analy-
sis can go beyond what occurs during a single execution.

(2) Exploit the failure patterns of software bugs. Concurrency
bugs, fortunately, have similar failure patterns as sequential bugs,
which are well-studied and well-understood.

5.1 Identifying explicit failure sites

Failures of non-deadlock concurrency bugs can be covered by five
patterns that they share with sequential bugs (Section 3). ConSeq
identifies each pattern as follows.

Infinite Loop: For non-deadlock bugs, infinite loops in one
thread are the main causes of hangs (an example is shown in Fig-
ure 1(b)). Every back-edge in a loop is a potential site for this
type of failure. ConSeq identifies strongly connected components
(SCCs) that are potential failure sites for infinite-loop hangs by
checking whether any shared-memory read is included in the back-
ward slice of each back-edge in an SCC. To identify nested loops,
CodeSurfer/x86 implements Bourdoncle’s algorithm [6], which re-
cursively decomposes an SCC into sub-SCCs, etc.

Assertion Violations: Assertion violations (Figure 1 (c)) are a
major source of program crashes. Fortunately, it is a common prac-
tice of developers to place assertions in their code. Moreover, asser-
tions are able to specify certain other types of errors. In C/C++ pro-

grams, a call to gcc’s assert library function is translated to an if
statement whose else-branch contains a call to assert fail.
The call sites on assert fail are considered to be potential
failure sites. Some applications use customized assertions, such
as nsDebug::Assertion in Mozilla. ConSeq also considers
those call sites to be potential failure sites.

Memory Errors: Invalid memory accesses are another major
source of program crashes, especially in C/C++ programs (e.g., the
NULL-pointer dereference shown in Figure 1(a)). ConSeq incor-
porates a module to identify every pointer dereference as a poten-
tial memory-error site. Because this specific type of error has been
thoroughly studied in recent work [66], we focus on other types of
failures and corresponding concurrency bugs in this paper.

Incorrect Outputs: Most non-fail-stop software failures occur
when the software generates incorrect outputs or totally misses
an output. ConSeq considers a call to an output function, such
as printf and fprintf, as a potential incorrect-output fail-
ure site. Some applications have special output functions, such as
MySQL’s BinLog::Write. ConSeq allows developers to spec-
ify application-specific output functions in a text file. ConSeq reads
the text file and identifies call sites on the specified functions.

Error Messages (consistency-check sites): Consistency
checks have an interesting role in concurrency bugs. They are
usually not designed for catching synchronization bugs, and sim-
ply reflect a developer’s wish to enforce some important correct-
ness property. Luckily, however, for many complicated concur-
rency bugs, there are warning signs long before the ultimate failure
arises. As a result, the error-propagation distance is greatly short-
ened and backward bug-detection becomes much easier due to er-
ror messages. Writing such consistency checks has been a common
practice of programmers for a long time [28], and the presence of
consistency checks can greatly help the approach taken by ConSeq.

ConSeq identifies calls to functions that print error messages as
potential failure sites. These include both library functions, such
as fprintf(stderr,...), and application-specific routines,
such as the NS WARNING in Mozilla and tr err in Transmission
(a BitTorrent client). ConSeq allows developers to specify these
error-reporting functions in a file. ConSeq reads this file and iden-
tifies call sites on all these functions. In our experience, most ap-
plications only have a few (usually just one or two) error-reporting
routines. Therefore, we believe it will not be a big burden for de-
velopers to write down these functions.

In the case of assertion failures and error messages, a condition
that indicates whether the value acquired at a given site is correct or
not is obtained as a by-product. This condition is used to improve
the accuracy of ConSeq’s bug-detection capabilities (Section 7).

5.2 Inferring implicit error sites

As discussed above, consistency checks added by developers are
very helpful in ConSeq’s method for bug detection. What if devel-
opers did not provide any consistency checks?

Interestingly, a lot of research on sequential programs has faced
this problem before, and some solutions have been proposed. For
instance, Daikon [17] is a tool that infers likely program invariants
based on evidence provided by (correct) training runs. Daikon’s
most advanced features allow for inference among derived vari-
ables, as well as set relations and arithmetic relations between array
elements. In this respect, Daikon can automatically provide infor-
mation that is similar to the consistency checks manually added
by developers. We can treat those places where Daikon identifies
program invariants to be potential error sites.

Specifically, we first apply Daikon to the target software.
Daikon’s frontend logs run-time variable values at program points
selected by Daikon. Daikon’s backend processes the log and out-
puts a list of {program-point, invariant} pairs.

ConSeq checks every global read instruction I that reads global
variable v. If Daikon has identified an invariant involving v right
before I, ConSeq identifies I as a potential invariant-violation site.

One implementation challenge we encountered is that the de-
fault frontend, kvasir-dtrace, of Daikon’s academic version only
collects information at function entries and exits. As a result, we
cannot obtain invariants at the granularity of individual instruc-
tions. With the help of the Daikon developers, we tried two ways
to get around this problem. For small applications in our experi-
ments, we manually inserted dummy functions before every global-
variable read. For large applications in our experiments, we re-
placed Daikon’s default front-end with our own PIN tool. This
PIN tool collects run-time information before every global-variable
read, and outputs this information in the input format used by
kvasir-dtrace. By this means, the Daikon backend can process the
Pin tool’s output and generate invariants.

For large applications, one potential concern is that Daikon
could identify a huge number of invariants, which could impose
a large burden on ConSeq’s critical-read identifier, suspicious-
interleaving finder, and suspicious-interleaving tester. Fortunately,
Daikon provides ranking schemes [18] to identify important invari-
ants. ConSeq leverages the ranking mechanism to focus on the most
important invariants.

In summary, ConSeq currently focuses on five types of potential
failure/error sites. Except for the potential error sites inferred by
Daikon, all sites are identified by statically analyzing the program.

6. Identifying critical reads

The goal of the critical-read identification module is to identify
critical-read instructions that are likely to impact potential error
sites through data/control dependences. It uses static slicing to ap-
proximate (in reverse) the second propagation phase of a concur-
rency bug, as shown in Figure 2. There are two major design prin-
ciples for this module:

1. Use static analysis rather than dynamic analysis to identify
which instructions may affect an error site. ConSeq is different
from failure-diagnosis tools. It aims to expose concurrency bugs
without any knowledge of how they may arise or even if they
exist, so its analysis cannot be limited to any specific monitored
run. Specifically, ConSeq uses static slicing for this purpose.

2. Only report instructions with short propagation distances as
critical reads. Computing the complete program slice, e.g., all
the way back to an input, is complicated and also unnecessary
for ConSeq. ConSeq leverages the short-propagation character-
istic of concurrency bugs (Section 3) to improve bug-detection
efficiency and accuracy.

6.1 General issues

We had to make several design decisions that are general to all types
of error sites:

Must critical-read instructions access shared memory? Instruc-
tions that read thread-local variables could be of interest for sequen-
tial bug detection, but not for concurrency bug detection, because
their values cannot be directly influenced by interleavings. To get
rid of these instructions, ConSeq first uses static analysis to filter
out as many stack accesses as possible. ConSeq’s run-time moni-
toring will proceed to prune out the rest of the stack accesses. Of
course, it is possible for threads to share values using the stack, al-
though it is rare in practice. Escape analysis would be able to iden-
tify these special stack accesses, and make ConSeq more accurate.
We leave this as future work.

Shall we consider inter-thread control/data dependences?
Multi-thread static slicing is much more difficult than single-thread
slicing. Fortunately, because ConSeq’s design separates the propa-
gation steps in a concurrency bug into inter-thread and intra-thread
phases, here only single-thread dependence analysis is needed to
identify critical reads. All analyses involving multi-thread inter-
leavings will be conducted in the suspicious-interleaving finder
(Section 7).

How to set the propagation-distance threshold? In accordance
with the short-propagation heuristic, ConSeq only reports read in-
structions whose return values can affect the error sites through a
short sequence of data/control dependences. Our static-slicing tool
provides the slice, together with the value of the shortest distance
to the starting point of the slice, for each instruction of the slice. An
example is shown in Figure 5. ConSeq provides a tunable threshold
MaxDistance for users to control the balance between false nega-
tives and false positives. By default, ConSeq uses 4 as MaxDis-
tance. A detailed evaluation is presented in Section 10. We will
explore other metrics for propagation distance in the future.

0x4f7f2 read runningUrl

0x4f81d call nsDebug::Assertion

if (InProgress) {

 isBusy=TRUE;

if (isBusy)

 if(!runningUrl)

 nsDebug::Assertion(...);

Distance = 4

Distance =3

Distance=2

Distance=1

Data
Dependence

Control
Dependence

Control
Dependence

Control
Dependence

0x4884e read InProgress

0x48857 write isBusy

0x4f795 read isBusy

0x48855 conditional jump

0x4f799 conditional jump

Figure 5. Static slicing of machine code (right) and the distance
calculation.

How to reuse the analysis results across inputs? Because Con-
Seq uses static instead of dynamic analyses, the results from this
module, as well as those from the error-site identifier, can be reused
for different inputs. Our current static slicer analyzes one object file
at a time. To speed up the analysis when there are only a few inputs,
we first process those object files that these inputs would touch.

Customization for different types of error sites
ConSeq customizes the analysis for each type of error site:

• Each consistency-check error site is a ‘call’ instruction that calls
a standard or custom error-reporting routine. ConSeq directly
applies slicing for that instruction. For a ‘call’ instruction, the
first step backward is always through a control dependence,
followed by a sequence of control and data dependences.

• Each assertion-failure site is a ‘call’ to the assert fail

library routine. We handle it in the same way as a consistency-
check error site.

• Each invariant-violation failure site is an instruction that reads
heap or global variables. No customization is needed. ConSeq
directly applies control-and-data slicing for each of these in-
structions.

• Each incorrect-output site is a ‘call’ instruction to output
functions. Before applying static slicing, we first use a simple

static analysis to identify all instructions that push argument
values onto the stack (sometimes via push and sometimes via
mov).3 We add those instructions into the slice (at distance 1)
and apply slicing to these instructions and the original call

• Each infinite-loop site involves a jump instruction that condi-
tionally jumps out of a loop. Among instructions that are on the
slice, we only keep those that are repeatedly executed inside
the loop body, because only those instructions could lead to the
loop executing repeatedly.

6.2 Static slicing details

Program slicing is an operation that identifies semantically mean-
ingful decompositions of programs, where the decompositions may
consist of elements that are not textually contiguous [59]. A back-
ward slice of a program with respect to a set of program elements
S consists of all program elements that might affect (either directly
or transitively) the values of the variables used at members of S.
Slicing is typically carried out using program dependence graphs
[22].
CodeSurfer/x86. ConSeq uses backward slicing to identify shared
memory reads that might impact each potential error site. To
obtain the backward slice for each potential error site, it uses
CodeSurfer/x86 [2], which is a static-analysis framework for an-
alyzing the properties of x86 executables. Various analysis tech-
niques are incorporated in CodeSurfer/x86, including ones to re-
cover a sound approximation to an executable’s variables and dy-
namically allocated memory objects [3]. CodeSurfer/x86 tracks the
flow of values through these objects, which allows it to provide in-
formation about control/data dependences transmitted via memory
loads and stores.

Side-Stepping Scalability Problems. To avoid the possible scala-
bility problems that can occur with CodeSurfer/x86 due to the size
of the applications used in evaluating ConSeq, we set the starting
point of each analysis in CodeSurfer/x86 to the entry point of the
function to which a given potential error site belongs, instead of
the main entry point of the program. By doing so, CodeSurfer/x86
only needs to analyze the functions of interest and their transitive
calls rather than the whole executable. Thus the static analyses time
grows roughly linearly in the number of functions that contain error
sites. This makes ConSeq much more scalable, as will be illustrated
in Section 10.

This approach is applicable in ConSeq because—based on the
observation that the error-propagation distance is usually short,
as discussed in Section 3—ConSeq only requires a short back-
ward slice that can be covered in one procedure. The backward-
slicing and other analysis operations in CodeSurfer/x86 are, how-
ever, still context-sensitive and interprocedural [22]. Moreover, to
obtain better precision from slices, each of the analyses used by
CodeSurfer/x86 is also performed interprocedurally: calls to a sub-
procedure are analyzed with the (abstract) arguments that arise at
the call-site; calls are not treated as setting all the program elements
to ⊤.

Analysis Accuracy. To obtain static-analysis results that over-
approximate what can occur in any execution run, all the program
elements (memory, registers, and flags) in the initial state with
which each analysis starts are initialized to ⊤, which represents
any value. Such an approximation makes sure that no critical read
will be missed by ConSeq at run time. Of course, some instructions
could be mistakenly included in the backward slice and be wrongly
treated as critical reads. Fortunately, our short-propagation-distance

3 Figuring out the parameters to a call in the binary is easy for the CDECL
calling convention. If we need to process GCC fastcalls, we will need
to go back to analyzing the source code. The current implementation of
ConSeq does not handle fastcalls.

heuristic minimizes the negative impact of over-approximation. In
practice, we seldom observe the inaccuracy caused by this over-
approximation.

Finally, the CodeSurfer/x86 framework has information about
every direct calls’ call-sites. Therefore, if needed, it can also sup-
port backward slicing that starts at the entry of a procedure and
backs up into the callers.

7. Identifying suspicious interleavings

The module for finding suspicious interleavings focuses on the first
phase of concurrency-bug propagation. ConSeq monitors a pro-
gram’s (correct) execution, collects a trace using binary instrumen-
tation, and analyzes the trace to decide whether a different inter-
leaving could change the dynamic control/data dependence graph
and generate a potentially incorrect value at a critical read.

Because it is impractical to check all potential interleavings and
all potential dynamic control/data dependence graphs [23], Con-
Seq leverages the short-propagation characteristic (Section 3) and
the widely used shallow-depth heuristic (i.e., the manifestation of
most concurrency bugs involves only two or three shared-memory
accesses) [7, 38, 39, 44]. It examines writes that are one data-
dependence step backward from each critical read r, and looks for
suspicious interleavings that could make r obtain a potentially in-
correct value written by a write access that is different from the
one that occurred in the monitored run. The algorithm in ConSeq is
neither sound nor complete. Rather, ConSeq tries to balance gener-
ality, simplicity, and accuracy.

7.1 The core analysis

We formalize the key question this portion of ConSeq has to answer
as follows: in a concurrent program’s execution trace T , a read
instruction r gets a value defined by a write access w; we ask
whether r can read a value defined by a different write w′ in an
alternative interleaving.

To realize a w′–r data-dependence, three conditions have to be
satisfied. First, w′ and r need to access the same memory location
m. This condition is fairly easy to check, as long as ConSeq records
the addresses of the locations touched by memory accesses.

Second, w′ needs to execute before r. This condition can be pro-
hibited by barrier-style synchronizations. Therefore, ConSeq moni-
tors pthread create/join, pipe, and barrier at run-time
to maintain vector-clock time-stamps for each thread and hence
each access. A w′–r dependence is infeasible if r has a smaller time-
stamp than w′. ConSeq computes the vector-clock time-stamps in a
similar way as traditional happens-before race detectors [42]. Con-
Seq does not update time-stamps according to lock/unlock op-
erations, because these operations do not provide any execution-
order guarantees.

(a) L o c a lo v e r w r i t t e n
t �WR

T 1 R t �(c) E f f e c t s o fc r i t i c a l s e c t i o n sWT 1 T 2W R t �
(b) E f f e c t o f h a p p e n s �b e f o r e o r d e r

T 1 T 2 W � W RT 1 T 2
Figure 6. A value written by W’ may never reach R

Third, the value written by w′ to m is not overwritten before
it reaches r. There are three situations in which an overwrite al-
ways happens, as demonstrated in Figure 6. The first is due to

intra-thread program logic, when there is another write w to m be-
tween w′ and r in the same thread as shown in Figure 6(a). The
second is due to barrier-style synchronization, as shown in Fig-
ure 6(b). That is, synchronization operations, such as barrier
or pthread create/join, force w′ to always execute before
another write w and w to always execute before r. The third is due
to mutual exclusion, as shown in Figure 6(c). When w′ is followed
by w in a critical section from which r excluded, the result of w′

can never reach r. The situation is similar when r is preceded by w
in a critical section from which w′ is excluded. As long as the trace
includes sufficient information about lock operations, ConSeq can
analyze all of these situations.

Pseudo-code for the method described above is given as Algo-
rithm 1.

Algorithm 1 ConSeq identify suspicious interleavings

Require: write access w
Require: write access w′

Require: read access r
Require: w,w′,r access the same shared memory address
Ensure: return true if r can read a value from w′, false if not

1: /*
Time-stamp comparison is based on the happens-before rela-
tionship and vector-clock time-stamps
*/

2: if r.time-stamp < w′.time-stamp then
3: /*r happens before w′ */
4: return false
5: end if
6: if w′.time-stamp < w.time-stamp < r.time-stamp then
7: /*w′ is overwritten by w */
8: return false
9: end if

10: if w is executed before r in a critical section CS1, w′ is in
critical section CS2, CS1 and CS2 are from different threads,
and CS1 is mutually exclusive from CS2 then

11: return false
12: end if
13: if w′ is executed before w in a critical section CS1, r is in

critical section CS2, CS1 and CS2 are from different threads,
and CS1 is mutually exclusive from CS2 then

14: /*w′ is overwritten by w */
15: return false
16: end if
17: /*Report feasible in all the other cases */
18: return true

7.2 The complete algorithm and extensions

ConSeq uses binary instrumentation to monitor three types of oper-
ations at run-time: critical-read instructions, instructions that write
global and heap variables, and synchronization operations. For each
memory-access instruction, ConSeq records the program counter,
the address of the accessed memory, and the value of the accessed
memory location before the read or after the write. For each lock
operation (pthread mutex (un)lock), ConSeq records the
address of the lock variable. For each barrier-style synchronization
(pthread create/join, pipe, barrier,etc.), ConSeq up-
dates the vector time-stamps of every thread. ConSeq uses one trace
file for each thread to avoid slow global synchronization. Given
these pieces of information, ConSeq can easily analyze the trace
and find out all feasible w′–r dependences.

ConSeq also extends the basic algorithm in three ways.
First, ConSeq records the values read by r and written by w′

during the correct run, denoted by v′ and v, respectively. If the two

values are the same, ConSeq does not report a suspicious inter-
leaving. To further prune false positives, ConSeq also evaluates v′

against the assertion/error-condition before reporting a suspicious
interleaving, using a symbolic-execution module inside ConSeq.

Second, the basic algorithm cannot be directly applied for de-
tecting infinite loops. Suppose that r is a critical read that is asso-
ciated with a potential infinite-loop site. During the monitored run,
ConSeq records the write w and its value v that are read by the last
dynamic instance of r right before the loop terminates. Now sup-
pose that the basic algorithm identifies an alternative interleaving
in which this specific instance of r can receive a different value
from an alternative write w′. This condition is insufficient to con-
clude that this interleaving is suspicious. If w is executed after w′,
another instance of r in a later iteration of the loop can still re-
ceive v from w and terminate the loop. Therefore, for each alter-
native write w′ identified by the basic algorithm, ConSeq further
compares the happens-before time-stamps between w and w′. An
infinite-loop suspect is reported when w′ is strictly ordered after w
and when w′ is concurrent with w.

Third, interleavings could make a critical read r execute too
early and receive an uninitialized value. ConSeq also reports these
cases as suspicious interleavings.

Discussion. There are several sources of inaccuracy in our anal-
ysis that can cause false positives and negatives. One is that the
value written by a write w′ might vary in different runs. Another
is that interleavings could change the control flow and cause inac-
curacy of our analysis. Finally, ad-hoc synchronization has been a
problem for almost all predictive concurrency-bug-detection tools.
We leverage our static analysis component, which identifies loops,
back-edge jumps, and backward slices of back-edge jumps, to iden-
tify one type of common ad-hoc synchronization (one thread spins
on a while-flag to wait for another thread). The identification algo-
rithm is similar to previous work [61]. After identifying this type
of ad-hoc synchronization, ConSeq treats occurrences as traditional
barrier-style synchronizations.

8. Exercising suspicious interleavings

The input to ConSeq-tester, the module for testing suspicious in-
terleavings, is a list of data dependences, represented as write/read
pairs (wbad–r). The goal is to exercise suspicious interleavings that
can realize these suspicious data dependences, so that we can either
reliably trigger the bugs or prune them as false positives.

Wbad

Wgood

Wgood

delay caused by injected noise

the natural execution point

the real execution point

Wbadr

r usually reads value defined by Wgood

Injeced noise makes r read value generated by Wbad

Figure 7. Exercising a suspicious interleaving.

To achieve this goal, ConSeq uses a testing technique that has
been used in several previous bug-detection tools [44, 53]. Specif-
ically, ConSeq instruments the program binary and inserts condi-
tional delays with time-outs before every r and wbad instructions.
ConSeq then re-executes the program with the original input. Be-
cause ConSeq is used during in-house testing, the input is available.
At run time, the instrumented code either suspends for a while the
thread that is going to execute wbad , to wait for the arrival of r in
another thread, or suspends for a while the thread that is going to
execute r, to wait for the arrival of wbad . When both wbad and r are
ready to execute, the instrumented code will force the program to
execute wbad immediately followed by r. Therefore, the probability

that those wbad–r dependences occur is significantly improved. An
example of how ConSeq-tester exercises a suspicious interleaving
is shown in Figure 7.

We have encountered two interesting issues in ConSeq.
First, wbad and r might be from the same thread. The basic

scheme shown in Figure 7 does not work for this case, because Con-
Seq will not see r coming when it blocks a wbad operation that is
from the same thread as r. ConSeq’s suspicious-interleaving iden-
tification module marks these cases during trace analysis. During
testing, instead of blocking wbad , ConSeq will let it proceed and
block any following writes that touch the same memory location
that wbad accesses, until r is executed. Second, sometimes wbad and
r are protected by the same lock. In those cases, ConSeq inserts a
delay before the thread enters the corresponding critical section.

Like many previous concurrency-bug validation tools [40, 44,
66], ConSeq can significantly increase the probability that a con-
currency bug manifests, but it cannot provide a 100% guarantee to
provoke every bug. In Section 10, however, we will see that ConSeq
performs well in practice.

9. Experimental Methodology

Bug-ID Symptoms Application LOC
Aget1* Wrong output Aget-0.4.1 1.1K
FFT Wrong output FFT 1.2K
MySQL1 Miss log MySQL-4.0.12 681K
Moz1 Assertion Mozilla-1.7 1.2M
MySQL2 Assertion MySQL-4.0.16 654K
Trans Assertion Transmission 95K
Moz2 Error message Mozilla JS-1.5 87K
Moz3 Error message Mozilla N/A
MySQL3 Error message MySQL-5.0.16 1.6M
MySQL4 infinite-loop MySQL-5.0.41 1.6M
OO infinite-loop OpenOffice N/A

Cherokee-0.99.48*, web server 96K
Click-1.8.0*, modular router 290K

Table 2. Applications and Bugs (Mozilla-JS is the Mozilla
Javascript Engine; Cherokee-0.99.48 and Click-1.8.0 are both the
latest versions and previously had no known buggy inputs; Moz3
and OO are extracted from old versions of Mozilla and OpenOffice
that can no longer compile. *:ConSeq detected new bugs in Aget,
Cherokee, and Click.)

ConSeq’s dynamic modules are implemented using the PIN [37]
binary-instrumentation framework. The experiments are carried out
on an 8-core Intel Xeon machine running Linux version 2.6.18.

We evaluated ConSeq on 8 widely used C/C++ applications.
This includes two server applications (the MySQL database and
the Cherokee web server), two client applications (Transmission
BitTorrent client and Mozilla), two desktop applications (Aget file
downloader and OpenOffice), one router (Click [13]), and one
scientific application kernel (FFT [60]).

Input design is usually out of the scope of dynamic bug detec-
tion [33, 51] and interleaving testing [39, 44, 53], and ConSeq is
no different. The intended usage scenario is that ConSeq will be
applied to a test suite during in-house testing to expose hidden in-
terleaving errors from (apparently) non-buggy runs on inputs pro-
vided by developers or testers. Our experiments were designed to
provide insight on the following two questions:

(1) Can ConSeq handle a wide range of types of concurrency
bugs? To address this question, and to evaluate ConSeq’s bug-
detection capability in comparison with traditional bug-detection
tools, we used a large set of concurrency bugs that cover differ-
ent failure symptoms from different applications. In particular, we

took 11 concurrency bugs—which cover assertion failures, hangs,
wrong outputs, and error-message problems—from the change logs
and bug databases of 6 applications (the first 11 lines of Table 2).
In these experiments, to drive ConSeq’s bug-detection process we
used inputs that were known to have the potential of triggering the
bug. Our experiments did not leverage any information about the
bugs, other than the known inputs. In fact, none of the bugs ever
manifested during the runs that ConSeq performs to generate exe-
cution traces for subsequent bug-detection analysis. This method-
ology is consistent with that used in many previous studies [44, 53].
We will see that ConSeq was able to handle a wide range of types
of concurrency bugs (detecting 10 of the 11 bugs).

(2) Can ConSeq find new bugs in the setting of in-house test-
ing (i.e., bugs are not previously known, and inputs are supplied
by knowledgeable users)? To mimic the setting of in-house test-
ing, we applied ConSeq to the latest versions of the Cherokee web
server [10] and the Click [13] modular router, using test inputs
provided by their developers. We were not aware of any concur-
rency bugs in these two programs. We will see that ConSeq found
concurrency bugs in them. Note that these experiments were not
started until ConSeq’s design and implementation were completely
finished. The ability of ConSeq to detect such unknown concur-
rency bugs also demonstrates the effectiveness of heuristics like
the short-propagation heuristic.

Our evaluation of false positives and performance overhead
completely executes each input (or set of client requests) from the
beginning to the end. The reported performance numbers are the av-
erage across 5 runs. The reported false-positive numbers are stable
across the multiple runs that we tried. By default, we set MaxDis-
tance to 4. We also evaluate false-positive and false-negative results
under different MaxDistance settings. ConSeq-Daikon demands
special setup, and is discussed separately in Section 10.5.

For comparison, we also evaluated two state-of-the-art cause-
oriented approaches to detecting concurrency bugs under the same
setting. Race is a lock-set–happens-before hybrid race detector,
commonly known as Helgrind, implemented as part of the open-
source bug-detection tool Valgrind [41]. Atom [44] detects the
most common type of atomicity bug (two accesses in one thread
unserializably interleaved by another thread [32, 33, 56]). Similar
to ConSeq, these two detectors aim to detect bugs from correct
runs.

10. Experimental Results

10.1 Overall bug-detection results

Table 3 shows the overall bug-detection results. As we can see,
ConSeq has good coverage in bug detection. It detected 10 out of
the 11 bugs. Race and Atom only correctly detected 3 and 4 bugs,
respectively.

Aside from the bug in Aget listed in the Table 2, ConSeq
detected two new bugs in Aget that have never been reported before
(one by tracing back from a printf call site and one by finding a
violation of a (candidate) invariant identified by ConSeq-Daikon).
In MySQL-5.0.16, ConSeq detected an infinite-loop concurrency
bug initially reported in MySQL-5.0.41, which shows that the bug
actually existed in the older version and can be triggered using a
different input. Our analysis of Cherokee-0.99.48 and Click-1.8.0
used the basic inputs provided in the applications’ test suites, and
ConSeq discovered bugs in them as we will see in Section 10.3.

Atom targets single-variable atomicity violations that involve
three accesses, and cannot detect concurrency bugs caused by other
interleaving patterns, such as the bugs in Moz-1 (a multi-variable
atomicity violation), MySQL-2 and OO (anti-atomicity violations
where the software behaves correctly only when a certain code
region in a thread is not atomic), Moz-3 (an atomicity violation

ConSeq Race Atom
Bug-ID Detected Detected Detected
Aget1
FFT X X

MySQL1 X X

Moz1 X

MySQL2 X

Trans X

Moz2 X X X

Moz3 X X

MySQL3 X X X

MySQL4 X

OO X

Table 3. Bug detection results (X: detected; Blank: not).

involving more than three accesses), MySQL-4 and Trans (order
violation), etc. Race suffers from a similar source of false negatives
as Atom: the root cause of many of these bugs has nothing to do
with locks, and many buggy code fragments did use locks correctly
(e.g., OO, MySQL-4). In addition, Race uses some heuristics to
lower the false-positive rate (e.g., not reporting a race when earlier
races are already reported on that variable), which leads to some
false negatives.

ConSeq’s consequence-oriented approach means that its bug-
detection capabilities are not limited to any specific interleaving
pattern, and thus ConSeq can detect bugs that Race and Atom can-
not. Section 4 has already discussed how ConSeq detects Moz-1,
the multi-variable bug illustrated in Figure 1(c). Figure 8 shows
an anti-atomicity example (MySQL2). S3 from the slave thread
wants to use the value of pos defined by the master thread (S2)
to read the log. Unfortunately, S3 could non-deterministically ex-
ecute before S2 and mistakenly read a value defined by its own
thread, leading to the MySQL failure. The bug is obviously not a
race, because all accesses are well-protected. The bug is also not an
atomicity-violation bug, because MySQL executes correctly when
the atomicity between S1 and S3 is violated! Furthermore, it is not
a simple order-violation bug, because there are many dynamic in-
stances of S1, S2, and S3. No order between S2–S1 or S2–S3 can
guarantee failure. With a cause-oriented approach [34, 55], more
sophisticated interleaving patterns and a large number of train-
ing runs are needed to detect this bug. In contrast, with ConSeq’s
consequence-oriented approach, this bug presents no special chal-
lenges. MySQL developers already put a sanity check before each
log read: assert(pos in file + pos == req pos). An-
alyzing backwards from that check, ConSeq easily discovers the
bug.

correct order
incorrect order

 ;pos = my_pos
unlock (LOG_lock);

lock (LOG_lock);

log_read(pos);
assert();req_pos == pos +pos_in_file

......

S1:

lock (LOG_lock);

lock (LOG_lock);

unlock (LOG_lock);
pos+= 4;

unlock (LOG_lock);
S3:

Slave Thread

S2:

Master Thread

Figure 8. An example showing that ConSeq can detect a non-
race, non-atomicity-violation bug (simplified for purposes of illus-
tration).

New bugs detected by ConSeq: Apart from detecting the bugs
described above, ConSeq also detected two more concurrency bugs
that we were unaware of in Aget, and a known infinite-loop bug in
a different version of MySQL than originally reported.

More interestingly, ConSeq found an output non-determinism
in Cherokee and two bugs in Click. For example, one bug in Click
can cause locks to be destroyed when they are still in use. ConSeq

can detect this bug using any input provided in Click’s test suite.
Specifically, after a correct run of Click, ConSeq reported that
an error message "Spinlock:: Spinlock(): assertion

’ depth == 0’ failed" could be triggered under a different
interleaving. The report accurately points us to the bug. In terms
of the root cause, this bug is a non-datarace order-violation bug.
Neither Race nor Atom is able to detect this bug.

False negatives: There is one bug in Aget that evaded detection
by all three tools. The bug is an atomicity violation that involves
11 threads and 21 shared variables. ConSeq failed to detect it
because the bug involves a long propagation distance. However,
with the support of Daikon, ConSeq can successfully detect it, see
(Section 10.5).

ConSeq and traditional tools look at concurrency bugs from
different perspectives and can miss bugs in different ways. Race
and Atom have false negatives in the examples discussed above
because they cannot cover certain interleaving patterns. ConSeq
will inevitably miss some bugs due to missing certain types of
failure sites or due to error-propagation distances that exceed the
threshold used in the short-propagation heuristic. Of course, the
coverage of ConSeq could be further improved in the future by
adding more failure templates or tuning the MaxDistance threshold.
It could also be helped by the use of additional invariant-inference
techniques and by developers who are comfortable with adding
consistency checks. In summary, ConSeq can well complement
existing bug-detection approaches.

10.2 False positives

Before suspicious-interleaving testing. False positives have al-
ways been a problem in concurrency bug detection, especially for
predictive bug detectors that need to analyze a huge number of po-
tential interleavings, such as ConSeq, Race, and Atom.

ConSeq Race Atom Base
Bug-ID OUT ASS ERR LOOP
Aget1 0 0 0 0 2 4 0
FFT 0 0 0 0 8 16 20
MySQL1 0 0 0 0 127 51 77
Moz1 0 0 0 0 26 n/a OM
MySQL2 0 4 2 5 163 402 OM
Trans 0 2 0 0 42 33 136
Moz2 1 4 0 0 20 279 244
Moz3 0 0 0 0 0 0 0
MySQL3 0 4 3 7 714 1026 OM
MySQL4 0 1 3 0 180 552 197
OO 0 0 0 0 0 0 0
Cherokee 0 0 1 3 40 296 OM
Click 0 1 0 0 13 20 37

Table 4. False positives in bug detection. (OM means analysis runs
out of memory before finish.)

As shown in Table 4, ConSeq has much better accuracy than
Race and Atom,4 exhibiting only about one-tenth the false-positive
rate of the latter two. For 11 out of the 13 cases, ConSeq only has 0–
5 false positives. Compared to traditional predictive bug-detection
tools, ConSeq can save a lot of testing resources and manual effort
by developers.

The main reason that ConSeq reports fewer false positives than
traditional approaches is that its consequence-oriented approach
has made it much more focused. To validate this, we also measured
the false-positive rate for ConSeq with identification of critical
reads turned off. The numbers are roughly comparable to the ones

4 We conducted manual validation for randomly sampled Race and Atom

bug reports.

for Atom, as shown by the last column (‘Base’) in Table 4. Actually,
if not guided by potential failure sites and critical reads, the anal-
ysis runs out of memory before finishing for several MySQL and
Mozilla workloads, because the interleaving space is huge. This is
exactly why ConSeq identifies critical read instructions based on
potential failure patterns.

The false positives of ConSeq are of two types: (1) Unidenti-
fied customized synchronization operations make a suspicious in-
terleaving infeasible. This reason is responsible for all but 3 cases.
(2) A different but still correct value is read at a critical read r. This
is responsible for 3 false positives.

After suspicious-interleaving testing. ConSeq-tester prunes out
all the false positives discussed above with one false negative.
Specifically, ConSeq-tester successfully makes the 9 bugs detected
by ConSeq in Table 3 manifest. Unfortunately, of the two new
bugs detected by ConSeq in Click, one cannot be automatically
exposed by ConSeq-tester. Its manifestation requires a complicated
sequence of branches to be followed, involving multiple branch
points in Click.

For those bugs that can be automatically exposed by ConSeq-
tester, their manifestation can all be reliably repeated by inserting
delays at the same places recorded by ConSeq-tester, which can
help programmers perform further diagnoses.

10.3 Detailed bug-detection results

Sensitivity of MaxDistance: In ConSeq, the MaxDistance thresh-
old affects how many read instructions are considered ‘critical’. We
measured the false positives and false negatives of ConSeq under
different MaxDistance settings. The total number of false positives
gradually increases, as does the bug-detection capability. Adding
all 13 bug-detection runs together, ConSeq reports 25, 33, 37, 41,
61 false positives in total, with MaxDistance set to 1, 2, 3, 4, and
5, respectively. ConSeq detects 6, 8, 9, 10, and 10 out of the tested
11 bugs, with MaxDistance set to 1, 2, 3, 4, and 5, respectively.
These numbers demonstrate the usefulness of static slicing in Con-
Seq: if ConSeq only looks at shared variables right at the failure
site, almost half of the bugs will be missed.

Object # of Error # of Critical
File Size Sites Reads

Aget1 56K 86 49
FFT 33K 52 111
MySQL1 15M 2137 8562
Moz1 4.9M 142 397
MySQL2 14M 487 1369
Trans 1.2M 158 232
Moz2 1.4M 856 929
Moz3 5.7K 1 1
MySQL3 25M 1349 2020
MySQL4 27M 867 2341
OO 13K 26 75
Cherokee 2.6M 424 1261
Click 24M 386 1365

Table 5. Potential error sites and critical reads.

Potential error sites and critical reads. Table 5 shows the
size of the object files processed by our static-slicing tool and
the number of potential failure sites and critical reads identified.
As we can see, our static-analysis component can handle large
applications whose object files are tens of mega-bytes.

10.4 Performance results

ConSeq is designed for in-house testing and goes through three
phases. The first phase of ConSeq uses static analysis to iden-
tify potential failure sites and critical reads. This step is not

performance-critical, because it is conducted only once for each
piece of code. It can be re-used across different testing runs and dif-
ferent inputs. Even after a code modification, ConSeq only needs to
re-analyze those object files that have been changed. In our experi-
ments, the static analysis is scalable. It can finish within a couple of
hours for most applications. Processing MySQL3 takes the longest
time — 18392 seconds or about 5 hours.

The second phase of ConSeq takes a test input, runs it once to
collect a trace, and analyzes the trace to report suspicious inter-
leavings. At the end of this step, concurrency bugs are reported as
shown in Table 3 and 4. This step would be repeated many times
during in-house testing and is the most important for ConSeq’s per-
formance. Table 6 shows the results for this phase. ConSeq’s run-
time overheads for the four types of failure patterns are similar,
so for each application in the table we only present the worst-case
performance and largest trace size among these four cases. Adding
the run-time and the time for off-line analysis of the trace together,
ConSeq introduces execution overhead of 1.26X — 38.5X for each
test input, which is suitable for in-house use. ConSeq’s trace sizes
are reasonably small. The biggest trace size is about 115MB in our
experiments, as shown in Table 6. The peak memory consumption
of ConSeq at run-time is less than 100 MB for all applications.

At the end, ConSeq also has an optional step of suspicious-
interleaving testing. This step imposes less than 10–55% execution
overhead for validating each bug report. Given the small false-
positive rate of ConSeq, this step does not take a long time and can
be omitted by developers. In our experiments, MySQL3 had the
largest accumulated overhead at this step, because it has the largest
number of false positives. The baseline run of MySQL3 finishes in
0.46 seconds. In total, ConSeq took 10.6 seconds for the validation
step for all 15 reported suspicious interleavings and pruned out 14
false positives.

Base Run-Time Trace Trace
Line Overhead (%) Analysis Size

Aget1 12.45s 26% 0.01s 24.7K
FFT 0.05s 2724% 0.01s 1.2M
MySQL1 0.18s 21.1% 0.27s 2.9M
Moz1 0.18s 444% 1.57s 36M
MySQL2 0.13s 157% 0.27s 18M
Trans 1.17s 210% 0.01s 132K
Moz2 12.0s 1065% 0.01s 490K
MySQL3 0.46s 130.2% 6.77s 67M
MySQL4 0.10s 135.5% 0.13s 17M
Cherokee 11.26s 21.28% 11.45s 115M
Click 0.02s 3846% 0.01s 80K

Table 6. Performance of trace collection and analysis (Base Line
is the time for the original test run w/o any instrumentation.)

10.5 Experience with ConSeq-Daikon

As discussed in Section 5, we played some tricks to get around
the granularity limitations of Daikon’s frontend. For MySQL, we
replaced the default frontend with our own PIN tool. Daikon’s
backend generates invariants from the log dumped by our PIN tool.
For Aget, a relatively small program, we manually inserted dummy
functions before every global-variable read and then instructed
Daikon’s frontend kvasir-dtrace to record all global variables at the
exit of these dummy functions. Note that this is not a fundamental
limitation of Daikon. In fact, the commercial version of Daikon can
provide invariants at instruction-level granularity, and could have
been used straight out of the box.

MySQL1: After a training phase with a mix of 50 INSERT, 25
SELECT, and 25 DELETE queries to MySQL server, Daikon pro-
duced a total of 338 equality invariants, each associated with one

instruction that reads a global variable. ConSeq considers these in-
structions as critical reads and detects that 13 out of these 338 in-
variants could be violated by pure interleaving changes. Among
these 13, one of them points to a read of binlog::log type

inside function MySQL::insert. Daikon observes that this vari-
able’s value is always 3 (i.e., LOG OPEN), while ConSeq finds that
the value could become 0 (i.e., LOG CLOSED) under an alternative
interleaving. This turns out to be exactly the MySQL-1 bug. The
abnormal LOG CLOSED value would cause MySQL to miss some
logging entries.

Among the other 12 possible violations reported by ConSeq,
ten of them are false positives that cannot actually occur due to
custom synchronization. The other two can truly occur and violate
the candidate invariants proposed by Daikon. However, they are not
bugs and do not lead to software failures.

Aget: Aget contains a concurrency bug that involves 11 threads
and 21 shared variables (1 scalar and 20 entries in an array of
structs), as shown in Figure 9. For purposes of illustration, we only
show 11 involved variables here.

...

Thread i [1..10] Signal Thread

S1:

lock (l);

S3: bwritten

unlock (l);

S2: memcpy(dst.wthread,

wthread[i].offset += dw;

 += dw;

wthread);

bwrittendst.bwritten = S4: ;

Aget Download.c, Resume.c

Figure 9. A multi-variable atomicity-violation bug that involves
11 threads and many shared variables.

After 50 training runs, Daikon generates equality invariants at
20 program locations. Based on that information, ConSeq reports
2 bugs. The first bug is Aget1, which cannot be accurately
detected by any previous tool. The second is a new bug in Aget
that has never been reported. Specifically, Daikon showed the
following invariants just before S4 in Figure 9:

..dummy_bwritten_005():::EXIT

::bwritten == sum(::wthread[].bwritten)

It means the sum of each thread’s wthread[i].bwritten
fields (across all 10 worker threads) should be equal to bwritten,
a global variable representing the total number of bytes that have
been written by all threads. ConSeq then reports a suspicious inter-
leaving (Figure 9) that could violate this invariant.

One point to note about the new Aget bug that ConSeq found
is that it could be triggered by fewer than 11 threads (e.g., two
worker threads and one signal thread would suffice). However,
when the user does not specify the number of worker threads on
the command line, the default is 10. We used the default in the
Aget experiment to simulate an in-house tester who wishes to test a
system’s default configuration. Note that if a (user-supplied) test
provokes a complicated situation in the initial run, that is what
ConSeq must work with. It has no automatic way of “reducing”
the run down to a minimal-size example. Fortunately, Daikon will
work with any number of threads and does not have a major scaling
problem; Daikon’s work remains roughly the same, because each
thread does less work when there are more threads. In summary,
the Aget experiment illustrates the usage scenario of an in-house
tester wishing to test a system’s default configuration, and shows
that ConSeq has the capability to detect bugs even when the input
used generates a complicated interleaving scenario.

11. Related Work
Concurrency bug detection Sections 1 and 10 have already com-
pared ConSeq with race detectors and atomicity-violation detec-
tors. Recent work has studied multi-variable bugs [25, 31, 35, 63]

and order problems [34]. In general, ConSeq complements these
tools by starting from consequences rather than causes. ConSeq
has a smaller false-positive rate than most traditional tools, and can
effectively detect many concurrency bugs caused by complicated
interleavings that are difficult for traditional tools to detect.

Recently, several invariant-based tools have been proposed for
debugging concurrency bugs with complicated causes, such as
definition-use violations and order violations [45, 55]. These tools
rely on observing many training runs to identify abnormal inter-
leavings. As a result, insufficient training will cause false positives
for them. Furthermore, they cannot report bugs until the buggy in-
terleavings are observed.

Another recent tool, ConMem [66], focuses on concurrency
bugs that directly lead to memory errors, such as NULL-pointer
dereferences on shared pointer variables. In terms of design philos-
ophy, traditional detectors focus on certain interleaving patterns,
which is one end of a spectrum of techniques that can be used to
identify concurrency bugs whereas ConMem focuses on the other
end (certain failure patterns). ConSeq takes matters even further:
ConSeq starts from the failure and analyzes backwards through
the error-propagation process. ConSeq is much more general than
ConMem. It not only covers all major types of failure patterns
(ConMem only covers one), but it also provides a general solu-
tion for bugs with various types of error propagation. ConMem
does not consider the propagation process at all, and only consid-
ers buggy interleavings that directly cause memory bugs (i.e., the
critical reads must be exactly the memory error sites)– a strategy
that would be difficult to apply to other types of bugs. In terms
of techniques, ConSeq is not a direct extension of previous work.
To balance generality, analysis simplicity, and bug-report accuracy,
ConSeq fully leverages the characteristics of concurrency bugs, and
combines advanced static analyses with dynamic analyses.

Interleaving testing ConSeq shares the same goals of
interleaving-testing tools [16, 39, 44, 53]. Such tools all try to ex-
plore the interleaving space for each input provided by developers
during in-house testing. ConSeq uses synchronization analysis and
perturbation-based interleaving enforcement in common with some
of these tools [44]. The difference between ConSeq and previous
tools is that ConSeq uses different methods to guide its exploration
of the interleaving space.

RaceFuzzer [53] and CTrigger [44] use race/atomicity-violation
detection results to guide their interleaving testing. ConSeq can
complement them by exposing concurrency bugs that cannot be
detected by race/atomicity detectors, as shown in Section 10. In
terms of performance, the high false-positive rates of these bug-
detection tools determine that RaceFuzzer and CTrigger will need
to test many more interleavings than ConSeq for each input. On the
other hand, ConSeq needs extra static analysis to identify critical
reads. Fortunately, because ConSeq only needs to perform static
analysis once for all inputs and all testing runs, the overhead will
easily be offset by the interleaving testing time that is associated
with specific inputs.

CHESS [39] guides its interleaving testing by bounding the
number of preempting context switches. Although this is an effec-
tive heuristic, CHESS still faces the challenge of balancing cover-
age and performance, because its testing space increases polyno-
mially in the number of potential context-switch points during the
whole execution. If it considers each shared memory access to be a
potential context-switch point, CHESS still cannot effectively ex-
plore the large interleaving space of applications like MySQL, as
shown in previous work [58]. Therefore, CHESS often limits con-
text switches only to synchronization points. This constraint will
fail to expose many concurrency bugs, including many bugs dis-
cussed in this paper. Recently, people also proposed using random-
ized schedulers [7] to probabilistically expose concurrency bugs.

It works very well for simple concurrency bugs, such as many
order-violation bugs, but will be ineffective for many other bugs
in large applications, such as atomicity-violations or more compli-
cated bugs.

In general, ConSeq and previous interleaving-testing tools com-
plement each other by looking at the interleaving space from dif-
ferent perspectives.

Failure-diagnosis and repeating The consequence-oriented
approach in ConSeq is similar in flavor to failure-diagnosis/replay
tools [1, 15, 46, 58, 65]. For example, slicing is a useful technique
in both cases [15, 58, 65]. The heuristic of paying more atten-
tion to the code close to a (potential) failure site is also widely
used [46, 58, 65].

However, ConSeq and failure-diagnosis tools have different de-
sign purposes. ConSeq looks for unknown interleaving errors that
can cause previously unobserved failures, while diagnosis tools try
to repeat/diagnose a failure after it occurred. The different design
purposes present different resource and scalability challenges.

Diagnosis tools come into play after a failure has occurred and
been observed. Therefore, they usually assume complete knowl-
edge about the failure core-dump, and sometimes also run-time in-
formation collected from the failure. They can spend a lot of re-
sources on repeating and understanding one specific failure. On the
contrary, ConSeq simply applies itself to every test input and does
not know where failures might occur. It needs to prune out unlikely
failure sites as quickly as possible, and expose hidden failures using
limited testing resources. For example, in our experiments, Con-
Seq’s trace analysis needs to triage hundreds of potential failure
sites within seconds, while diagnosis tools frequently need a cou-
ple of hours or more to repeat one failure caused by a concurrency
bug in a large application [1, 58], unless they have sufficient infor-
mation from production runs [46]. Of course, ConSeq’s scalabil-
ity comes with a cost. ConSeq might miss some failures involving
long propagation distances that diagnosis tools can successfully di-
agnose.

Input generation and symbolic execution Most failure-
diagnosis tools assume full knowledge of bug-triggering inputs.
ConSeq and other interleaving-testing tools [16, 39, 44, 53] also
rely on input test-case generation to provide good test suites.
Recently, symbolic execution [9, 20, 54, 65] has been used to
generate high-coverage inputs for unit testing. DDT [26] and
ESD [65] further extended this approach for concurrent programs.
Using symbolic execution, DDT can detect synchronization
problems caused by untimely interrupts in device drivers, and
ESD can generate bug-triggering inputs and interleavings based
on core-dumps from deadlock situations. These inspiring works
can potentially help all testing and diagnosis tools, including
ConSeq. However, due to the scalability constraints of symbolic
execution and theorem provers, previous work only experimented
with relatively small applications or relatively simple interleaving
problems. Remember that exposing deadlocks is usually easier
than exposing non-deadlock bugs, because it only needs to explore
the different orders among lock acquisitions and releases, instead
of the orders among all shared memory accesses. Further research
is needed on how to scale symbolic execution to expose general
concurrency bugs that go beyond simple lock-discipline issues;
symbolic execution is currently not able to address concurrency
bugs that are caused by arbitrary interleavings among arbitrary
code segments in large, real-world applications.

Model-checking Model-checking research aims to verify prop-
erties of concurrent programs. Recently, a lot of progress has been
made [27, 39, 48]. However, the state-explosion problem still ex-
ists. ConSeq has a different design goal and makes different trade-
offs from model-checking tools. ConSeq does not try to obtain
sound or complete results. ConSeq leverages the characteristics of

concurrency bugs, especially the short-propagation heuristic, and
uses a combination of static and dynamic analysis to make back-
ward bug-detection feasible for large applications.

Run-time avoidance has also been studied for concurrency
bugs. Dimmunix [24] learns lessons from previous deadlocks to
avoid future deadlocks. Atom-Aid [36] and PSet [63] provide ways
to survive concurrency bugs by prohibiting certain patterns of inter-
leavings at run-time through hardware support. Deterministic ex-
ecution [14] pushes this to an extreme. Software-only tools like
Grace [4] and Kendo [43] achieve similar goals for certain types of
multi-threaded programs at run-time. ConSeq complements such
tasks by exposing concurrency bugs before they manifest in a pro-
duction run.

12. Conclusions

This paper explores a backward, consequence-oriented approach
to concurrency-bug detection. Our evaluation showed that Con-
Seq can detect 10 out of 11 tested concurrency bugs by monitor-
ing correct testing runs. These bugs cover various types of fail-
ures and root causes, many of which cannot be detected by tra-
ditional race detectors and atomicity-violation detectors. ConSeq
also found previously unknown bugs in open-source applications.
Due to its consequence-oriented approach, ConSeq also has much
better accuracy than traditional tools.

We believe ConSeq provides a nice complement to traditional
concurrency-bug-detection tools. It demonstrates that we can lever-
age tools designed for sequential programs and sequential bugs,
such as Daikon, to detect complicated concurrency bugs. Applica-
tion developers can easily extend and adjust ConSeq by inserting
sequential-style assertions and error messages in their code.

Of course, ConSeq still has limitations. First, similar to other
dynamic bug-detection tools, ConSeq depends on test inputs for
code coverage. Second, ConSeq currently focuses on the failure
types detailed in this paper; while these failure types cover a large
subset of all software failures, they are certainly not comprehen-
sive. Third, ConSeq uses the short-propagation-distance heuristic;
while this heuristic has proven to be effective in our rather inclu-
sive benchmarks, it will inevitably cause some bugs that have long
propagation distances to be missed by ConSeq.

Future work on ConSeq will concern several aspects. First, we
plan to apply it to more applications and inputs. Second, we plan
to extend it with more failure patterns. Third, we plan to try alter-
native distance metrics and use better customized synchronization-
pruning techniques to further improve its accuracy.

13. Acknowledgments

We would like to thank our shepherd, Shimin Chen, and the anony-
mous reviewers for their invaluable feedback. We thank Bill Harris
for many helpful discussions. We thank people from Daikon re-
search group for providing much needed help. We also thank Mark
Hill for his feedback and suggestions. Shan Lu is supported by a
Claire Boothe Luce faculty fellowship, and her research group is
supported by NSF grant CCF-1018180. Thomas Reps’s research
group is supported by NSF under grants CCF-0810053 and CCF-
0904371, by ONR under grants N00014-09-1-0510 and N00014-
10-M-0251, by ARL under grant W911NF-09-1-0413, and by
AFRL under grants FA9550-09-1-0279 and FA8650-10-C-7088.
Thomas Reps has an ownership interest in GrammaTech, Inc.,
which has licensed elements of the technology reported in this pub-
lication.

References
[1] G. Altekar and I. Stoica. ODR: output-deterministic replay for multi-

core debugging. In SOSP, 2009.

[2] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum.
CodeSurfer/x86 – A platform for analyzing x86 executables,
(tool demonstration paper). In CC, 2005.

[3] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86
executables. In Compiler Construction, 2004.

[4] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe multi-
threaded programming for C/C++. In OOPSLA, 2009.

[5] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few bil-
lion lines of code later: using static analysis to find bugs in the real
world. Commun. ACM, 53(2):66–75, 2010.

[6] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In
Int. Conf. on Formal Methods in Prog. and their Appl., 1993.

[7] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A
randomized scheduler with probabilistic guarantees of finding bugs.
In ASPLOS, 2010.

[8] J. Burnim and K. Sen. Asserting and checking determinism for
multithreaded programs. In FSE, 2009.

[9] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and au-
tomatic generation of high-coverage tests for complex systems pro-
grams. In OSDI, 2008.

[10] Cherokee. Cherokee: The Fastest free Web Server out there!
http://www.cherokee-project.com/.

[11] L. Chew and D. Lie. Kivati: Fast detection and prevention of atomicity
violations. In EuroSys, 2010.

[12] J.-D. Choi et al. Efficient and precise datarace detection for multi-
threaded object-oriented programs. In PLDI, 2002.

[13] Click. The Click Modular Router Projec.
http://read.cs.ucla.edu/click/click.

[14] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: deterministic
shared memory multiprocessing. In ASPLOS, 2009.

[15] M. Dimitrov and H. Zhou. Anomaly-based bug prediction, isolation,
and validation: an automated approach for software debugging. In
ASPLOS, 2009.

[16] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multi-threaded
Java program test generation. IBM Systems Journal, 2002.

[17] M. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly
detecting relevant program invariants. In ICSE, 2000.

[18] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The daikon system for dynamic detection of
likely invariants. Sci. Comput. Program., 69(1-3):35–45, 2007.

[19] C. Flanagan and S. N. Freund. FastTrack: efficient and precise dy-
namic race detection. In PLDI, 2009.

[20] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated
random testing. In PLDI, 2005.

[21] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z.-Y. Yang. Characterization of
Linux kernel behavior under errors. In DSN, 2003.

[22] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. In TOPLAS, 1990.

[23] R. Jhala and R. Majumdar. Software model checking. Computing
Surveys, 41(4), 2009.

[24] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deadlock immu-
nity: Enabling systems to defend against deadlocks. In OSDI, 2008.

[25] N. Kidd, P. Lammich, T. Touilli, and T. Reps. A static technique
for checking for multiple-variable data races. Software Tools for
Technology Transfer, 2010.

[26] V. Kuznetsov, V. Chipounov, and G. Candea. Testing closed-source
binary device drivers with DDT. In USENIX, 2010.

[27] A. Lal and T. Reps. Reducing concurrent analysis under a context
bound to sequential analysis. Form. Methods Syst. Des., 2009.

[28] I. Lee and R. K. Iyer. Faults, symptoms, and software fault tolerance
in the Tandem GUARDIAN90 Operating System. IEEE, pages 20–29,
1993.

[29] N. G. Leveson and C. S. Turner. An investigation of the therac-25
accidents. Computer, 26(7):18–41, 1993.

[30] X. Li and D. Yeung. Application-level correctness and its impact on
fault tolerance. In HPCA, 2007.

[31] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou.
MUVI: Automatically inferring multi-variable access correlations and
detecting related semantic and concurrency bugs. In SOSP, October
2007.

[32] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes – a
comprehensive study of real world concurrency bug characteristics. In
ASPLOS, 2008.

[33] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atomicity
violations via access interleaving invariants. In ASPLOS, 2006.

[34] B. Lucia and L. Ceze. Finding concurrency bugs with context-aware
communication graphs. In MICRO, 2009.

[35] B. Lucia, L. Ceze, and K. Strauss. Colorsafe: architectural support for
debugging and dynamically avoiding multi-variable atomicity viola-
tions. In ISCA, 2010.

[36] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-aid: Detecting
and surviving atomicity violations. In ISCA, 2008.

[37] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation. In PLDI, 2005.

[38] M. Musuvathi and S. Qadeer. Iterative context bounding for systematic
testing of multithreaded programs. In PLDI, 2007.

[39] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing heisenbugs in concurrent pro-
grams. In OSDI, 2008.

[40] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder.
Automatically classifying benign and harmful data races using replay
analysis. In PLDI, 2007.

[41] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In PLDI, 2007.

[42] R. H. B. Netzer and B. P. Miller. Improving the accuracy of data race
detection. In PPoPP, 1991.

[43] M. Olszewski, J. Ansel, and S. P. Amarasinghe. Kendo: Efficient
deterministic multithreading in software. In ASPLOS, 2009.

[44] S. Park, S. Lu, and Y. Zhou. Ctrigger: Exposing atomicity violation
bugs from their finding places. In ASPLOS, 2009.

[45] S. Park, R. W. Vuduc, and M. J. Harrold. Falcon: fault localization in
concurrent programs. In ICSE ’10, 2010.

[46] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu.
PRES: probabilistic replay with execution sketching on multiproces-
sors. In SOSP, 2009.

[47] D. K. Pradhan. Fault-Tolerant Computer System Design. Prentice-
Hall, Incorporated, 1996.

[48] S. Qadeer and D. Wu. Kiss: keep it simple and sequential. In PLDI,
2004.

[49] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs as
allergies c a safe method to survive software failures. In SOSP, 2005.

[50] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo: taming device
drivers. In EuroSys, 2009.

[51] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM TOCS, 1997.

[52] SecurityFocus. Software bug contributed to blackout.
http://www.securityfocus.com/news/8016.

[53] K. Sen. Race directed random testing of concurrent programs. In
PLDI, 2008.

[54] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit testing engine
for c. In ESEC/SIGSOFT FSE, 2005.

[55] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and W. Zheng.
Do i use the wrong definition? defuse: Definition-use invariants for
detecting concurrency and sequential bugs. In OOPSLA, 2010.

[56] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization con-
straints with data in an object-oriented language. In POPL, 2006.

[57] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. A. Mahlke. Gadara:
Dynamic deadlock avoidance for multithreaded programs. In OSDI,
2008.

[58] D. Weeratunge, X. Zhang, and S. Jagannathan. Analyzing multicore
dumps to facilitate concurrency bug reproduction. In ASPLOS, 2010.

[59] M. Weiser. Program slicing. In IEEE Transactions on Software
Engineering, 1984.

[60] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological consider-
ations. In ISCA, 1995.

[61] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad hoc synchro-
nization considered harmful. In OSDI, 2010.

[62] M. Xu, R. Bodı́k, and M. D. Hill. A serializability violation detector
for shared-memory server programs. In PLDI, 2005.

[63] J. Yu and S. Narayanasamy. A case for an interleaving constrained
shared-memory multi-processor. In ISCA, 2009.

[64] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: Efficient detection of
data race conditions via adaptive tracking. In SOSP, 2005.

[65] C. Zamfir and G. Candea. Execution synthesis: A technique for
automated software debugging. In EuroSys, 2010.

[66] W. Zhang, C. Sun, and S. Lu. ConMem: Detecting severe concurrency
bugs through an effect-oriented approach. In ASPLOS, 2010.

