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Abstract
Failures caused by software bugs are widespread in produc-
tion runs, causing severe losses for end users. Unfortunately,
diagnosing production-run failures is challenging. Existing
work cannot satisfy privacy, run-time overhead, diagnosis
capability, and diagnosis latency requirements all at once.

This paper designs a low overhead, low latency, privacy
preserving production-run failure diagnosis system based on
two observations. First, short-term memory of program exe-
cution is often sufficient for failure diagnosis, as many bugs
have short propagation distances. Second, maintaining a
short-term memory of execution is much cheaper than main-
taining a record of the whole execution. Following these
observations, we first identify an existing hardware unit,
Last Branch Record (LBR), that records the last few taken
branches to help diagnose sequential bugs. We then propose
a simple hardware extension, Last Cache-coherence Record
(LCR), to record the last few cache accesses with specified
coherence states and hence help diagnose concurrency bugs.
Finally, we design LBRA and LCRA to automatically lo-
cate failure root causes using LBR and LCR.

Our evaluation uses 31 real-world sequential and concur-
rency bug failures from 18 representative open-source soft-
ware. The results show that with just 16 record entries, LBR
and LCR enable our system to automatically locate the root
causes for 27 out of 31 failures, with less than 3% run-time
overhead. As our system does not rely on sampling, it also
provides good diagnosis latency.

Categories and Subject Descriptors B.8.1 [Performance
and Reliability]: Reliability, Testing, and Fault-Tolerance;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’14, March 1–5, 2014, Salt Lake City, Utah, USA.
Copyright © 2014 ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/2541940.2541973

program execution 

failure-site approach 

short-term memory 
approach 

whole-execution 
approach 

Figure 1: Approaches to diagnosing production-run failures
(The rectangles illustrate program states directly collected
by different approaches).
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1. Introduction
1.1 Motivation
Software bugs are widespread. Although effective bug-
detection tools have been proposed, many software bugs in-
evitably slip into production runs. They have led to many
severe production-run failures, causing huge financial loss
[8, 17, 30, 36] and threatening people’s lives [21]. Conse-
quently, diagnosing failures that occur on production ma-
chines is a critical task.

Unfortunately, diagnosing production-run failures is chal-
lenging. Different from in-house bug detection and testing,
production-run failure diagnosis has to preserve privacy and
minimize run-time overhead, which often leads to sacrifices
in diagnosis latency (i.e. how long it takes to diagnose a
failure after its first occurrence) or diagnosis capability (i.e.,
what types of failures can be diagnosed).

Many tools have been proposed for production-run fail-
ure diagnosis. Since the occurrence of failures is difficult
to predict, previous work either collects program states at
the failure site, referred to as failure-site approach, or col-
lects program states throughout the execution, referred to as
whole-execution approach, as illustrated in Figure 1. These
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two approaches make different tradeoffs among privacy, run-
time overhead, diagnosis capability, and diagnosis latency.

The failure-site approach incurs negligible run-time over-
head, but has difficulty in satisfying the other requirements.
Fundamentally, inferring run-time information using the
program states at failure sites is not only tedious but also
often impossible. Making things even worse, sending a lot
of program states, such as the whole coredump, back to de-
velopers could severely hurt end users’ privacy. Some of
these problems are alleviated by recent work that uses static
analysis to automate log-variable selection and backward in-
ference [43–45]. However, static analysis is not a panacea.
It cannot help when software fails at unexpected locations
(e.g., during a segmentation fault). Its help is limited for
failures caused by concurrency bugs. Its analysis time also
increases with the number of logging sites.

The whole-execution approach can achieve better diag-
nosis capability than the failure-site approach due to its ac-
cess to the whole execution information. On the down side,
it can easily lead to huge run-time overhead. Many dynamic
bug detectors are suitable for in-house testing but not for
production-run use, because they either lead to huge over-
head or require complicated non-existing hardware support.
Recent work [2, 18, 22, 23] uses random sampling to address
the overhead problem. However, random sampling leads to
long diagnosis latency. For example, with the default 1 out of
100 sampling rate used by previous work [22, 23], a failure
often needs to occur for about 100 times before the devel-
opers obtain information useful for failure diagnosis. This is
especially a concern for software that is not deployed on mil-
lions of machines and bugs that manifest infrequently, such
as concurrency bugs.

In summary, more tools are needed to support production-
run failure diagnosis.

1.2 Contribution
This paper presents a new approach to diagnosing a wide va-
riety of production-run software failures with low run-time
overhead and low diagnosis latency, while preserving end
users’ privacy. This new approach is based on the following
two observations:

First, short-term memory is valuable and often sufficient
for failure diagnosis. Previous empirical studies [12, 34, 48]
have shown that most bugs have short propagation dis-
tances and hence have root causes located shortly before
failures. Even for bugs with long propagation distances, in-
formation useful for failure diagnosis is generally not dis-
tributed evenly throughout the execution. Intuitively, infor-
mation collected closer to a failure is more likely to be useful
for diagnosis.

Second, short-term memory can be maintained with ex-
tremely low cost. In fact, existing hardware already main-
tains such short-term memory of software execution through
facilities like Last Branch Record (LBR). With only 4–16

record entries maintained by LBR, the hardware cost is low
and the run-time overhead is negligible.

In short, maintaining a short-term memory of program
execution can achieve a nice balance in the design space:

• Comparing with the failure-site approach, it has access to
more run-time information and hence can achieve better
diagnosis capability.

• Comparing with the whole-execution approach, it only
keeps the most recent execution history and can achieve
better performance without sacrificing diagnosis latency.

Following these observations, we propose a new
production-run failure diagnosis approach that leverages the
short-term memory of program execution maintained by
hardware1. Several questions need to be answered to design
such an approach.

First, what to remember in the short-term memory? A
lot of hardware events occur during every machine cycle.
We need to select hardware events that are most useful for
diagnosing software failures.

Second, how large is short-term memory? Are 4 – 16
record entries, the settings in existing hardware LBR, suf-
ficient for real-world failure diagnosis? Can this short-term
memory provide information that cannot be inferred by the
program states at the failure site? How often can this short-
term memory contain failure root-cause information? These
questions have to be answered by thorough evaluation with
real-world failures.

Third, how to use the short-term memory? We need to
design a software system that accesses this hardware short-
term memory and integrates it into an automated failure
diagnosis algorithm. The detailed implementation also needs
to be careful not to pollute the precious short-term memory
with irrelevant events, such as those from library or code
used to access the short-term memory.

This paper answers the above questions and makes the
following contributions:

• We propose a short-term memory approach to diagnos-
ing production-run failures, with a good balance among
privacy, run-time overhead, failure-diagnosis capability,
and failure-diagnosis latency (illustrated in Figure 1).

• We identify and design two hardware short-term mem-
ory facilities to support production-run failure diag-
nosis. Specifically, we identify an existing hardware
performance monitoring unit, LBR, to help diagnose
sequential-bug failures, and propose a simple hardware
extension, Last Cache-coherence Record (LCR), to help
diagnose concurrency-bug failures. The details are in
Section 4.

1 In this paper, we will refer to the hardware record of recent execution
history as short-term memory. This short-term memory is composed of
special machine registers, and has nothing to do with the main memory.



• We design and implement two ways to use the hardware
short-term memory for production-run failure diagnosis.
The basic way, referred to as LBRLOG and LCRLOG, is
to use LBR and LCR as a generic mechanism to enhance
failure logging. It provides developers a straightforward
and generic mechanism to obtain the execution history
right before a failure, which often contains hints of failure
root causes. The advanced way, referred to as LBRA and
LCRA, uses a statistical model to automatically locate
failure root causes from LBR/LCR records. The details
are presented in Section 5.

• A thorough evaluation based on 31 real-world failures
from 18 open-source applications. Our evaluation based
on 6945 failure-logging sites shows that more than 80%
of LBR entries contain useful information that cannot
be inferred by static control-flow analysis. LBRA can
automatically locate branches that are closely related to
failure root causes and bug patches for all the 20 evalu-
ated sequential-bug failures, with less than 3% run-time
overhead measured on commodity machines. In addition,
LCRLOG and LCRA can help locate the root causes
for 7 out of 11 tested concurrency-bug failures. Compar-
ing with state-of-the-art systems that rely on sampling
[2, 18, 22, 23], our failure-diagnosis system has tens to
hundreds of times shorter diagnosis latency.

2. Background
2.1 Hardware branch-tracing facilities
There are two types of branch-tracing facilities in Intel pro-
cessors. One is called Last Branch Record (LBR), which
stores branch records in a circular ring of hardware registers.
The other is called Branch Trace Store (BTS), which keeps
branch records in cache or DRAM. BTS can store many
more records than LBR. However, it incurs much larger
overheads that is not suitable for production runs, ranging
from 20% to 100% [31]. The following discussion will fo-
cus on LBR.

LBR is part of the hardware performance monitoring unit,
originally designed for performance profiling. LBR branch
recording uses special bus cycles on the system bus [14]
and incurs negligible overhead. Its recording can be enabled
and disabled through a special machine register, as shown in
Table 1. Once enabled, LBR keeps recording newly retired
branch instructions, with each new record evicting the oldest
record. Each record contains the source and target addresses
of a branch instruction. The total number of records in LBR
varies in different microarchitectures, following an increas-
ing trend over the years — it goes from 4 entries in Pentium
4 and Intel Xeon processors, to 8 in Pentium M processors,
and to 16 in Nehalem processors [15]. All the experiments
in this paper are conducted on an Intel Nehalem processor.

LBR can be configured to record different types of branch
instructions, including conditional branches, unconditional
jumps, calls, returns, and others, as shown in Table 1.

IA32 DEBUGCTL ID: 0x1d9

0x801 Enable LBR
0x0 Disable LBR

LBR SELECT ID: 0x1c8

0x1 *Filter branches occurring in ring 0
0x2 Filter branches occurring in other levels
0x4 Filter conditional branches
0x8 *Filter near relative calls

0x10 *Filter near indirect calls
0x20 *Filter near returns
0x40 *Filter near unconditional indirect jumps
0x80 Filter near unconditional relative branches

0x100 *Filter far branches

Table 1: LBR related machine specific registers in Intel Ne-
halem (*: the masks used in this work).

if (a != 0)
a++;

else
a--;

(a)

1 cmpl $0x0,-0x4(%rbp)
2 je label<else>
3 ; jump of the false edge
4 addl $0x1,-0x4(%rbp)
5 jmp label<end>
6 ; jump of the true edge
7 label<else> :
8 subl $0x1,-0x4(%rbp)
9 label<end> :

(b)

Figure 2: Conditional branches in source and machine code.

A subtle yet important issue in using LBR is that a condi-
tional branch in source code does not simply map to a con-
ditional branch in machine code. Figure 2 shows a simple
example. The conditional branch in Figure 2 (a) is translated
into one conditional jump instruction on Line 2 and one un-
conditional jump instruction on Line 5 in Figure 2 (b). The
former will be taken when the original conditional branch is
evaluated false, and the latter will be taken if the original
branch is evaluated true.

Previous work proposes inserting harmless unconditional
branches along the fall-through edges [40] to make the
mapping between machine-code branches and source-code
branches easier. We reuse this technique and skip the details.

In general, no matter the true edge or the false edge
of a conditional branch in the source code is taken, some
corresponding machine-level branch will get recorded in
LBR. Developers will be able to locate the source-level
branch and know its outcome based on the LBR record.

2.2 Hardware performance counters
Many modern processors equip each core with a few hard-
ware performance-counter registers. These registers can be
configured to monitor and count a wide variety of hardware
performance events. Different from the branch tracing facil-



LOAD (STORE) Event Code : 0x40 (0x41)

Unit mask Description

0x01 Observe I state prior to a cache access
0x02 Observe S state prior to a cache access
0x04 Observe E state prior to a cache access
0x08 Observe M state prior to a cache access

Table 2: L1 data-cache cache-coherence events in Intel Ne-
halem (The event code and mask IDs are used to configure
which type(s) of events to monitor).

ity discussed above, each such register only contains a count,
corresponding to a specific performance event.

One set of events that can be monitored on many In-
tel processors, including Core 2 and Nehalem, is L1 data-
cache cache-coherence events [14]. As shown in Table 2,
once enabled, every L1 data cache access that encounters
specified coherence state(s) will trigger a counter increment
in the corresponding register. There are also configurations
that allow various types of filtering, such as filtering out user-
level instructions or kernel-level instructions. The content of
the register can be accessed through either polling or in-
terrupts [2, 9]. We collectively refer to this set of L1 data-
cache cache-coherence events as cache-coherence events or
coherence events in this paper. Note that, counting coher-
ence events through hardware performance counters incurs
no perceivable overhead on commodity machines [2, 14].

3. Motivating Examples
3.1 Case 1: a sequential-bug failure
Figure 3 shows a memory bug in sort utility from Coreutils.
When a user tries to merge already-sorted files such that
the output file is one of the input files, the program crashes
inside the hash lookup function.

This segmentation fault is caused by a buffer overflow
in memmove within avoid trashing input (marked as B
in Figure 3). This buffer overflow corrupts files[i].pid,
which causes the control flow to deviate from the intended
path at C. This eventually leads to a segmentation fault at F .

This buffer overflow is caused by the wrong while-
loop condition at A. As we can see, the loop condition
(i+num merged<nfiles) is intended to avoid buffer over-
flow. However, since the value of num merged is increased
after this sanity check and before the access of files array,
the buffer overflow occurs as long as this while-loop exe-
cutes at least one iteration.

The control-flow uncertainty makes this failure very dif-
ficult to diagnose. First, the segmentation fault occurs in a
function hash lookup that has 9 different callers across 6
different files. Developers cannot even start their diagno-
sis without knowing the execution history. Second, even if
the developers obtain the call-stack or even the core-dump
from the end users’ machines, they will likely ignore the

/* sort.c */
void merge (...) {
avoid_trashing_input(...);
for (...) {
open_input_files(...);

}
}
int avoid_trashing_input (...) {
for (; i < nfiles; i++) {
if (...)
same = true;

else if (...)
break;

...
if (same) {
int num_merged = 0;
while (i + num_merged < nfiles) { // A
num_merged += mergefiles(...);
memmove(&files[i], &files[i+num_merged], ...); // B

...
}}}

...
}
int open_input_files (...) {
if (files[i].pid != 0) // C
open_temp(files[i].name, files[i].pid);

else ...
}
/* lib/hash.c */
void *hash_lookup (Hash_table *table) {
struct hash_entry *bucket = table->bucket; // F

} //called by wait_proc, which is called by open_temp

Figure 3: A sequential bug in sort utility in Coreutils-7.2.

avoid trashing input function, which is not on the call
stack at the moment of failure. Third, even if developers
pay attention to avoid trashing input, they do not know
which basic blocks have executed, given the complicated
control flow, not to mention discover the root cause at A.

In short, to effectively diagnose this failure, developers
need to know the execution path leading to the failure. Oth-
erwise, it is difficult to locate the root-cause code region and
the root-cause branch. This path information often cannot be
inferred by core-dumps, call-stacks, or log variables.

3.2 Case 2: a concurrency-bug failure
Figure 4 shows a concurrency bug in Mozilla JavaScript
Engine. This bug is caused by unsynchronized accesses of
the shared variable st->table. At runtime, the variable is
initialized by InitState at a1, and then checked at a2.
In most cases, this check will pass, as long as New has
succeeded at a1. Occasionally, st->table is set to NULL

by another thread at a3 right before the check is conducted.
As a result, the software will fail with an “out of memory”
message issued by ReportOutOfMemory.

Developers will encounter two major challenges in di-
agnosing this failure. First, control-flow uncertainties. The
failure location in the source code is difficult to identify, be-
cause “out of memory” can be emitted by any one of the
55 locations where ReportOutOfMemory is invoked. Sec-
ond, interleaving uncertainties. Even if the failure location



InitState(...){
// executed by Thread1
st->table = New(st); // a1
...
if (!st->table) { // a2
ReportOutOfMemory(); // F
return JS_FALSE;

}
}

ReportOutOfMemory(){
error("out of memory");

}

FreeState(...){
//executed by Thread2
...
Destroy(st->table);
st->table = NULL; // a3
...

}

Figure 4: A concurrency bug in Mozilla JavaScript Engine.

is resolved, developers will probably mistakenly attribute the
failure to memory-consumption problems in a1, based on the
control flow of InitState. Traditional log-enhancing tech-
niques [44] provide little help here: developers cannot easily
infer interleavings based on variable values logged at failure-
logging site F , which is exactly why concurrency-bug fail-
ures are difficult to diagnose.

To successfully diagnose this failure, developers need at
least two pieces of information: (1) “out of memory” is re-
ported at F ; (2) st->table is overwritten by another thread
after the assignment at a1 and before the checking at a2.
Both pieces can be collected from execution shortly before
the failure. Unfortunately, existing production-run failure-
diagnosis techniques cannot deterministically provide these
two pieces of information with low overhead.

4. Maintaining Short-term Memory
In this section, we identify and design hardware facilities
that maintain short-term memory of program execution to
support production-run failure diagnosis.

Our main task is to identify the right types of information
to keep in the short-term memory. There is a wide variety of
runtime information accessible to the hardware, such as the
program counter of every executed instruction and the value
stored in every register. We cannot record all these hard-
ware events due to hardware cost and performance concerns.
Therefore, we need to identify events that are most useful for
failure diagnosis to keep in the short-term memory.

4.1 LBR for sequential-bug failure diagnosis
The outcome of conditional branches in software is among
the most useful information for failure diagnosis. It can
address the control-flow uncertainties discussed in Sec-
tion 3, explicitly presenting the execution path leading to
the failure. In addition, previous work has shown that many
sequential-bug failures are exactly caused by control-flow
problems [23, 35].

Fortunately, the hardware facility that maintains the
short-term memory of this information already exists in the
form of Last Branch Record (LBR). There are different types
of branches that could be recorded in LBR. Our system con-

figures LBR to record three types of branches that can help
resolve the outcomes of conditional branches in user-level
programs, as shown in Table 1.

4.2 LCR for concurrency-bug failure diagnosis
4.2.1 LCR design
Previous work [2] has found coherence events maintained
by existing hardware performance counters, which are dis-
cussed in Section 2.2, useful in diagnosing concurrency-bug
failures. Inspired by that, we propose a hardware extension
that maintains the short-term memory of coherence events.
We call it Last Cache-coherence Record, short as LCR.

Assuming a MESI cache-coherence protocol, LCR in-
cludes the following components on chip:

1. A special hardware register that configures which type of
coherence events to record. The supported events are ex-
actly those that can already be counted by existing hard-
ware performance counters – load or store instructions
that observe certain cache-coherence states right before
the cache access, as discussed in Section 2.2. Detailed
configuration options follow those that are provided by
existing hardware for performance counter registers, as
also discussed in Section 2.2. For example, the cache-
coherence state can be any combination of modified state,
exclusive state, shared state, and invalid state; this regis-
ter can be configured to filter out kernel-level instructions
or user-level instructions from LCR.

2. K pairs of special hardware registers per core that record
the latestK LCR events. Each pair records the instruction
counter and the specific cache-coherence state observed
by that instruction2. By default, we set K to be 16, re-
sembling the setting of LBR on Nehalem processors.

3. Extra circuits that keep updating LCR on each core.
After the retirement of L1 data-cache access instruc-
tions, the program counter of the instruction and the
cache-coherence state observed by this instruction will be
recorded in LCR, if the state matches the configuration.

We expect LCR to be a simple extension on machines
that already support hardware cache-coherence performance
events and LBR, such as Intel machines discussed in Sec-
tion 2.2. LCR essentially requires extending these machines
from being able to count cache-coherence events to being
able to record while counting, just like building LBR in ma-
chines that can count branch-taken events.

It is difficult to accurately estimate the overhead incurred
by LCR without building it in real hardware. We expect the
overhead to be low for two reasons. (1) Counting cache-
coherence events incurs no perceivable overhead on com-
modity machines [2, 14]. (2) Using LBR incurs negligible
overhead on commodity machines, as shown in Section 8.

2 Memory addresses are not recorded.



Bug Type FPE Does FPE exist in failure thread? Example

RWR Atomicity Violation Invalid Read Almost Always /∗Thread 1∗/
if(ptr) //a1
puts(ptr); //a2,F

/∗Thread 2∗/

ptr=NULL; //a3

RWW Atomicity Violation Invalid Write Often /∗Thread 1∗/
tmp=cnt+deposit1; //a1
cnt=tmp; //a2
printf(”Balance=%d”,cnt); //F

/∗Thread 2∗/
tmp=cnt+deposit2;
cnt=tmp; //a3

WWR Atomicity Violation Invalid Read Almost Always Figure 4

WRW Atomicity Violation Invalid Read Sometimes /∗Thread 1∗/
log=CLOSE; //a1
log=OPEN; //a2

/∗Thread 2∗/
if(log!=OPEN) //a3
{//output failure} //F

Read-too-early Order Violation Exclusive Read Often Figure 5
Read-too-late Order Violation Invalid Read Often Figure 6

Table 3: The failure predicting events (FPE) of concurrency bugs ( Invalid and Exclusive refer to the cache-coherence state
observed by a load or store right before it accesses L1 data-cache; F denotes the location of failure.)

Since our LCR design is built upon existing hardware
cache-coherence performance events, it will share some con-
straints of existing hardware performance counters. For ex-
ample, the LCRs on different cores are separately main-
tained and accessed, just like how existing performance
counters work. When we profile LCR from a particular
thread in a multi-threaded program, only the LCR main-
tained by the core that is currently running this thread will
be accessed. Extending LCR to access multiple cores’ infor-
mation simultaneously would require non-trivial change to
existing hardware. As another example, on SMT machines,
multiple hardware threads in one core currently share one
LBR. We expect a similar design for LCR. This will shorten
the execution history recorded for each thread.

4.2.2 How useful is LCR?
Is LCR helpful in diagnosing concurrency-bug failures? To
some extent, the answer is always “yes”, because LCR can
help developers understand the thread interaction right be-
fore failures.

Can LCR directly point out the failure root cause? It
depends on whether LCR contains a coherence event that
is failure predicting and is from the failure thread. An event
is considered failure predicting, if it mostly occurs during
failure runs and is related to the failure root cause [2, 18,
23]. A failure thread is the thread where the failure first
occurs, such as the thread that encounters a segmentation
fault, violates an assertion, and so on. Coherence events that
occur outside the failure thread cannot be obtained when we
access LCR at the failure site.

The above question is partly answered by our previous
work [2], which shows that failure predicting coherence
events exist for all common types of concurrency bugs. The
remaining question is whether such events occur in failure
threads or not. In the following, we discuss this issue for two
most common types of concurrency bugs: single-variable
atomicity violations and order violations [25].

/* Thread1 (failure thread)*/
printf("End at %f", Gend);//B1

printf("Takes %f",Gend - Init);//B2

/*Thread2*/
//Gend uninitialized
//until here
Gend=time();//A

Figure 5: A read-too-early order violation in FFT. Thread 2
should initialize Gend before thread 1 accesses it.

Single-variable atomicity violations occur when two con-
secutive memory accesses from one thread, denoted as a1
and a2, are unserializably interleaved by an access, denoted
as a3, from another thread. All four types of single-variable
atomicity violations are demonstrated in Table 3. Our previ-
ous work [2] discovered that failure predicting events exist
at a2 for all these atomicity violations3. Therefore, we will
focus on discussing whether a2 is in the failure thread below.
a2 almost always exists in the failure thread for RWR and

WWR atomicity violations, as the incorrect value read by
a2 will soon lead to failure in the same thread as a2, such
as a segmentation fault inside puts (the RWR example in
Table 3) and the out-of-memory failure in Figure 4. Here,
we leverage observations from previous empirical studies
[47, 48], which show that concurrency-bug failures almost
always occur in the thread that first reads an incorrect value
from a shared variable.
a2 often exists in the failure thread for RWW atomicity

violations — after a2 writes an incorrect value, the thread
performing a2 will very likely use this incorrect value which
will lead to failure, as shown in the example in Table 3.

For WRW atomicity violations, failures usually occur in
the thread containing a3, instead of a2, as shown in Table 3.
Unfortunately, a3 is not always a failure predicting event,
unless it is preceded by another access to the same variable.

3 The rationale is that a2 would encounter different cache-coherence states
during failure runs and success runs, due to the impact of a3. For exam-
ple, the invalid state of st->table encountered by if(!st->table) in
Figure 4 is related to the failure root cause and can predict the failure.



/*Thread 1*/

mutex = NULL; // A

/*Thread 2 (failure thread)*/
pthread_mutex_lock(mutex); // B1

...
pthread_mutex_unlock(mutex); // B2

...
pthread_mutex_lock(mutex); // B3

Figure 6: A read-too-late order violation in PBZIP2. Thread
2 should use mutex before thread 1 destroys it.

Order violations occur when the expected order between
two operations from two threads is flipped. The two most
common types of order violations occur either when a read
instruction executes too early and hence accesses an unini-
tialized value (Figure 5) or when a read instruction executes
too late and hence accesses a stale value (Figure 6). Previous
work [2] has shown that the coherence event at the read in-
struction is often a failure predicting event. For the example
shown in Figure 5, B2 would encounter an exclusive state
only during failure runs, when Gend is uninitialized. For the
example shown in Figure 6, B3 rarely encounters an invalid
state during success runs, but always encounters an invalid
state during failure runs when B3 executes after the NULL-
assignment from another thread.

The above failure predicting events do exist in failure
threads, as the incorrect values returned by the read instruc-
tions quickly lead to failures, such as wrong outputs (Fig-
ure 5) and crashes (Figure 6).

In summary, LCR has a good chance of directly point-
ing out the root cause of almost all common types of
concurrency-bug failures. Even if the root cause cannot be
directly pointed out, the thread interaction information pro-
vided by LCR is still helpful.

LCR configuration For extensibility and generality, we
have designed LCR to record a wide variety of coherence
events. Following the discussion in Table 3, the following
two configurations are most useful for diagnosing user-level
concurrency-bug failures.

The first configuration records invalid loads, invalid
stores, and exclusive loads. These events cover all the dif-
ferent types of failure-predicting events for common concur-
rency bugs, as shown by Table 3. However, this configuration
may waste the LCR space with stack accesses that are often
exclusive loads.

A more space-saving configuration is to replace exclusive
loads with shared loads, using the latter to replace the former
in diagnosing read-too-early order violations. For instance,
consider the bug shown in Figure 5. During success runs,
B2 will always encounter a shared state. Therefore, failures
are highly correlated with B2 not encountering a shared
state. This configuration is more LCR space-saving than the
first one, but it may not be as straightforward as the first
configuration for developers to reason about.

fd = open("/dev/lbrdriver", O_RDWR);
ioctl(fd, DRIVER_CLEAN_LBR); // Reset LBR entries
ioctl(fd, DRIVER_CONFIG_LBR); // Configure filtering
ioctl(fd, DRIVER_ENABLE_LBR); // Enable LBR recording
...
ioctl(fd, DRIVER_DISABLE_LBR); // Disable LBR recording
ioctl(fd, DRIVER_PROFILE_LBR); // Profile LBR
error(); // Failure-logging function

Figure 7: Interface exported by our LBR kernel module.

4.3 Implementation details
Accessing LBR This includes three steps. First, we con-
figure which types of branches to record through the spe-
cial register LBR SELECT, as shown in Table 1. Second,
we enable LBR through the IA32 DEBUGCTL register. Fi-
nally, the records in LBR can be accessed through registers
BRANCH 0 FROM IP through BRANCH 16 FROM IP,
where BRANCH n FROM IP is the linear address of the
nth branch instruction. Since the above registers cannot be
accessed at user level, we implemented a Linux kernel mod-
ule to support accesses from user level, mainly using kernel
wrapper functions that execute rdmsr and wrmsr assembly
instructions. The interface is shown in Figure 7.

Minimizing LBR pollution As mentioned earlier, LBR has
a limited capacity — 16 branch entries in Nehalem proces-
sors. To minimize the LBR pollution by branches that are
irrelevant to user-level software failures, we use the follow-
ing methods.

First, as discussed in Section 4.1, we configure LBR to
filter out kernel level branches.

Second, we always disable LBR right before we read
LBR. Our LBR-disabling code does not contain any user-
level branches. Consequently, LBR will not be polluted by
code executed to access it.

Finally, we remove pollution from common library func-
tions through a collection of wrapper functions. Each wrap-
per function disables LBR on entry, invokes the original li-
brary function, and finally enables LBR on exit. We will
refer to this method as LBR toggling. We wrote wrappers
for glibc functions and application-specific error-reporting
functions. For example, for MySQL, we wrote wrappers for
three MySQL-specific functions: db doprnt, my error,
and sql print error. Each wrapper function contains
fewer than 15 lines of code and follows the same routine.

LCR simulation We expect that LCR will be added into
the hardware performance monitoring unit in the future and
will be accessed in a similar way as we access LBR. We ex-
pect that the pollution issue will be similarly solved by tog-
gling around common library functions, filtering out kernel-
level instructions, and disabling LCR before profiling.

We implement a LCR simulator using PIN binary-
instrumentation infrastructure [27]. Our LCR simulator in-
cludes two parts. The first part is a simulated L1-cache with
MESI coherence protocol, implemented by instrumenting



every memory instruction in the user program and libraries.
The second part simulates LCR configuration, disable, en-
able, and profiling functions. We implement LCR as a per-
thread circular buffer with a configurable size. Once enabled,
every thread’s circular buffer gets filled by program counters
and coherence states of instructions that are executed by the
specific thread and satisfy the LCR configuration Once dis-
abled, every thread’s circular buffer is frozen. When a thread
executes the profiling function, that thread’s circular buffer
content is retrieved. Finally, we simulate the pollution effect
of these four functions by adding dummy entries into the cor-
responding circular buffer. Specifically, two user-level ex-
clusive reads will be introduced by the ioctl call that en-
ables LCR; two user-level exclusive reads and one user-level
shared read will be introduced by the ioctl call that dis-
ables LCR.

Our simulation does not simulate OS events, such as
exceptions and context switches. However, we believe it is
accurate enough to provide a solid evaluation of LCR.

5. Using Short-term Memory
5.1 Log enhancement
The basic way of using LBR and LCR is to enhance failure
logging, which we will refer to as LBRLOG and LCRLOG
respectively. Developers can use the LBR/LCR record col-
lected at a failure site to reconstruct the control flow and in-
terleaving right before the failure. They may also find failure
predicting events from the LBR/LCR record.

To ease the adoption and evaluation of LBRLOG and
LCRLOG, we implemented a source-to-source code trans-
former to automatically enhance a program’s failure logging.
The transformation includes several steps:

(1) Changing the program compilation configuration
to use our wrappers for common library functions (Sec-
tion 4.3).

(2) Inserting LBR/LCR configuration and enabling code
at the entry of main function, as shown in Figure 7.

(3) Inserting LBR/LCR profiling code right before every
existing failure-logging function in the program, as shown
in Figure 7. Currently, our implementation takes a developer
configurable list of application-specific failure-logging func-
tions, such as ap log error in Httpd and error in GNU
core utilities software.

(4) Registering a custom segmentation-fault signal han-
dler to profile LBR/LCR.

5.2 Automatic failure diagnosis
A more sophisticated way of using LBR/LCR is to automati-
cally locate failure predicting events based on the LBR/LCR
content collected from production runs. To achieve this goal,
we have designed LBRA and LCRA.

LBRA/LCRA follows the existing statistical fault local-
ization approach [22, 23]. It compares information collected
from failure runs (i.e., failure-run profiles) with information

if (expr)
{
error(...);

}

(a) Original code

tmp = expr;
LBR_LCR_PROFILE(); // success logging site
if (tmp)
{
LBR_LCR_PROFILE(); // failure logging site
error(...);

}

(b) Transformed code

Figure 8: The logging sites for success and failure profiles.

collected from success runs (i.e., success-run profiles) to fig-
ure out events that are most correlated with failure runs. We
will go through the design of these three components below:

1. What is the failure-run profile and how to collect it?

2. What is the success-run profile and how to collect it?

3. How to make the comparison?

Failure-run profile A good failure-run profile should have
a high chance to contain failure-predicting events. In our
system, we use the content of LBR and LCR collected by
LBRLOG and LCRLOG as the failure-run profile. Clearly,
the profile would contain exactly one LBR/LCR record for
each run where a fail-stop failure occurs. For example, when
the sort bug shown in Figure 3 manifests, a segmentation
fault would occur at location F . The LBR/LCR record col-
lected inside that segmentation fault handler would become
the failure run profile.

Success-run profile LBRLOG and LCRLOG do not profile
LBR and LCR at all during success runs. Therefore, we need
to design success-run profiling separately from LBRLOG
and LCRLOG.

Intuitively, we expect success-run profiles to contain
LBR/LCR record collected nearby the failure sites, so that
success-run profiles and failure-run profiles are comparable.

Guided by this intuition, we define the following program
locations as success logging sites: (1) If a segmentation fault
can be triggered by instruction i, the program location right
after i is a success logging site; (2) If a failure logging
function is located at F , a success logging site is right before
where the program jumps to the basic block containing F , as
shown in Figure 8.

Collecting LBR/LCR record at the success logging sites
defined above will naturally provide success-run profiles that
are comparable with failure-run profiles. In addition, it also
naturally excludes irrelevant success runs from the failure
diagnosis process — LBR/LCR will not be profiled during
runs that do not execute the code around the failure site.

We have implemented two schemes to collect LBR/LCR
at the success logging sites. The proactive scheme inserts
LBR/LCR profiling code at every success logging site cor-
responding to every failure logging site before software re-
lease. The reactive scheme waits until a failure occurs at a
particular location F , and then inserts LBR/LCR-profiling



code at the success logging site corresponding to F . This
change can be conducted either on the end users’ machines
through dynamic binary transformation [5] or at the develop-
ment site. In the latter case, the changes will be propagated
to the end users in the form of code patches.

These two schemes each have their own strengths. The
proactive scheme does not require code redistribution, but
incurs higher run-time overhead due to more frequent
LBR/LCR profiling. In addition, it cannot help diagnose fail-
ures that manifest at unexpected locations, which is always
the case for segmentation faults. The reactive scheme has
better performance. However, it needs software updates to
collect success-run profiles, which may take time. Of course,
since failure runs are much rarer than success runs, delays in
collecting success-run profiles rarely lead to longer diagno-
sis latency.

How to compare? Each success/failure run profile is a set
of events recorded in LBR and LCR. We want to identify the
event whose occurrence can best predict the failure.

Similar to previous work on statistical debugging [2, 23],
we identify the best failure-predicting event based on the ex-
pected prediction precision and recall of the events. Specif-
ically, in our context, prediction precision measures how
many runs indeed fail among those that are predicted to fail
by the event. It can be calculated by |F&e|

|e| , where |e| denotes
the number of runs where e is recorded in the profile and
|F&e| denotes the number of failure runs that contain e in
their profiles. Prediction recall measures how many runs are
predicted to fail by the event among those that indeed fail. It
can be calculated by |F&e|

|F | , where |F | denotes the number of
failure runs. We rank all events based on the harmonic mean
of the expected prediction precision and recall, and identify
the highest ranked event as the best failure-predicting event.

5.3 Discussion
Failure sites In our current implementation, LBRLOG
and LCRLOG treat existing failure-logging functions and
segmentation-fault handler as failure sites. Consequently, if
software fails by silently corrupting data, LBR and LCR
will not be collected in a timely manner and hence may not
help the diagnosis. Fortunately, the problem of identifying
the right places to insert log functions has been largely ad-
dressed by recent work [45].

Multiple failures It is very natural for large software to en-
counter failures caused by different bugs during production
runs. The existence of multiple failures will not affect our
system. From each failure-run profile, we can identify the
location of the failure site and hence separately handle fail-
ures that occur at different program locations. Very rarely,
different root causes may lead to failures at the same loca-
tion, such as the example shown in Figure 4. In this case, we
will see that even the best failure predicting event does not
appear in every failure run. Fortunately, this rarely affects

the relative ranking among events, and our system can still
identify the best failure predicting events.

Log enhancement Traditional failure logging either
dumps core images or call stacks, or records the values of
selected program variables. LBR/LCR has its unique advan-
tages and can well complement these traditional approaches.

In terms of preserving privacy, LBR/LCR is among the
best, because it does not directly collect any variable values.

In terms of failure diagnosis capability, LCR provides in-
terleaving related information that is difficult to obtain from
traditional approaches. LBR can resolve uncertain control
flows that cannot be inferred by traditional approaches. Note
that, even the recently proposed LogEnhancer [44] can have
difficulty in resolving control flows in sibling functions (i.e.
functions that are not in the call-stack at the failure site).
Of course, LBR and LCR content is limited to the execu-
tion shortly before the failure. In addition, coredumps and
logging variables can provide concrete variable value infor-
mation that may be unavailable from LBR/LCR.

In terms of logging latency, logging LBR/LCR is much
faster than dumping cores and logging call-stacks. In our
evaluation, logging LBR/LCR takes less than 20 µs; dump-
ing core can easily take more than 200 ms; and recording the
call stack takes about 200 µs. If developers want to conduct
logging at locations beyond failure sites, logging LBR/LCR
is more suitable than dumping cores or call-stacks.

In terms of run-time performance, LBR/LCR profiling in-
curs negligible overhead if toggling is disabled. Enabling
toggling around library functions could cause perceivable
overhead for applications that frequently invoke library
functions, which will be evaluated in Section 7.

Finally, logging LBR/LCR is more generic than logging
selected variables. At different program locations, different
variables need to be selected to represent the most important
program states for failure diagnosis. When software fails at
an unexpected location, such as during a segmentation fault,
variable logging usually cannot be applied.

Automated failure diagnosis The cooperative bug isola-
tion (CBI) approach, including CBI [22, 23], CCI [18], and
PBI [2], are the state of the art production-run failure diag-
nosis techniques. This approach first evaluates certain pred-
icates, such as whether a branch is taken, at randomly sam-
pled locations. It then performs statistical analysis on the
data collected from many success and failure runs to iden-
tify predicates that strongly correlate with failures. These
predicates are referred to as failure predictors. To conduct
random sampling, CBI and CCI use source-code instrumen-
tation, while PBI leverages hardware performance counters.

LBRA/LCRA has much shorter diagnosis latency than
the CBI approach. Suppose e needs to occur in a couple
of failure-run profiles to be identified as a high-confidence
failure predictor. To identify e, LBRA/LCRA needs a failure
to occur for a couple of times. The CBI approach needs a
failure to occur for hundreds of times under their default



sampling rate (1 out of 100). This difference, hundreds of
failure occurrences, could mean a long time in practice,
because bugs that slip into fields often manifest rarely.

In terms of run-time performance, LBRA/LCRA is bet-
ter than CBI/CCI and is comparable with PBI. The advan-
tage of LBRA/LCRA mainly comes from two sources. First,
LBRA/LCRA collects failure-run profile only at one loca-
tion, the failure-logging site. Instead, the CBI approach peri-
odically evaluates predicates throughout the execution. Sec-
ond, CBI and CCI pay extra cost to enable their random
sampling. This overhead is often more than 30% for CPU-
intensive applications for CBI [3] and more than 800% for
CCI [2].

In terms of diagnosis capability, LBRA/LCRA is com-
parable with PBI and CCI when failures have reasonably
short propagation distances, which is true for most failures
[12, 29, 34, 48]. CBI is better than LBR-tools for sequential-
bug failures whose root causes are not related to branches.

Finally, LBRA and LCRA have a much smaller impact
on the executable-file size than CBI and CCI, leaving a much
smaller footprint on cache and memory.

Limitations The accuracy of our LBR/LCR based tools
could be slightly affected by certain hardware issues. Hard-
ware tracks the cache-coherence states at cache-line granu-
larity, instead of variable granularity. This could lead to false
sharing problems. Invalid cache states could be caused by
both cache eviction and remote write accesses. This could
cause one coherence event to appear in both success runs and
failure runs. Of course, since the ranking model discussed in
Section 5.2 naturally filters out random noises, we expect the
diagnosis results to be rarely affected by these issues.

6. Methodology
We conduct all the experiments on an Intel Core i7 machine
with 4 physical cores running Linux 3.5 kernel. We sepa-
rately evaluate LBR and LCR related tools. LBR-related ex-
periments are conducted directly on the real machine; LCR-
related experiments are conducted on our PIN-based simu-
lator.

We evaluate the failure-diagnosis capability and runtime
performance of LBRLOG and LBRA using 20 real-world
sequential-bug failures. We include in our benchmarks all
the 10 failures from LogEnhancer [44] that we can repro-
duce. We also randomly pick 5 failures from 13 reproducible
crash failures from Errlog [45]. Finally, since the above fail-
ures are all from C applications, we randomly selected 5 re-
producible bugs from the bug database of open-source C++
applications Cppcheck and PBZIP.

To measure performance, we use workloads designed by
the software developers that represent the common scenar-
ios in production runs and do not lead to failures. The per-
formance overheads reported are the mean of 10 measure-
ments. To evaluate failure-diagnosis capability, we use the
bug triggering inputs used by LogEnhancer, Errlog, and the

original bug reports. For all these benchmarks, we conduct
a head-to-head quantitative comparison between LBRA and
CBI. Further, we evaluate how LBRLOG can help resolve
control-flow uncertainties using all the 6945 logging points
in 13 open-source applications. Detailed information about
these benchmarks along with the main logging functions in-
strumented by LBRLOG is shown in Tables 4 and 5.

We evaluate the failure-diagnosis capability of our LCR
proposal using all the 11 real-world concurrency-bug fail-
ures used in PBI [2] and CCI [18], following their experi-
ment settings. Our LCR simulator simulates each core’s L1
data-cache as a 2-way associative cache with a block size of
64 Bytes and a total size of 64 KB.

We evaluate different configurations of our LBR/LCR
tools. By default, we enable toggling in all tools.

Root Failure Log
Program Version KLOC Cause Symptom Points

Sequential-Bug Failures

Apache 1 2.0.43 273 config. error message 2534
Apache 2 2.2.3 311 semantic error message 2511
Apache 3 2.2.9 333 semantic error message 2515
cp 4.5.8 1.2 semantic error message 108
Cppcheck 1 1.58 138 memory crash 304
Cppcheck 2 1.56 131 memory crash 284
Cppcheck 3 1.52 118 memory crash 225
Lighttpd 1.4.16 55 config. error message 857
ln 4.5.1 0.7 semantic error message 29
mv 6.8 4.1 semantic error message 46
paste 6.10 0.5 memory hang 23
PBZIP1 1.1.5 5.7 semantic error message 305
PBZIP2 1.1.0 4.6 memory crash 269
rm 4.5.4 1.3 semantic error message 31
sort 7.2 3.6 memory crash 36
Squid1 2.5.S5 120 semantic error message 2427
Squid2 2.3.S4 102 memory crash 2096
tac 6.11 0.7 memory crash 21
tar 1 1.22 82 semantic error message 243
tar 2 1.19 76 semantic error message 188

Concurrency-Bug Failures

Apache 4 2.0.50 263 A.V. crash 2412
Apache 5 2.2.9 333 A.V. corrupted log 2515
Cherokee 0.98.0 85 A.V. corrupted log 184
FFT 2.0 1.3 O.V. wrong output 59
LU 2.0 1.2 O.V. wrong output 45
Mozilla-JS1 1.5 107 A.V. crash 343
Mozilla-JS2 1.5 107 A.V. wrong output 343
Mozilla-JS3 1.5 107 A.V. error message 343
MySQL1 4.0.18 658 A.V. crash 1585
MySQL2 4.0.12 639 A.V. wrong output 1523
PBZIP3 0.9.4 2.1 O.V. crash 163

Table 4: Features of real-world failures evaluated.

7. Experimental Results
7.1 LBRLOG evaluation
Our evaluation aims to answer the following questions:

1. Is the LBR record profiled by LBRLOG useful in resolv-
ing control-flow uncertainties?



Application Useful br. ratio #LogSites Main Log Fun.

Apache 0.86 2515 ap log error
cp 0.77 108 error
cppcheck 0.98 304 reportError
lighttpd 0.84 857 log error write
ln 0.81 29 error
mv 0.74 46 error
paste 0.86 23 error
pbzip 0.81 305 fprintf
rm 0.79 31 error
sort 0.91 36 error
Squid 0.88 2427 debug
tac 0.89 21 error
tar 0.84 243 open fatal

Table 5: Resolution of control-flow uncertainties by LBR-
LOG.

2. Is the LBR record profiled by LBRLOG useful in locating
failure root causes?

3. Is the runtime performance of LBRLOG suitable for
production-run deployment?

7.1.1 Resolving uncertain control flows
For each logging site l, a branch record in LBR is consid-
ered useful if the taken-ness of this branch cannot be inferred
based on the execution of l through static control flow anal-
ysis. We compute the ratio of useful branches in LBR record
entries collected at every failure-logging site in an applica-
tion. We refer to this ratio as useful branch ratio. Since it is
impractical to design inputs to exercise all the logging sites,
we implement an LLVM-based analyzer to calculate this ra-
tio. Specifically, given a logging site, the analyzer explores
backwards along all possible paths until each path contains
16 branches that could fill LBR and checks which branches
are useful. The useful branch ratio shown in Table 5 is aver-
aged across all logging sites in the application.

As shown in Table 5, the average useful branch ratio
ranges from 0.74 to 0.98 for all the 6945 logging points
across 13 applications. This shows that LBR provides a
generic and useful mechanism to resolve control-flow un-
certainties.

7.1.2 Failure diagnostic capability
To measure the failure-diagnosis capability of LBRLOG,
we compare the branches captured by LBRLOG with the
patches. We consider LBRLOG to be very helpful in locating
the failure root cause, if the patch mainly changes one of the
branches recorded by LBRLOG, denoted as Xin Table 6. We
will refer to this branch changed by the patch as root-cause
branch. We consider LBRLOG to be helpful, if the patch
mainly changes the computation or usage of a condition
variable that is involved in one of the branches recorded by
LBRLOG, denoted as X∗ in Table 6.

avoid_trashing_input (...)
- while (i + num_merged < nfiles) // A
+ do {

...
+ } while (i < nfiles);

(a) sort patch

int main (int argc, char **argv)
- if (n_files == 1)
+ if (!target_directory_specified && n_files == 1)

...
if (target_directory_specified) // B

(b) ln patch

Figure 9: Branches captured by LBRLOG and patches.

As shown in Table 6, LBRLOG is very helpful for diag-
nosing 16 out of 20 failures. These 16 failures are caused by
different types of software bugs: 8 by semantic bugs, 6 by
memory bugs, and 2 by configuration errors. As an exam-
ple, the simplified patch for the sort bug from Section 3.1
is shown in Figure 9a. The root cause branch A is recorded
as the 3rd latest entry in LBR collected by LBRLOG.

LBRLOG fails to contain the root-cause branch, but is
still helpful in diagnosing the remaining 4 failures. For ex-
ample, the ln bug has a long error propagation distance. The
root-cause branch would have been captured, if LBR had 4
more entries. LBRLOG captures the branch B that is related
to the root cause as shown in Figure 9b.

Table 6 also shows that most root-cause branches are lo-
cated within the top 8 entries in LBR. This result validates
the heuristic that most software bugs have short error prop-
agation distances, and indicates that even on machines with
smaller LBR, LBRLOG is still very useful.

Finally, we measure the distance between the LBR
branches and the patch, comparing it with the distance be-
tween the failure site and the patch. In general, the former is
much shorter than the latter. The patches are within 5 lines
of code from some LBR branches in 14 out of 20 cases,
while only 2 failure sites are within 5 lines of code from the
patches. For 13 failures, some LBR branches are more than
30 lines of code closer to the patches than the failure sites,
and all these branches are useful LBR records that cannot be
inferred by static control-flow analysis. This further shows
that LBRLOG can help diagnose failures and design patches.

7.1.3 Performance
As shown in Table 6, LBRLOG incurs at most 2.28% run-
time overhead for all the benchmarks, which is suitable for
production-run deployment.

The overhead mainly comes from toggling around li-
brary functions. Without toggling, the overhead is at most
0.23% across all benchmarks. This performance improve-
ment comes at the expense of diagnosis capability. As shown



App. Locate Root Cause Patch distance (LoC) Overhead (%)

LBRLOG LBRLOG LBRA CBI failure LBR LBRLOG LBRLOG LBRA LBRA CBI
w/ tog. w/o tog. site w/ tog. w/o tog. reactive proactive

Apache1 X 3 X 3 X 1 X 2 ∞ 3 0.31 0.11 0.39 3.87 3.01
Apache2 X 2∗ X 2∗ X 2∗ - ∞ 475 0.42 0.09 0.43 4.61 5.48
Apache3 X 2 X 2 X 1 X 1 1 1 0.33 0.17 0.52 3.43 2.70
cp X 2 - X 1 X 1 17 15 1.77 0.23 2.13 3.61 25.90
Cppcheck1 X 5∗ X 5∗ X 1∗ N/A ∞ ∞ 2.04 0.04 2.73 5.61 N/A
Cppcheck2 X 3 X 3 X 1 N/A ∞ 2 0.24 0.02 0.29 2.09 N/A
Cppcheck3 X 6 X 6 X 1 N/A ∞ 10 1.16 0.06 1.39 4.68 N/A
Lighttpd X 4 X 4 X 1 - 0 1 0.65 0.11 0.73 2.33 6.34
ln X 13∗ - X 1∗ X 1 254 33 1.88 0.18 1.95 4.69 22.48
mv X 12 X 14 X 1 X 2 309 0 1.79 0.11 2.84 5.70 15.55
paste X 6 - X 1 X 1 35 3 1.31 0.08 1.78 2.50 14.32
PBZIP1 X 4 - X 1 N/A 41 1 0.29 0.07 0.34 5.73 N/A
PBZIP2 X 1 X 1 X 1 N/A 12 1 0.79 0.04 0.91 4.62 N/A
rm X 5 X 5 X 1 X 2 31 0 2.28 0.21 2.38 6.29 24.77
sort X 3 X 5 X 1 X 1 ∞ 4 0.44 0.19 0.74 4.16 43.45
Squid1 X 2 X 2 X 1 - 123 2 1.26 0.05 1.45 2.79 6.29
Squid2 X 10 X 10 X 1 X 1 59 1 2.19 0.03 2.42 3.62 7.49
tac X 3∗ X 3∗ X 1∗ X 3∗ ∞ ∞ 2.13 0.06 2.57 2.82 26.43
tar1 X 4 X 4 X 1 X 1 ∞ 2 0.52 0.09 0.73 3.10 14.30
tar2 X 2 - X 1 X 2 24 0 0.40 0.11 0.45 2.63 9.91

Table 6: Results of LBRLOG and LBRA. (The number n after X indicates the n-th latest LBR entry returned by LBRLOG
or the n-th top predictor identified by LBRA/CBI; *: root-cause branch is missed, but a branch related to the root cause is
identified; “-”: no branches related to the root cause are identified; N/A: CBI does not work for C++ applications; ∞: in
different files.)

in Table 6, without toggling, LBRLOG will fail to locate any
branch that is related to the patch in 5 cases.

Overall, LBRLOG incurs small overheads across a wide
range of applications and is suitable for production-run de-
ployment. We can turn off toggling to satisfy even higher
performance requirements.

7.2 LBRA evaluation
Our evaluation of LBRA targets the following questions:

1. Is LBRA able to automatically locate root-cause
branches?

2. Is the performance of LBRA (reactive and proactive
schemes) suitable for production-run deployment?

3. Can LBRA complement CBI, the state-of-the-art
production-run failure diagnosis system?

Our experiments configure CBI using its default settings:
1/100 sampling rate; 1000 success runs and 1000 failure runs;
with only branch predicates enabled. Our experiments for
LBRA only use 10 success runs and 10 failure runs.

LBRA successfully and automatically locates all the 16
root-cause branches contained in LBR as the top 1 failure
predictors. It identifies root-cause related branches as top
predictors for all the 20 failures. In comparison, CBI identi-
fies root-cause branches as top predictors for 11 out of 15 C-
program failures. CBI fails to report any root-cause related
branches in 3 cases, where its random sampling missed the
relevant predicates too many times.

The above diagnosis results are achieved with LBRA
analyzing much fewer failure runs than CBI (10 vs. 1000).
When we applied CBI to 500, instead of 1000, failure-run
profiles, CBI failed to identify any useful failure predictors
for 10 out of 15 C-program failures. This difference would
be crucial for software that is not deployed on millions of
machines or failures that do not occur very frequently.

As shown in Table 6, the run-time overhead of LBRA
(reactive mode) is always less than 3%, well suitable for
production-run deployment. The overhead of LBRA in
proactive mode is slightly larger, ranging between 2.09%
and 6.29%. It is a good choice for software where updates
are infrequent or very expensive. CBI incurs an average
overhead of 15.23%, much larger than LBRA, mainly due
to the instrumentation done by CBI to performs sampling.

The results show that LBRA well complements CBI.

7.3 LCR evaluation
Our evaluation tries to answer the following questions:

1. Can LCRLOG help diagnose concurrency-bug failures?

2. Can LCRA automatically locate the root causes of
concurrency-bug failures?

3. Can LCR complement PBI and CCI, the state-of-the-art
production-run concurrency-bug failure diagnosis tools?

LCRLOG We consider LCRLOG to directly locate the
failure root cause, if the LCR profiled by it contains the
failure-predicting coherence event (defined in Section 4.2.2).



As shown in Table 7, LCRLOG directly locates the root
cause for 7 out of 11 concurrency-bug failures, which cover
different types of root causes and symptoms.

LCRLOG does not directly locate the root cause for
Apache5, Cherokee, and Mozilla-JS2 failures, because these
bugs cause silent data corruption with no failure logging near
the root cause. The MySQL1 failure is caused by a WRW
atomicity violation. As shown in Table 3, since the failure-
predicting event does not exist in the failure thread, it is not
profiled by LCRLOG.

Further, as shown in Table 7, the capacity of LCR is not
a problem for the failures we evaluated. Using the more
space-saving configuration, the failure-predicting events are
always contained in top 4 LCR entries. Even with the
more space-consuming configuration, the failure-predicting
events are still located within top 12 LCR entries.

ID LCRLOG (Conf1) LCRLOG (Conf2) LCRA

Apache4 X 3 X 5 X 1
Apache5 - - -
Cherokee - - -
FFT X 4 X 6 X 1
LU X 4 X 6 X 1
Mozilla-JS1 X 3 X 8 X 1
Mozilla-JS2 - - -
Mozilla-JS3 X 3 X 11 X 1
MySQL1 - - -
MySQL2 X 3 X 9 X 1
PBZIP3 X 3 X 7 X 1

Table 7: Failure diagnosis capability of LCR. (A number n
after the X indicates the n-th latest entry returned by LCR-
LOG or the n-th best failure predictor returned by LCRA is
the root-cause failure-predicting event; Conf1 is the space-
saving configuration of LCR; Conf2 is the space-consuming
configuration of LCR; LCRA uses Conf2.)

LCRA We evaluate whether LCRA can automatically lo-
cate the failure-predicting event by applying LCRA to 10
failure runs and 10 success runs in each case.

LCRA successfully ranks the failure-predicting event at
the top for all the 7 failures where the failure-predicting
event is captured by LCRLOG. For example, for the fail-
ure discussed in Section 3.2 (Mozilla-JS3), LCRA automat-
ically locates the invalid state observed by a2 as the top fail-
ure predictor.

We expect LCRA to well complement PBI and CCI.
In terms of performance, CCI incurs up to 10 times slow
down, due to its software based sampling schemes. We ex-
pect LCRA to have similar performance as LBRA, which
would be comparable to or slightly better than PBI. In terms
of failure-diagnosis capability, LCRA is slightly worse than
PBI, which can successfully diagnose all the 11 failures, and
comparable with CCI, which can successfully diagnose 7 out
of the 11 failures.

The biggest advantage of LCRA is its short failure-
diagnosis latency. LCRA achieves the above diagnosis re-
sults using only 10 failure-run profiles, while PBI and CCI
need the failures to occur hundreds to thousands of times
[2, 18]. This is especially a problem for concurrency-bug
failures that often occur non-deterministically and rarely.

8. Related Work
We briefly discuss related work that has not been discussed.

Hardware performance monitoring unit The branch trac-
ing facility has been used in several recent work, but
has never been used for production-run failure diagnosis.
THeME uses LBR for testing coverage analysis [40]. Recent
work conducts vulnerability or malware analysis on branch
traces generated by the branch tracing facility [41, 46]. In-
tel GNU* GDB tool [16] uses BTS to store all executed
branches in an OS-provided ring buffer.

Our work uses the branch tracing facilities for differ-
ent purposes from previous work, which leads to differ-
ent designs. For example, all the above work collects the
branch trace of the whole execution, while we focus on
the LBR collected at the failure site. Our system aims to
achieve very small run-time overhead for production-run de-
ployment, while the above work does not share the same
goal. Some of them [16, 46] intentionally use BTS which
has higher overhead. THeME [40] uses LBR, but still in-
curs much larger overhead than our tools. The reason is that
THeME’s design goal, computing testing coverage, demands
periodic LBR profiling throughout program execution. In-
stead, LBRLOG only profiles LBR when software fails.

General hardware performance counters have been used
to identify malware [10] and detect data races [11, 37]. These
tools all monitor and analyze the whole execution, instead of
focusing on the execution leading to a failure. Race detectors
[11, 37] focus on one specific type of software bugs, and
cannot help diagnose general software failures. In addition,
not being guided by a specific failure, race detectors would
report a large number of false positives [18].

Production-run failure diagnosis Record-and-replay
techniques [1, 13, 19, 20] can help diagnose production-run
failures. However, they could hurt the end users’ privacy
and incur large overhead for deterministic replay of multi-
threaded software. Triage [38] diagnoses production-run
failures by applying automated bug detection during
on-site replay, which is supported by OS modifications.
Overall, record-and-replay techniques and our system can
complement each other in failure diagnosis.

An adaptive version of CBI was proposed based on dy-
namic binary rewriting [4]. CBI-adaptive iteratively changes
sampling locations based on the failure location and the di-
agnosis results from earlier iterations. Without knowing the
exact control-flow leading to failures, CBI-adaptive needs
hundreds of iterations and evaluates about 40% of all pro-
gram predicates before it finishes failure diagnosis.



Hardware support for bug detection A lot of work has
been done to speed up sequential-bug detection through
hardware support [39, 49]. Different from LBRA and LBR-
LOG, most of these proposals rely on non-existing hardware.

A lot of work has proposed detecting concurrency bugs
through hardware support [6, 7, 24, 26, 32, 33, 42, 50]. LCR
has drawn inspiration from these work. However, since pre-
vious work focuses on bug detection, it requires the hard-
ware and software system to contiguously monitor and an-
alyze program execution, while maintaining a long execu-
tion history. Many bug detectors need to report suspicious
execution patterns even if they do no lead to failures. LCR
leverages the unique need of failure diagnosis and designs
a very simple hardware extension to maintain a short-term
execution history.

Bugaboo [26] detects a wide variety of concurrency bugs
by identifying rare communication patterns. The communi-
cation graph in Bugaboo associates with every memory in-
struction m from thread t a context, the sequence of com-
munication events observed by t immediately prior to m. A
LCR record is similar to a context, as they both contain a
short-term history of thread interaction. However, Bugaboo
and our system have very different designs, because they
have different goals — Bugaboo detects concurrency bugs
even without failure information; our system helps diagnose
production-run failures. Bugaboo maintains and checks the
context of every memory instruction in every thread through-
out the execution. Our system leverages the unique need of
failure diagnosis and only uses LCR collected in the failure
thread right before the failure. In addition, Bugaboo extends
existing cache-coherence protocol to collect context events,
while each LCR event is already supported by existing hard-
ware performance monitoring unit.

ECMon [28] proposes a hardware extension that allows
custom handlers to execute whenever certain type of cache
(coherence) events happen. ECMon and LCR aim for differ-
ent usage scenarios, and hence have different designs. Soft-
ware uses ECMon to process cache events throughout the
program execution; our system uses LCR to access the last
few cache coherence events at the moment of failure. Also
different from ECMon, the design of LCR is built upon ex-
isting hardware performance monitoring unit.

9. Conclusion
We design and implement a novel mechanism that lever-
ages hardware’s short-term memory to support production-
run failure diagnosis. We identify an existing hardware per-
formance monitoring unit, LBR, and design a simple hard-
ware extension, LCR, to maintain a short-term memory of
hardware events that are useful for failure diagnosis. Our
evaluation of 31 sequential-bug and concurrency-bug fail-
ures from 18 open-source software shows that our LBR/LCR
based tools can effectively enhance failure logging and au-
tomatically locate failure root causes with small run-time

overhead. We believe that our LBR/LCR system provides
a good balance between run-time performance, diagnosis
latency, and diagnosis capability. Our experience demon-
strates that short-term memory is sufficient for diagnosing a
wide variety of real-world failures. It also shows that a very
simple hardware-extension can provide significant help for
production-run failure diagnosis.
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