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Abstract
Sequential and concurrency bugs are widespread in deployed soft-
ware. They cause severe failures and huge financial loss during
production runs. Tools that diagnose production-run failures with
low overhead are needed. The state-of-the-art diagnosis techniques
use software instrumentation to sample program properties at run
time and use off-line statistical analysis to identify properties most
correlated with failures. Although promising, these techniques suffer
from high run-time overhead, which is sometimes over 100%, for
concurrency-bug failure diagnosis and hence are not suitable for
production-run usage.

We present PBI, a system that uses existing hardware perfor-
mance counters to diagnose production-run failures caused by se-
quential and concurrency bugs with low overhead. PBI is designed
based on several key observations. First, a few widely supported
performance counter events can reflect a wide variety of common
software bugs and can be monitored by hardware with almost no
overhead. Second, the counter overflow interrupt supported by exist-
ing hardware and operating systems provides a natural and effective
mechanism to conduct event sampling at user level. Third, the noise
and non-determinism in interrupt delivery complements well with
statistical processing.

We evaluate PBI using 13 real-world concurrency and sequential
bugs from representative open-source server, client, and utility pro-
grams, and 10 bugs from a widely used software-testing benchmark.
Quantitatively, PBI can effectively diagnose failures caused by these
bugs with a small overhead that is never higher than 10 %. Qualita-
tively, PBI does not require any change to software and presents a
novel use of existing hardware performance counters.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging; B.8.1 [Performance and Reliabil-
ity]: Reliability, Testing, and Fault-Tolerance; D.1.3 [Programming
Techniques]: Concurrent Programming

General Terms Reliability, Languages, Measurement

Keywords failure diagnosis, production run, performance counters,
concurrency bugs
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1. Introduction
1.1 Motivation
Software bugs are a major cause of production-run system failures.
Software companies spend over 30% of development resources
in testing [34], but still cannot eliminate all bugs from released
software [15]. Things are getting worse in the multi-core era.
The increasingly popular multi-threaded software has a huge state
space that makes software testing even more difficult. Many bugs,
including not only sequential bugs but also concurrency bugs,
escape into the field, causing severe failures and huge financial
loss [29, 35]. Diagnosing these failures is time consuming, because
non-deterministic concurrency bugs are difficult to repeat and multi-
threaded execution is difficult to reason about. Previous studies show
that concurrency-bug failures often take developers weeks to months
to diagnose [10, 24] and the released patches are 4 times more likely
to be incorrect than those for sequential bugs [41]. To improve the
quality of production-run software, effective failure-diagnosis tools
are needed.

There are two major challenges for production-run failure-
diagnosis tools: diagnostic capability and diagnostic performance.

Diagnostic capability Tools with good diagnostic capability
should be able to accurately explain failures caused by a wide
variety of bugs. Previous research [16, 21, 22, 25, 28] has found an
effective approach for achieving good diagnostic capability. This
approach collects program predicates, such as whether a branch
is taken, during both success and failure runs of the program. It
then uses statistical processing to identify predicates that are highly
correlated with failure runs. The only concerns of this approach are
designing predicates that can reflect common failure root causes and
avoiding large run-time overhead in collecting predicates.

Diagnostic performance Tools with good diagnostic performance
should incur small run-time overhead that is suitable for deployment.
Although progress has been made, we are still far from addressing
this challenge.

One potential approach is to use hardware support. Many tech-
niques have been proposed that try to leverage hardware support to
speed up bug detection [4, 23, 25, 31, 32, 40, 42, 45, 46]. Unfortu-
nately, these solutions require hardware support that is not available
in existing machines.

Another promising approach is sampling [16, 21, 22]. By ran-
domly collecting a small portion of predicates in each run, the over-
head can be significantly decreased. Unfortunately, this sampling
approach does not work as well for diagnosing concurrency-bug fail-
ures as it does for sequential-bug failures. Diagnosing concurrency-
bug failures requires interleaving-related predicates, such as whether
two consecutive accesses to one variable come from the same thread.
Collecting these predicates requires coordinating multiple threads
and serializing global data-structure updates, which often incurs
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more than 100% of overhead even with very sparse sampling [16]. In
addition, sampling can hurt the evaluation accuracy of interleaving-
related predicates (see details in Section 4.3).

Furthermore, existing software-based monitoring and sampling
techniques rely on code instrumentation [16, 21, 28]. This approach
requires changes to program source code or binary code. It sig-
nificantly increases the size of executables (by 11–123X in our
experiments) and burdens code caches [38].

1.2 Contribution
This paper presents PBI, a system that leverages existing hardware
performance counters to effectively diagnose production-run failures
caused by a wide variety of sequential and concurrency bugs with
negligible overhead. PBI does not rely on code instrumentation and
makes no changes to the program source code or binary code.

Performance counters are special registers supported by hard-
ware to monitor hardware performance events. Although widely
used for performance tuning and architectural-design verification
[7, 30], they have only had limited use in automated software-
reliability tools for several reasons:

First, limited information. Only a limited and fixed set of
performance-counter events can be monitored. For most of these
events, hardware only provides the occurrence-count information.
Interrupt-based counter access provides information about the in-
struction that triggered a counter overflow/increment. Unfortunately,
interrupt-based access poses extra challenges as follows.

Second, expensive access. Although maintaining event counts
by hardware has almost no overhead, accessing a counter by user-
level software through interrupts does incur overhead.

Third, noise and randomness. The information about which
instruction triggered a counter overflow is inevitably imprecise, con-
taining noise due to out-of-order execution and imprecise interrupt
delivery. Further, it is difficult to command interrupts to be raised
at specific program locations. The instructions that raise counter
interrupts in a program are quite random.

As a result, no previous work has used hardware performance
counters for automated failure diagnosis. Some recent work uses
performance counters in an inspiring yet limited way, either to
provide hints [11] or to provide part of the information needed [36],
for detecting a specific type of bugs (i.e., data races).

In this paper, we address the above challenges and design PBI
based on several observations:

First, although only limited hardware events are supported, a
couple of widely supported events can already reflect the occurrence
of a wide variety of sequential bugs (e.g., branch-related events)
and concurrency bugs (e.g., L1 cache coherence events). They can
be used as program predicates to help PBI achieve good diagnostic
capability (see details in Section 3).

Second, although every single counter access is relatively expen-
sive, interrupt-based performance-counter access is a natural fit for
predicate sampling. Specifically, the predicate evaluation is handled
by hardware with high accuracy and almost no overhead; the sam-
pling overhead is oblivious to predicate types (e.g., concurrency-bug
predicates vs. sequential-bug predicates) or program structure (e.g.,
branch intensity); the sampling overhead can be controlled easily
and drops to almost 0% during sparse sampling. This allows PBI to
achieve much better diagnostic performance than instrumentation-
based sampling (see details in Section 4).

Third, the noise in the performance-event profile can be filtered
by statistical processing. The randomness in interrupt-based counter
access is exactly needed for sampling-based failure diagnosis (see
details in Sections 4 and 5).

Fourth, as PBI does not require code instrumentation, we can
monitor programs independent of the programming language in
which they are developed, with no increase in the code size.

Overall, this work has made several contributions:
• A novel way of using existing hardware performance counters

that leverages their unique characteristics.
• A failure-diagnosis system that handles a wide variety of failures

while requiring no changes to software and incurs low overhead
that is suitable for production-run deployment.

• An evaluation of 13 real-world concurrency and sequential
bugs from open-source server/client/utility programs, as well
as 10 bugs from a widely used software-testing benchmark.
The evaluation shows that PBI can effectively diagnose failures
caused by these bugs, including several concurrency-bug failures
that cannot be effectively diagnosed by previous work [16]. PBI
failure diagnosis incurs only a small run-time overhead that is
never higher than 10% for all applications, much faster than
traditional concurrency-bug failure diagnosis techniques. The
evaluation also reveals challenges and opportunities in using
performance counters.

2. Background
2.1 Hardware Performance Counters
Counters and counter events A hardware performance counter is
a register dedicated to monitoring performance events, such as cache
misses and taken branches. Modern architectures usually support a
small number of performance-counter registers and a relatively large
number of performance events. Each register can be configured to
monitor any supported performance event at run time.

The numbers of performance counters and supported perfor-
mance events have both increased in recent years. Among Intel
processors, Pentium Pro has only two counters supporting 98 events
in 68 categories, while Nehalem (Core i7) has four counters per core
supporting 325 events in 97 categories [19]. Some events such as
retired instruction count are supported by almost all architectures;
some events like load/store latency are only supported by a few
architectures.

Accessing performance counters To monitor a performance
event, the user first configures a counter register for that event.
The event count can then be obtained by polling the counter periodi-
cally or during the handling of counter-overflow interrupt.

Performance counters can be maintained and accessed in dif-
ferent modes, including per-thread mode, per-core mode, and
system-wide mode with operating system support. The OS can save
performance-counter values for a thread during a context switch.
This way, we can easily obtain per-thread statistics when multiple
threads are sharing the same set of hardware counter registers.

In PBI, we access hardware performance counters through PERF
[17], a profiling utility available in Linux kernel 2.6.31 and later
versions. PERF provides a simple command-line interface. When a
program is launched under PERF to monitor a specific event, PERF
handles the performance counter-overflow interrupt and generates a
log file that contains information related to every counter overflow,
such as the program counter of the instruction associated with
counter overflow and the event being counted.

2.2 Cooperative Bug Isolation
PBI shares a common program-sampling and statistical-processing
philosophy with CBI [16, 21, 22], a state-of-the-art production-run
failure-diagnosis framework. We present an overview of CBI below.

CBI performs source-to-source transformation of C programs
and randomly samples the values of predicates at particular program
points, called instrumentation sites or sites, across many success
and failure runs of the software. It then uses statistical techniques to
identify predicates that correlate with failures, which are referred to
as failure predictors. The key components of CBI are:



L1 Data Cache LOAD (STORE) Event Code : 0x40 (41)

Unit mask Description

0x01 L1 data cache access in I state
0x02 L1 data cache access in S state
0x04 L1 data cache access in E state
0x08 L1 data cache access in M state

perf record –event=r0140:u <program monitored>

Figure 1. L1 data cache load and store events in Intel Nehalem
along with a PERF command that monitors user-level ( specified by
“:u”) load events in I state

Predicate design and evaluation Predicates are carefully de-
signed to reflect common root causes of software bugs. To diagnose
sequential-bug failures, CBI monitors three types of predicates.
Branch predicates evaluate whether a branch is taken; Return pred-
icates evaluate whether a function return value is zero, negative,
or positive; Scalar-pair predicates evaluate whether a variable is
smaller than, larger than, or equal to other in-scope variables.

CBI can hardly diagnose concurrency-bug failures. To address
this problem, an extension of CBI called CCI [16] is proposed. CCI
monitors three types of predicates related to thread interleaving.
CCI-Prev predicates evaluate whether two successive accesses to a
given location were by two distinct threads; CCI-Havoc predicates
evaluate whether the value of a given location changes between two
consecutive accesses by one thread; CCI-FunRe predicates evaluate
whether two threads execute a function F in parallel.

Previous work has demonstrated that CBI and CCI predicates can
effectively diagnose a wide variety of software failures. Among CCI
predicates, CCI-FunRe has significantly worse diagnosis capability
than the other two. Therefore, we will restrict the comparison of PBI
to only CCI-Prev and CCI-Havoc predicates.

Predicate sampling To lower performance overhead, CBI uses an
instrumentation-based sampling technique that randomly collects
predicates from a small number of sites instead of all sites during
every run. CCI has extended this scheme to support interleaving-
related predicates. This extension sometimes incurs high overhead,
causing more than 100% of overhead in some memory-intensive
programs even with very sparse sampling [16].

At the end of each run, CBI generates a profile. The profile in-
cludes information for every predicate at all program sites indicating
whether the predicate was ever observed in that particular run, and
if observed, whether it was true or false. CBI assumes that the runs
will be classified as success or failure runs by an automated tool or
by the users themselves. PBI continues to use this assumption.

Statistical processing After collecting predicate samples from
many success and failure runs, CBI framework uses a statistical
model to measure each predicate’s correlation with software fail-
ures. The correlation is quantitatively evaluated using two scores:
frequency and Increase. Frequency measures the frequency of a
predicate being observed true in a failure run. Increase measures
how much more likely it is for a program to fail when a predicate
is observed as true than when it is simply observed. The statistical
model in CBI finally ranks the predicates based on the harmonic
mean of frequency and increase scores. The top ranked predicates
are reported as good failure predictors.

In the following sections, we will describe how PBI uses hard-
ware performance counters to diagnose a wide variety of production-
run software failures and provide a detailed comparison of PBI with
CBI and CCI.

ID Failure-Inducing Value of Related Predicates

Interleaving Failure run Success run

RWR

Thread 1 Thread 2

read x

write x

c : read x

PI(c)=TRUE PI(c)=FALSE

WWR

Thread 1 Thread 2

write x

write x

c : read x

PI(c)=TRUE PI(c)=FALSE

RWW

Thread 1 Thread 2

read x

write x

c : write x

PI(c)=TRUE PI(c)=FALSE

WRW

Thread 1 Thread 2

write x

read x

c : write x

PS(c)=TRUE PS(c)=FALSE

Table 1. Diagnostic potential of MESI predicates for different
atomicity violations (“ ” shows execution order. “x” is a shared
memory location. In success runs, the two accesses to x from Thread
1 are not interleaved by the depicted access to x from Thread 2).

3. PBI Predicate Design
3.1 Design for Concurrency-bug Failures
3.1.1 MESI predicate design
Previous work has proposed extending cache-coherence protocols
and L1 caches to help detect concurrency bugs [23, 31, 32]. Inspired
by these studies, PBI utilizes cache-coherence related performance
counter events to diagnose concurrency-bug failures.

Cache-coherence events are supported by performance counters
in many modern microarchitectures, such as Intel Core i7 [19] and
IBM Power 7 [1]. PBI uses eight cache-coherence events shown
in Figure 1. When a hardware performance counter is configured
with event code 0x40 (or 0x41) and unit mask 0x01, the counter
will count every cache load (or store) that observes an Invalid cache-
coherence state at its corresponding cache line just before the access
is performed. We will refer to this performance-counter event as I
Event. Similarly, we will refer to performance-counter events that
count cache accesses that observe Modified, Exclusive, and Shared
states, as M Event, E Event, and S Event respectively.

PBI defines 4 MESI-predicates to diagnose concurrency-bug
failures: an M-predicate, an E-predicate, an S-predicate and an I-
predicate. Every memory-access instruction i in the application is
a site for MESI-predicates. The I-predicate at i is denoted as PI(i).
PI(i) is true when I Event is observed to occur at i at run time. The
other MESI-predicates are similarly denoted and defined.

3.1.2 Diagnostic Potential of MESI predicates
Previous study [24] of real-world concurrency bugs has shown
that atomicity violations and order violations are the two most



// Thread 1
printf (”End at %f”, Gend); //B1
. . .
printf (”Take %f”, Gend−init); //B2

// Thread 2
// Gend is uninitialized
// until here
Gend = time(); //A

Figure 2. An order violation in FFT. Thread 2 should initialize
Gend before thread 1 accesses it.

//Master Thread
while(...){

pos = my pos; //Wgood
...

}//many iterations

//Slave Thread
while(...){

pos+=4; //Wbad
...
log read(pos); //R

}// many iterations

Figure 3. A real-world bug in MySQL that is neither an atomicity
violation nor an order violation [44]: during each iteration, R should
read the value of pos defined by the Master thread (success run),
instead of its own thread (failure run).

common types of concurrency bugs, with the former contributing
to almost 70% of non-deadlock concurrency bugs. We now assess
the potential of MESI-predicates for diagnosing atomicity-violation
failures, order-violation failures, and other concurrency-bug failures.

Atomicity violation Atomicity violation happens when a sequence
of memory accesses in one thread is unserializably interleaved by
memory accesses from another thread(s). Earlier studies [23, 24, 39]
show that the majority of atomicity violations only involve one
variable and can be categorized into 4 types as listed in Table 1.

We observe that the I-predicate and S-predicate can differentiate
failure runs from success runs for all 4 types of atomicity violations.
Therefore, we expect good diagnostic potential for failures caused
by atomicity violations.

Order violation Order violation happens when the expected order
between two groups of memory accesses from two threads are
flipped. Order violation bugs are usually accompanied by abnormal
values of MESI-predicates.

A real-world order violation in FFT is illustrated in Figure 2.
Instruction A from thread 2 is expected to initialize the global
variable Gend before B1 and B2 access Gend from thread 1.
Unfortunately, without proper synchronization, A could execute
after B1 and B2, causing wrong outputs. Failures caused by this bug
can be diagnosed by the MESI-predicates at the site B2. Specifically,
during success runs, B2 would observe a Shared state before its
access of Gend. During most failure runs, with A executed after B1
and B2, B2 will observe an Exclusive state. During rare failure runs,
when A executes between B1 and B2, B2 will observe an Invalid
state. Clearly, the MESI-predicates can differentiate failure runs
from success runs.

However, there is no guarantee that all order-violation failures
can be diagnosed by MESI-predicates. In the example shown in
Figure 2, if the program did not contain B2, MESI-predicates would
fail to diagnose the failure. In that made-up scenario, A and B1
are the only two instructions involved in failures. They would both
observe Invalid states during both success and failure runs.

Other concurrency bugs Recent bug-detection work [44] and
previous characteristics study have shown that some real-world
concurrency bugs are caused by neither atomicity violation nor
order violation, such as the bug shown in Figure 3. MESI-predicates
are still effective for this rare bug as the M-predicate at site R will
be a good failure predictor.

To summarize, we expect MESI-predicates to diagnose a wide
variety of concurrency-bug failures by leveraging the difference in
cache-coherence states observed between success and failure runs.

3.1.3 Predicate Evaluation
Evaluating MESI-predicates involves two steps: (1) run-time moni-
toring using PERF, and (2) off-line log analysis.

We configure PERF to collect user-level MESI-related perfor-
mance counter events when the program is executed as shown in
Figure 1. At run time, PERF handles every counter-overflow inter-
rupt and logs down information like the instruction that caused the
counter overflow and the performance event that was counted.

The log analysis is straightforward. While processing the log
obtained from each run, we treat every instruction i that appears in
the log as a site. We evaluate Pe(i) to be true if i appears in the log
with event type e (e is M, E, S, or I). Otherwise, we evaluate Pe(i)
to be false.

Ideally, we want to monitor all 8 MESI events in each run. In
practice, the number of performance events that can be accurately
monitored at the same time depends on hardware support. As most
existing machines contain 1 – 8 hardware performance-counter
registers in each core, only one event can be accurately monitored
at a time in the worst case.

To ensure that PBI runs correctly on a wide range of machines,
our current implementation monitors only one performance-counter
event at a time. In each run, we randomly select one out of the 8
MESI events listed in Figure 1 to be monitored by PERF, and use
the trace-analysis algorithm discussed above. Note that the failure-
diagnosis accuracy will not be affected by this implementation deci-
sion, because each event is given an equal chance to be monitored
in the long term. Our implementation can also be easily extended to
collect more events in each run given hardware/OS support on some
existing or future platforms.

3.1.4 Statistical Processing of MESI Predicates
PBI uses the statistical model developed in CBI to identify predicates
that are highly correlated with failures. As discussed in Section 2.2,
this statistical model assigns frequency and increase scores to each
predicate. It then uses the harmonic mean of these two scores to
rank the predicates. The top ranked predicates are considered as
good failure predictors.

We compute these scores during the off-line analysis of PERF
logs. The formulas used to calculate frequency and increase scores
of a predicate Pe(i) are provided in eqs. (1) and (2). |expr| denotes
the number of runs that satisfy the condition expr. F denotes the
condition that a run has failed; Pe(i) denotes the condition that a
run has evaluated Pe(i) to be true (e could be M, E, S, or I here); i
denotes the condition that a run has observed site i.

Frequency =
|Pe(i)|
|F|

(1)

Increase =
|F&Pe(i)|
|Pe(i)|

− |F&i|
|i|

(2)

3.1.5 Comparison with Software-based Predicates
CCI-Prev and CCI-Havoc are two predicates used by CCI to
diagnose concurrency-bug failures. They treat every instruction i
that accesses a heap/global variable as a site. When i is executed
by a thread t to access a memory location m, CCI-Prev evaluates
whether the last access to m is from thread t or not, and CCI-Havoc
evaluates whether the value of m has changed between i and the last
access of m in t. We briefly compare the diagnostic potential and
overhead of these two predicates with PBI-MESI predicates.



//Thread 1

tmp=Gcnt;
...
Gcnt=tmp+1;//s

//Thread 2

printf(”%d”,Gcnt);

(a) A success run
(PCCIPrev(s)=true,PI(s)=false)

//Thread 1

tmp=Gcnt;
...
Gcnt=tmp+1;//s

//Thread 2
tmp=Gcnt
...
Gcnt=tmp−1;

(b) A failure run
(PCCIPrev(s)=true,PI(s)=true)

Figure 4. Difference in diagnosing atomicity violations between
PBI-MESI and CCI-Prev

Diagnostic Potential CCI-Havoc can diagnose three out of four
types of atomicity violation failures listed in Table 1. It cannot
diagnose order-violation failures. When two writes from a thread
are interleaved by a read from another thread (WRW violation), the
failure-inducing interleaving does not cause any value change in the
variable involved, and hence cannot be diagnosed by CCI-Havoc.

Similar to PBI-MESI, CCI-Prev can diagnose atomicity viola-
tions and some order violations. A key difference between CCI-Prev
and PBI-MESI is that CCI-Prev does not differentiate read accesses
from write accesses. For instance, the predicates of CCI-Prev can-
not distinguish success runs from failure runs in the bug shown
in Figure 4, while PBI-MESI can. This prevents CCI-Prev from
diagnosing some atomicity-violation failures [16].

Diagnostic overhead To evaluate CCI-Prev and CCI-Havoc predi-
cates, CCI maintains a table that records memory-access information
for every heap/global variable touched by the program. The over-
head is especially large for CCI-Prev where all threads share one
table that records which thread has issued the most recent access
to a variable. Synchronizing accesses to this table from different
threads incurs large overhead.

In contrast, hardware completely takes care of monitoring MESI
events for PBI. We do not need to maintain an auxiliary data structure
like the memory-access table in CCI. Therefore, PBI can scale well
to large multi-threaded software with large heap/global memory
footprint and many heap/global accesses.

The main overhead of PBI-MESI is due to the counter-overflow
interrupt. If we want to evaluate MESI predicates for every memory
access, the interrupt overhead would be large.

Code-size overhead CCI needs to insert a predicate-evaluation
function, which queries and updates the memory-access table, before
every instruction that accesses heap/global variables. In contrast,
PBI does not change the program at all.

3.2 Design for Sequential-bug Failures
3.2.1 Predicate Design
State-of-the-art failure-diagnosis systems [22, 33] have found that
branch-related predicates are effective in diagnosing sequential-
bug failures. Inspired by previous work, PBI uses branch-related
performance counter events to diagnose sequential bugs.

Branch-related events are widely supported in modern microar-
chitectures [19]. PBI uses the “branches retired” events shown in
Figure 5. When a counter is configured with event code 0xC4 and
unit mask 0x20, it counts every retired conditional branch that is
taken. We will denote this performance-counter event as BT Event.
We apply the mask 0x10 to count the retired branches that are not
taken, and denote that event as BNT Event.

PBI defines BT and BNT predicates to diagnose sequential-
bug failures. Every branch instruction b is a site of BT and BNT
predicates, denoted as PBT (b) and PBNT (b) . PBT (b) is true when
BT Event is observed to occur at b at run time. Similarly, PBNT (b)
is true when BNT Event is observed to occur at b at run time.

BR instructions retired Code: 0xC4

Unit mask Description

0x20 Retired branches that are taken
0x10 Retired branches that are not-taken

perf record –event=r20C4:u <program monitored>
perf record –event=r10C4:u <program monitored>

Figure 5. Branch-retired events in Intel Nehalem along with PERF
commands that monitor user-level branch taken and non-taken
events

3.2.2 Diagnostic Potential of BT Predicate
Previous work [22, 33] has shown that branch-related predicates
are effective in diagnosing sequential-bug failures, because many
sequential bugs are associated with abnormal control flows. For
example, many semantic bugs are related to corner cases and wrong
control flows [20]; many buffer-overflow bugs occur under incorrect
boundary-condition checking; many dangling-pointer and double-
free bugs occur due to incorrect conditions for memory deallocation.
Overall, we expect PBI-BT and PBI-BNT predicates to possess good
diagnostic capability for sequential-bug failures.

3.2.3 Predicate Evaluation and Statistical Processing
Similar to PBI-MESI predicates, evaluation of PBI-BT and PBI-
BNT predicates are done using PERF. For each run, we configure
PERF to monitor branch taken or branch not-taken event that occurs
at user level using the commands shown in Figure 5. We process the
log generated by PERF for each run, and evaluate Pe(i) to be true if
and only if i occurs in the log with event e (e is BT or BNT here).

The statistical model used to identify sequential-bug failure
predictors is the same one used to identify concurrency-bug failure
predictors, as described in Section 3.1.4.

3.2.4 Comparison with Software-based Predicates
Techniques designed to diagnose sequential-bug failures are much
more mature than those designed for diagnosing concurrency-bug
failures. We briefly compare the diagnostic potential and run-time
overhead between CBI [21, 22] and PBI.

In general, traditional software-based techniques have better
diagnostic potential for sequential-bug failures than PBI. The flexi-
bility of software instrumentation allows tools like CBI to collect
not only branch-related predicates, but also Scalar and Return pred-
icates, as discussed in Section 2. In contrast, it is very difficult for
PBI to support these two types of predicates that are not related to
any performance event. Of course, PBI still has good diagnostic po-
tential, as branch taken or not-taken information is among the most
effective predicates for diagnosing sequential-bug failures [33].

To evaluate branch-related predicates, CBI instruments every
branch. This overhead is not small for branch-intensive programs.
However, the evaluation of predicates designed for diagnosing
sequential-bug failures is much more lightweight than that of
concurrency-related predicates.

In PBI, branch events are monitored by hardware with almost
no overhead. However, handling counter-overflow interrupts incurs
overhead. Modern microarchitectures provide several alternatives to
monitor branch events. Special hardware registers like Last Branch
Record [18] could be utilized to further improve the performance of
PBI in future.



4. Predicate Sampling
4.1 PBI Sampling Scheme
Sampling is widely used to amortize the overhead of run-time moni-
toring [3, 16, 21, 22, 26]. It is traditionally achieved through soft-
ware instrumentation. PBI also uses sampling to improve perfor-
mance. Sampling in PBI is performed through performance counter-
overflow interrupts rather than software instrumentation.

Two parameters in PERF affect the sampling rate of PBI. One
is PERF’s kernel parameter per f event max sampling rate. This
parameter specifies the maximum number of samples allowed during
a time slice before context switch. It is used to avoid too frequent
overflow interrupts. PBI currently uses the default PERF setting of
this parameter, 105. The other is PERF’s command-line parameter
“-c”. When “−c C” is specified, PERF configures the underlying
performance counter to trigger an interrupt approximately once
every C occurrences of event instructions. In our evaluation, PBI
changes this command-line parameter to adjust the sampling rate:
larger value of C corresponds to sparser sampling. Note that when
C is small, as we will see in Section 7, the effective sampling rate
is much sparser than one out of C due to the throttling effect of
per f event max sampling rate.

4.2 Diagnostic Potential of PBI Sampling
A poorly designed sampling scheme can hurt diagnostic potential.
For instance, a naı̈ve scheme that deterministically collects the first
K predicates in every execution cannot diagnose failures whose root
causes are in the later part of the execution, no matter how well
the predicates are designed. To support effective failure diagnosis,
every site should have a fair chance to be sampled. For example,
CBI framework uses uniformly random sampling, where each site
independently has an equal probability of being sampled.

At first glance, PBI sampling may not appear to be random
enough for effective failure diagnosis. With a “-c C” configuration,
in a deterministic computer system, PERF will be expected to collect
a deterministic sequence of predicates for a program under a given
input: the C-th predicate, the 2C-th predicate, and so on.

Interestingly, PBI sampling has inherent randomness in practice
benefiting from non-determinism in modern hardware and operating
systems, and the throttling effect of per f event max sampling rate.
We evaluated this randomness using a microbenchmark as discussed
below. The effectiveness of PBI in diagnosing different types of
failures in real-world applications (Section 7) also reflects the
randomness of PBI sampling to some extent. We could also introduce
more randomness in PBI sampling, by inserting a random set of
dummy memory-access/branch instructions at the beginning of a
program. However, based on our experience, there is no need for
extra randomness in PBI sampling.

Evaluating the randomness of PBI sampling We designed a
microbenchmark to evaluate the randomness of sampling used
in PBI. The microbenchmark contains 105 static branches. It is
designed in a way that every branch will be executed and taken
exactly once at run time. We configure PERF to sample the branch-
taken event with a configuration of −c 100.

The microbenchmark is executed 105 times under the same
configuration. If PERF deterministically collects samples every 100
instructions, as suggested by its command-line option, we would
see a wide variance in the sampling frequency — some branches
are sampled with 100% frequency and others are sampled with 0%
frequency. Furthermore, we would see only 1% of the branches in
the microbenchmark get sampled after 105 runs. The real results
obtained from PERF contradict with these and address several
important questions.

Is the sampling frequency uniform across sites? We observe
in Figure 6 that the sampling frequency at different sites actually
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exhibits low variance in practice. Therefore, PBI sampling provides
every program site with a fair chance for getting sampled.

Can PERF sampling eventually cover all sites? The results from
the microbenchmark study confirm that the answer is yes! With just
2.7% branch coverage in the microbenchmark after 10 runs, the
coverage quickly reaches 81.8% after 103 runs. We obtain an almost
ideal coverage of 97.5% after 104 runs.

We can also observe the throttling effect of per f event max
sampling rate in Figure 6. With the −c 100 configuration, ideally
the sampling rate should be around one out of 100. However, in
practice, the observed mean sampling frequency is only about one
out of 500.

We also designed microbenchmarks for other performance-
counter events. The overall trend is the same as what we presented
above for branch-taken event.

The above observations indicate that PERF sampling can support
our sampling-based failure diagnosis framework well. We will revisit
and confirm these observations in Section 7.

4.3 Comparison with Instrumentation-based Sampling
We compare PBI sampling with traditional instrumentation-based
sampling with respect to overhead, accuracy and code-size increase.

Performance overhead Instrumentation-based sampling does not
come for free as it needs to frequently check whether a predicate
should be evaluated or skipped, as shown in Figure 7. The frequency
and overhead of this checking varies across different sampling
schemes. CBI performs this type of checking at the beginning



of every acyclic code region. In addition to that, CCI needs an
extra checking before every global/heap-memory access for thread-
coordinated sampling, which is required by CCI-Prev predicates.
CCI also needs bursty sampling [14] to effectively collect CCI-Prev
and CCI-Havoc predicates, which adds further overhead.

Due to different sampling mechanisms, the best-case perfor-
mance, which occurs under very sparse sampling, is different be-
tween PBI and traditional failure-diagnosis systems. PBI can achieve
almost zero best-case overhead, when the sampling rate drops to
zero. In contrast, CBI could have as large as 20% best-case over-
head, depending on the control-flow structure of a program [21].
CCI could cause over 100% best-case overhead, depending on the
memory-access density of a program [16].

PBI incurs substantially lower overhead at the same sampling
rate when compared with CBI and CCI as it exploits hardware
support. Further, it requires fewer runs to isolate failure predictors
under the same overhead constraint, as sampling can be done much
more intensively.

Predicate-evaluation accuracy Sampling can affect the accu-
racy of predicate evaluation. In fact, this is a concern for many
interleaving-related predicates. For example, when a memory loca-
tion m is accessed for the first time in a sampling period, we cannot
possibly know whether the preceding access to m is from the same
thread or not. This dilemma is shared by all CCI predicates.

PBI sampling suffers much less from this problem. Hardware
keeps monitoring the specified performance event without any
gap, unless a cache-line is evicted while cache-related events are
monitored. Normal cache-line eviction cycles are much longer than
the sampling period in CCI, which is only 100 instructions by default
for CCI performance concerns.

Code-size increase PBI sampling does not require any change to
a program. In contrast, a significant amount of instrumentation is
needed to support sampling in traditional systems. CBI framework
prepares one fast version and one slow version for every acyclic
region in a program to support its sampling scheme, which at least
doubles the code size.

5. Detailed Issues
This section discusses several potential sources of inaccuracy in PBI
failure diagnosis that we have not discussed.

Skid in counter-overflow interrupts Interrupt-based sampling is
generally imprecise. Specifically, the last instruction retired prior to
the service of a performance-event overflow interrupt may not be the
instruction that actually triggered the interrupt. This gap between the
instruction that actually triggered the interrupt and the instruction
whose program counter gets collected is termed as skid. According
to PERF documentation [17], the amount of skid for a particular
event could vary, and can be up to dozens of instructions.

To better understand the impact of skid in failure diagnosis,
we designed 3 microbenchmarks, each comprised of two threads.
Each thread executes a loop that contains a store followed by a
load from a shared variable. In each benchmark, different mixes of
assembly instructions that do not access memory are inserted before
and after the two shared-variable access instructions in the loop.
The microbenchmarks contain 100, 200, and 600 static padding
instructions respectively. We execute these benchmarks under PERF
to monitor I Event. In theory, the padding instructions could never
be associated with cache-access events. However, in practice, they
appear in the PERF logs, which allows us to calculate the amount of
skid.

After running each benchmark 1000 times, we have several
observations. First, skid exists in all three benchmarks.

Second, the variance of skid for each instruction is very small.
In fact, there is always a dominant amount of skid for an instruction.
That is, more than 99% of PERF logs for a microbenchmark have a
specific amount of skid. This dominant amount of skid is 8 in the
first benchmark, and 1 in the second and third benchmarks. Given
the existence of dominant skids, performance events that actually
occurred at instruction i would mostly be reported at instruction
s, and rarely be reported at other instructions s1, s2, etc. If i is a
good failure predictor, PBI would still be able to identify s as a good
failure predictor and filter out noise generated by s1, s2, and others,
benefiting from the statistical processing of PBI.

Third, skids are usually not long, mostly within 10 assembly
instructions. Therefore, the failure predictor detected by PBI can
still guide developers to the actual bug location in the program.

We will revisit and further confirm these observations in our
experiments on real world bugs presented in Section 7.

Hardware issues False sharing is a common concern for hardware-
based concurrency-bug detection and diagnosis [23, 31, 32]. Since
multiple shared variables could be placed in the same cache line,
cache coherence states may not indicate how a shared variable is
accessed by multiple threads. False sharing could affect the quality
of PBI failure diagnosis. In our experiments, it has never affected
the topmost failure predictor. More details will be presented in
Section 7.3.4.

Thread migration and scheduling can also be sources of inaccu-
racy for hardware-based techniques. Since a thread’s performance-
counter values are saved by OS during context switches, they have
relatively little impact on PBI. Failure diagnosis could be affected
when multiple threads scheduled in the same core are executing
simultaneously in SMT mode. In this case, shared-variable access
interleavings may not cause any cache coherence traffic. If the mul-
tiple threads are scheduled to run one at a time, there would be no
impact.

In summary, the accuracy of PBI could be affected by hardware
and system issues in theory. In practice, although false sharing and
skid effects are observed in our evaluation, we have never observed
PBI fail in diagnosing a failure due to these two issues or other
issues discussed above, as we will see in Section 7.

6. Methodology
We have evaluated PBI on 13 real-world software failures caused
by concurrency and sequential bugs, and 10 failures caused by
sequential bugs in a widely used software-testing benchmark
print tokens21. These bugs all come from C/C++ programs, and
represent different types of common root causes and failure symp-
toms, as shown in Table 2. All the experiments were performed on
an Intel Core i7 (Nehalem) machine running Linux 3.2 kernel.

The experiments focus on evaluating the two design goals for
PBI: diagnostic capability and diagnostic performance.

For applications with concurrency-bug failures, we perform
a head-to-head comparison between PBI and the state-of-the-art
instrumentation-based failure diagnosis tool CCI [16]. We have
evaluated all the benchmarks examined in CCI paper (Table 2)
under the same environment used for CCI. Our evaluation uses the
same bug-triggering inputs for PBI and CCI. Further, we use two
MySQL benchmarks that are not used in CCI work to evaluate PBI’s
capability of supporting C++ programs.

Following the evaluation methodology used in CCI, we added
randomly executed thread yield calls in the source code to make

1 Print tokens2 is a tokenizer program in Siemens benchmark suite [13].
It includes a correct version and 10 buggy versions. Each buggy version
contains a bug injected by benchmark designers to emulate common real-
world sequential bugs, especially semantic bugs.



Root Failure Runs

Program KLOC Cause Symptom Total Failed

Concurrency-Bug Failures

Apache1 333 A.V. corrupted log 1000 464
Apache2 333 A.V. crash 1000 504
Cherokee 83 A.V. corrupted log 1000 480
FFT 1.3 O.V. wrong output 1000 416
LU 1.2 O.V. wrong output 1000 480
Mozilla-JS1 107 A.V. crash 1000 520
Mozilla-JS2 107 A.V. wrong output 1000 511
Mozilla-JS3 107 A.V. crash 1000 467
MySQL1 478 A.V. crash 1000 576
MySQL2 478 A.V. wrong output 1000 488
PBZIP2 2.1 A.V. crash 1000 592

Sequential-Bug Failures

BC 14.4 mem. crash 1000 444
CUT 1.2 mem. crash 1000 505
print tokens2* 0.5 sem. wrong output 1000 500

Table 2. General characteristics of buggy applications evaluated.
“KLOC”: program size in thousands of lines of code; “A.V.”: atom-
icity violations; “O.V.”: order violations; “mem.”: memory bugs;
“sem.”: semantic bugs; Mozilla-JS: Mozilla JavaScript engine; *:
print tokens2 contains 10 versions, with 1 bug in each version.

the program fail more frequently. This is applied in the same
way to our PBI and CCI experiments. The failure rate for each
application is shown in Table 2. These random yields do not
affect the quality of our evaluation, as they only increase the
failure occurrence frequency. In real-world software deployment, the
failure-occurrence frequency is usually low for concurrency bugs.
In these scenarios, PBI users simply need to collect enough failure
runs and combine them with a random subset of successful runs to
obtain a mix of program runs similar to the mix we are evaluating.

For applications with sequential-bug failures, we have primarily
used the input sets designed by the original developers. The develop-
ers of print tokens2 have designed nearly 2000 inputs for it. For each
version of print tokens2, we executed each of these inputs once, and
randomly took PERF logs generated by 500 success runs and 500
failure runs. We used the GNU Coreutils program dd to generate
random bug-triggering inputs for BC and used bug-triggering inputs
provided in bug reports for CUT. We attempted to compare PBI and
CBI with respect to sequential-bug failure diagnosis. Unfortunately,
we were unable to set up software libraries required by CBI on our
machines due to configuration problems. As a result, we will only
present a qualitative comparison between CBI and PBI.

PBI’s experiments use the default PERF setting of per f event max
sampling rate and a command-line “-c 3” configuration to control

the sampling rate. This configuration provides a comparable sam-
pling rate as that of CCI, which by default starts sampling at one
out of 10,000 rate and each period lasts for 100 instructions. The
impact of different “-c” configurations is evaluated and presented in
Section 7.3.

7. Evaluation Results
Overall, PBI has successfully diagnosed all the 11 concurrency-bug
failures and 10 out of 12 sequential-bug failures. PBI incurs low
overhead in the range of 0.4–8.6% for all applications evaluated.
In the following paragraphs, we will discuss about diagnostic
capability, run-time overhead, parameter sensitivity, and other results
in detail.

//Thread 1: start a new log
1.1 log status = OPEN ;
...
...
1.2 log status = CLOSED ;

//Thread 2: writing to log

2.1 if(log status!=OPEN)
2.2 // skip logging

Figure 8. A WRW atomicity-violation bug in MySQL (skipping
logging leads to a wrong output failure)

7.1 Diagnostic Capability Results
7.1.1 Concurrency bugs
For all the 11 concurrency-bug failures evaluated, PBI has identified
predicates directly related to the failure root cause as its topmost
failure predictor, as shown in the “diagnostic capability” column in
Table 3. PBI identifies I-predicates as top predictors for 8 failures
caused by atomicity violations. PBI also identifies E-predicates as
top predictors for 2 failures caused by order violations (FFT and
LU). Finally, PBI identifies an S-predicate as the top predictor for
the MySQL2 failure caused by a WRW atomicity violation.

In contrast, there are 6 failures that CCI-Prev or CCI-Havoc fails
to diagnose. This can be attributed to four reasons.

First, the current implementation of CCI cannot handle C++
programs, such as MySQL, because its underlying static analysis
infrastructure [27] is designed for C programs. One of the MySQL
failures is depicted in Figure 8. PBI successfully identifies the S-
predicate on line 1.2 as the top failure predictor. We believe that CCI-
Prev can also diagnose this failure, if it could use a C++-friendly
static-analysis infrastructure.

Second, CCI-Havoc cannot diagnose failures caused by WRW
atomicity violations, such as MySQL2 shown in Figure 8, or order
violations, such as FFT and LU. The root cause of FFT and LU
failures are similar to the one depicted in Figure 2. Since order
violations usually do not cause a variable to change its value between
two consecutive accesses in one thread, CCI-Havoc cannot diagnose
FFT and LU failures. PBI E-predicates are usually good predictors
for order-violation failures, as discussed in Section 3.1.2.

Third, sampling prevents CCI from diagnosing the Mozilla-JS1
failure whose root-cause code regions cannot fit into one sampling
period, as discussed in Section 4.3. PBI successfully diagnosed this
failure, because hardware has accurately tracked the cache-access
history related to this failure.

Fourth, CCI-Prev fails to diagnose the Cherokee failure because
it does not differentiate read accesses from write accesses. The
Cherokee failure is similar to the one depicted in Figure 4.

In summary, PBI is effective in diagnosing a wide variety of
concurrency-bug failures. It is also much more language independent
than software instrumentation-based techniques.

7.1.2 Sequential bugs
For 10 out of 12 sequential-bug failures, PBI has successfully
identified predicates that are directly related to the failure root causes
within the top two failure predictors, as shown in Table 4.

An example of a successfully diagnosed sequential-bug failure is
shown in Figure 9. This piece of code should return FALSE on line 6.
However, it incorrectly returns TRUE there. As a result, whenever
there is white-space character (‘ ’) in the input, print tokens2 will
output an incorrect token in its text-parsing output. The topmost
failure predictor reported by PBI is a BT predicate at line 4. As we
can see, the predicate can help developers to quickly locate the root
cause of the wrong output.

In CUT, the buggy code is enclosed by two nested if-conditions.
Clearly, the inner-if is closer to the buggy code than the outer-if.
However, in our experiments, the BT predicate at the outer-if is
ranked first and the BT predicate at the inner-if is ranked second.



Diagnosis Capability Skid Diagnosis Overhead Avg. # samples in each run

Program PBI CCI-P CCI-H PBI CCI-P CCI-H PBI CCI-P CCI-H

Apache1 X 1(I) X 1 X 1 1 0.4% 1.9% 1.2% 305051 127299 129907
Apache2 X 1(I) X 1 X 1 0 0.4% 0.4% 0.1% 284936 192196 198902
Cherokee X 1(I) - X 2 1 0.5% 0.0% 0.0% 29795 15966 5182
FFT* X 1(E) X 1 - 0 1.0% 121% 118% 7615 8875 8869
LU* X 1(E) X 1 - 1 0.8% 285% 119% 9541 51893 23356
Mozilla-JS1 X 1(I) - X 2 1 1.5% 800% 418% 111847 74707 38831
Mozilla-JS2 X 1(I) X 1 X 1 1 1.2% 432% 229% 37851 77919 37162
Mozilla-JS3 X 1(I) X 2 X 1 0 0.6% 969% 837% 11439 5501 1290
MySQL1 X 1(I) - - 0 3.8% - - 583597 - -
MySQL2 X 1(S) - - 1 1.2% - - 299389 - -
PBZIP2 X 1(I) X 1 X 1 2 8.4% 1.4% 3.0% 312808 125668 124785

Table 3. Concurrency-bug failure diagnosis. “X n” indicates that the nth highest ranked predictor captures the root cause, while “-” indicates
that neither of the top two predictors is useful. The E/S/I following “X n” indicates which MESI-predicate is the top predictor. *: For fair
comparison, we use the same program configuration for CCI and PBI, which is different from that in the CCI work [16] for FFT and LU.

Diagnosis Skid Diagnosis
Program Capability Overhead

BC X 1(BT) 1 6.1%
CUT X 2(BT) 2 7.6%
print tokens2 v1 - - 8.6%
print tokens2 v2 - - 8.6%
print tokens2 v3 X 1(BNT) 1 8.6%
print tokens2 v4 X 1(BT) 2 8.6%
print tokens2 v5 X 1(BT) 1 8.6%
print tokens2 v6 X 1(BT) 2 8.6%
print tokens2 v7 X 1(BT) 3 8.6%
print tokens2 v8 X 1(BNT) 2 8.6%
print tokens2 v9 X 1(BNT) 2 8.6%
print tokens2 v10 X 1(BT) 3 8.6%

Table 4. Sequential-bug failure diagnosis. “X n” indicates that
the nth highest ranked predictor captures the root cause, while
“-” indicates that neither of the top two predictors is useful. The
BT/BNT following “X n” indicates the predictor type.

1 // Print tokens2 v7
2 if(ch == ’\n’)
3 return (TRUE);
4 else if(ch == ’ ’)
5 // Bug: should return FALSE
6 return (TRUE);
7 else
8 return (FALSE);

Figure 9. A semantic bug in print tokens2 v7

Our investigation shows that most test inputs that take the outer-if
branch end up also taking the inner-if branch. In other words, once
the BT predicate is observed at the inner-if site, it is mostly evaluated
to be true. This causes a low increase score for the BT predicate at
the inner-if site.

PBI fails to diagnose two print tokens2 failures for different
reasons. In v1, the buggy program does not contain any branch that
is related to the software failure. In a function that is executed by
every input, the program misses both the code that handles a special
character in the input and the branch that checks whether the input
contains that special character. As a result, BT and BNT predicates
cannot help in diagnosing this program’s failure at all. In v2, the
buggy code is indeed enclosed by a branch. The BT predicate at

this branch suffers a low increase score for a similar reason as that
in CUT discussed above. So, the top ranked failure predictor is an
effect, rather than the cause of the failure. We have also checked
whether the above two failures can be diagnosed by CBI. Based on
our understanding of CBI, it should be able to diagnose the failure
of v2 through scalar predicates.

Summary The above results show that PBI can effectively diag-
nose a wide variety of concurrency and sequential bugs. Comparing
with the state-of-the-art failure-diagnosis system, PBI has better
diagnostic capability for the evaluated concurrency-bug failures and
comparable capability for sequential-bug failures.

7.2 Diagnostic Performance Results
PBI has incurred only 0.4–8.6% overhead during its failure diagno-
sis for all the benchmarks. This performance is comparable with and
in some cases (e.g., in BC) slightly better than CBI for sequential
programs[2, 21], and is much better than CCI for multi-threaded
programs. In fact, CCI incurs over 100% overhead for 5 out of the
9 concurrency-bug benchmarks it is applied to, as shown in the
“diagnosis overhead” columns of Table 3.

To better understand the performance difference between PBI and
CCI, we first confirmed that the number of samples collected by PBI
and CCI are mostly comparable to each other, as shown in Table 3.
We then evaluated the overhead of CCI under very sparse sampling
mode (i.e., sampling rate is 0). As shown in Table 5, even with no
predicate collected, the instrumentation-based sampling framework
of CCI still incurs around or more than 100% overhead for 5 out of
the 9 benchmarks it is applied to. This shows that counter-overflow
based PBI sampling has a significant performance advantage over
traditional instrumentation-based sampling techniques.

Program CCI-Prev CCI-Havoc

Apache1 0.4% 0.5%
Apache2 0.0% 0.0%
Cherokee 0.0% 0.0%
FFT 96% 102%
LU 112% 95%
Mozilla-JS1 608% 371%
Mozilla-JS2 254% 191%
Mozilla-JS3 884% 830%
PBZIP2 0.8% 2.3%

Table 5. Overhead of CCI under very sparse sampling mode

PBZIP2 is the only application where PBI has slightly larger
overhead than CCI. The reason is that CCI does not instrument
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the memory-intensive BZIP2 compression library used by PBZIP2.
PBI monitors all user-level event occurrences, including those from
library code. This causes extra overhead for PBI. In fact, when CCI
is configured to monitor the compression library as PBI does, it
incurs over 100% overhead even under very sparse sampling mode.

Unlike the CBI/CCI frameworks, PBI does not incur larger
overhead during concurrency-bug failure diagnosis than during
sequential-bug failure diagnosis. The reason is that PBI essentially
uses the same mechanism to evaluate and sample its concurrency-
related predicates and sequential-related predicates.

Note that the overhead of FFT and LU are different from what
was originally reported in CCI work [16]. In the original CCI work,
accesses to floating-point variables are not instrumented for FFT and
LU. For a fair head-to-head comparison, we have reconfigured CCI
to monitor floating-point variable accesses, similar to the monitoring
done by PBI. In fact, even when CCI does not instrument floating-
point instructions, CCI still has much worse performance than PBI.
For example, CCI-Prev would still incur around 100% overhead for
FFT and LU.

Summary PBI aims to leverage hardware performance coun-
ters to achieve low-overhead failure diagnosis that is suitable for
production-run deployment. As we can see, PBI has successfully
achieved this goal and made significant improvement over previous
work.

7.3 Other Detailed Results
7.3.1 Parameter sensitivity
We have evaluated the variation of performance overhead and the
number of samples collected by different “-c” configurations.

As we can see in Figure 10, the overhead of PBI reduces
substantially as the sampling sparsity increases. In fact, the overhead
drops significantly to around 1% for all benchmarks under the “-c
106” configuration. Of course, diagnostic capability would have
to be sacrificed for reduced overhead. As shown in Figure 11, the
number of collected samples also significantly drops as the sampling
sparsity increases. As a result, many more runs will be needed to
collect sufficient samples for PBI failure diagnosis.

Overall, hardware performance counters provide a naturally
effective mechanism for PBI users to control the tradeoff between
diagnostic performance and diagnostic capability. Furthermore,
future work can adjust the sampling sparsity of PBI at run time
to achieve more efficient and effective failure diagnosis.

7.3.2 Code size increase

Program PBI CCI-Prev CCI-Havoc

Apache1 1X 65X 40X
Apache2 1X 123X 60X
Cherokee 1X 18X 11X
FFT 1X 64X 37X
LU 1X 69X 39X
Mozilla-JS1 1X 42X 28X
Mozilla-JS2 1X 36X 24X
Mozilla-JS3 1X 43X 29X
PBZIP2 1X 38X 37X

Table 6. Code size with respect to original binary

As shown in Table 6, CCI would increase the binary-code size by
11 to 123 times. Instead, PBI does not change program binary code
at all, because it does not rely on code instrumentation for predicate
evaluation and sampling.

7.3.3 Skid in real world bugs
Imprecise interrupt handling often causes skid between an instruc-
tion that triggered the performance-counter overflow and the instruc-
tion that is collected by PERF, as discussed in Section 5. Occasion-
ally, the amount of skid could be up to dozens of instructions.

Fortunately, the statistical model used in PBI is capable of
pruning noise caused by random skids. As shown in Table 3 and
Table 4, all failure predictors have a skid of 0–2 binary instructions,
except for two versions of print tokens2 that have a skid of 3
instructions. These binary-instruction skids do not cause any skid at
the source-code level. Further, in all cases where skid is observed,
the instruction corresponding to the skid is not a memory-access
or branch instruction. Therefore, we believe it would be easy for
developers to identify the “actual” instruction where the failure
predictor is located.

We validated the true location of failure predictor in all bench-
marks using the padding-insertion technique described in Section 5.

7.3.4 Effect of false-sharing on PBI failure diagnosis
None of the topmost PBI failure predictors is affected by the cache-
line false sharing problem discussed in Section 5. Further checking
shows that the 2nd and 3rd ranked failure predictors in FFT and
LU are actually due to false sharing. That is, success and failure
runs have different patterns in accesses to two/more variables that
are located in the same cache line. To some extent, they are also
valid failure predictors, as long as the developers are aware of false
sharing, which might be challenging. We verified that after changing
the source code to avoid false sharing, these failure predictors are
pruned out from PBI diagnosis results.



7.4 Limitations of PBI

PBI is not a panacea for production-run failure diagnosis. Although
PBI has successfully diagnosed all the concurrency-bug failures in
our experiments, it could fail to diagnose some concurrency-bug
failures in practice, such as some order-violation failures discussed
in Section 3.1.2. Its failure diagnosis could also be affected by
hardware constraints, as discussed in Section 5. In addition, PBI is
not as flexible as instrumentation-based tools. For example, given
the limited types of performance events supported by hardware,
PBI cannot support all types of predicates supported by CBI. As
another example, instrumentation-based tools can easily skip certain
instructions during its program monitoring, such as stack-variable
accesses, floating-point instructions, or instructions from library
code. It is difficult to achieve the same effect using hardware
performance counters alone.

Like the CBI/CCI framework, PBI intentionally collects less
information from each run to achieve better run-time performance.
As a result, only failures that are observed for multiple times, which
is a common pattern in production-run systems, can be diagnosed
effectively by PBI. We believe that this tradeoff is worthwhile and
suitable for production-run use, as also demonstrated by previous
work [3, 16, 21, 22, 26]. Without sampling, program monitoring
would incur too large an overhead to be deployed in the field.
The production-run usage scenario also allows failures to easily
repeat for many times for widely deployed software. In fact, for
popular software [9], only failures that have bothered many users
(or important users) are processed by developers.

Overall, PBI complements existing techniques and is useful
for diagnosing real-world software failures. In practice, users can
instruct PBI to collect and analyze MESI, BT, and BNT predicates
to diagnose potential failures in single- and multi-threaded software.

8. Related Work
Due to space constraints, this section discusses some closely related
work that has not been discussed in the earlier sections.

Using performance counters for software reliability Perfor-
mance counters are useful for diagnosing system performance
bottlenecks [5]. Recently, several interesting techniques have been
proposed to help bug detection and software testing using perfor-
mance counters.

One system [11] uses a performance-counter overflow as a signal
to enable and disable a software-based race detector at run time.
Specifically, it uses OTHER CORE L2 HITM event to count the
number of times a cache line is loaded when it is stored in modified
state within another core’s private L2 cache. The count can imply
the existence of conflicting accesses to shared variables.

RACEZ [36] uses Instruction Retired event to collect samples
of executed instructions and related register images. It also instru-
ments the software to collect a trace of executed synchronization
operations. During off-line analysis, it uses the the first trace to re-
construct memory-access samples and then combines the two traces
to detect data races.

The above two systems have different goals from PBI. They
are both designed to detect data races, not to diagnose failures.
In fact, they would fail to diagnose many failures, because many
concurrency bugs are not caused by data races. They will also
incur many false positives in failure diagnosis, because many data
races do not cause externally visible failures. Previous work [16]
has shown that a race detector would cause 9–81 false positives
for the benchmarks evaluated in Section 7. In contrast, PBI can
diagnose failures caused by a wide variety of concurrency bugs.
In addition, PBI has very few false positives (0 in our evaluation
of concurrency-bug failure diagnosis), leveraging its statistical
model and failure information. Furthermore, these two systems use

performance counters differently from PBI. The first system only
uses performance counter outputs as a hint to start traditional race
detection; the second system still relies on software instrumentation
to collect synchronization information. In contrast, PBI completely
relies on performance counters to collect all the needed program-
property information for failure diagnosis.

Eunomia [43] uses branch-related events and itlb misses event
to detect certain types of security attacks. It collects instruction
and branch execution traces through performance counters. It then
checks the trace to discover invalid instructions or infeasible control-
flow paths caused by code-injection attacks. This tool does not
target general software bugs, and cannot be used to diagnose general
software failures.

Other recent works have proposed using branch-related perfor-
mance counter events to measure code coverage during software
testing [37] and using cache-hit/miss performance-counter events
to help improve performance [30]. Similar to PBI, these tools all
use performance counters to improve traditional techniques that
are based on software instrumentation. But, these tools also have
completely different goals and hence have very different designs
from PBI.

Hardware support for bug detection Researchers have made
several proposals [4, 23, 25, 31, 32, 40, 42, 45, 46] to speed up
the detection of concurrency bugs and memory bugs by extending
hardware. PBI has drawn inspiration from these works. At the same
time, PBI is different from them because it uses existing hardware
support.

Bug detection Sampling is a widely used technique to lower the
overhead of run-time monitoring. Some previous bug-detection tools
[3, 26] use software-based sampling techniques to give hot code
paths smaller probability to be sampled than cold paths, which helps
them detect data races with small overhead. PBI is different from
these previous techniques, because its sampling does not require
code instrumentation. In addition, as a failure diagnosis tool, PBI has
different design goals and strengths from these race-detection tools
as discussed above. PBI uses CBI’s statistical model to measure each
predicate’s correlation with software failures. Statistical approaches
have also been used before to detect general software bugs during
in-house development and testing [6, 8, 12].

9. Conclusion
This paper presents PBI, a production-run failure-diagnosis system.
PBI samples hardware performance-counter events at run time and
uses statistical processing to discover event instructions closely
related to failures. We evaluate PBI using 13 real-world bugs from
representative open-source software and 10 bugs from a widely
used software-testing benchmark. Our evaluation demonstrates that
PBI can effectively diagnose software failures caused by a wide
variety of concurrency and sequential bugs, including some failures
that cannot be effectively diagnosed by previous work. Benefiting
from hardware performance-counter sampling, PBI incurs less than
10% overhead for all the benchmarks, much faster than previous
work in concurrency-bug failure diagnosis. PBI does not require any
change to the monitored software, operating systems, or hardware.
Future work can further improve PBI by exploring more types of
performance events and combining instrumentation-based failure-
diagnosis techniques with performance-counter based techniques.
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