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Leveraging the Short-Term Memory of Hardware
to Diagnose Production-Run Software Failures

Abstract

Failures caused by software bugs are widespread in produc-
tion runs, causing severe losses for end users. Unfortunately,
diagnosing production-run failures is challenging. Existing
work cannot satisfy privacy, run-time overhead, diagnosis
capability, and diagnosis latency requirements all at once.

This paper designs a low overhead, low latency, privacy
preserving production-run failure diagnosis system based on
two observations. First, short-term memory of program execu-
tion is often sufficient for failure diagnosis, as many bugs have
short propagation distances. Second, maintaining a short-
term memory of execution is much cheaper than maintaining
a record of the whole execution. Following these observations,
we first identify an existing hardware performance-monitoring
unit, Last Branch Record (LBR), that records the last few taken
branches to help diagnose sequential-bug failures. We then
propose a simple hardware extension, Last Cache-Coherence
Record (LCR), to record the last few cache accesses with spec-
ified coherence states and hence help diagnose concurrency-
bug failures. Finally, we design LBRA and LCRA to auto-
matically locate failure root causes using LBR and LCR.

Our evaluation uses 31 real-world sequential and concur-
rency bug failures from 18 representative open-source soft-
ware. The results show that with just 16 record entries, LBR
and LCR enable our system to automatically locate the root
causes for 27 out of 31 failures, with less than 3% run-time
overhead. Comparing with existing production-run failure
diagnosis systems that rely on sampling, our system does not
require a failure to occur many times and significantly short-
ens the latency of failure diagnosis.

1. Introduction

1.1. Motivation

Software bugs are widespread. Although effective bug-
detection tools have been proposed, many software bugs in-
evitably slip into production runs. They have led to many
severe production-run failures, causing huge financial loss
[9, 17, 29, 34] and threatening people’s lives [22]. Conse-
quently, diagnosing failures that occur on production machines
is a critical task.

Unfortunately, diagnosing production-run failures is chal-
lenging. Different from in-house bug detection and testing,
production-run failure diagnosis has to preserve privacy and
minimize run-time overhead, which often leads to sacrifices in
diagnosis latency (i.e. how long it takes to diagnose a failure
after its first occurrence) or diagnosis capability (i.e., what
types of failures can be diagnosed).
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Figure 1: Different approaches of diagnosing production-run
failures (The rectangles illustrate the program states directly
collected by different approaches).

Many tools have been proposed for production-run failure
diagnosis. Since the occurrence of failures is difficult to pre-
dict, previous work either collects program states at the failure
site, referred to as failure-site approach, or collects program
states throughout the execution, referred to as whole-execution
approach, as illustrated in Figure 1. These two approaches
make different tradeoffs among privacy, run-time overhead,
diagnosis capability, and diagnosis latency.

The failure-site approach incurs negligible run-time over-
head, but has difficulty in satisfying the other requirements.
Fundamentally, inferring run-time information using the pro-
gram states at failure sites is not only always tedious but also
often impossible. Making things even worse, sending a lot of
program states, such as the whole coredump, back to devel-
opers could severely hurt end users’ privacy. Some of these
problems are alleviated by recent work that uses static analysis
to automate log-variable selection and backward inference
[41-43]. However, static analysis is not a panacea. It cannot
help when software fails at unpredicted locations (e.g., dur-
ing a segmentation fault). Its help is very limited for failures
caused by concurrency bugs. Its analysis time also increases
with the number of logging sites.

The whole-execution approach can achieve better diagno-
sis capability than the failure-site approach due to its access
of the whole execution information. On the down side, it
can easily lead to huge run-time overhead. Many dynamic
bug detectors are suitable for in-house testing but not for
production-run use, because they either lead to huge overhead
or require complicated non-existing hardware support. Re-
cent work [3, 18, 23, 24] uses random sampling to address
the overhead problem. However, random sampling leads to
long diagnosis latency. For example, with the default 1 out of
100 sampling rate used by previous work [23, 24], a failure
often needs to occur for about 100 times before the devel-
opers obtain information useful for failure diagnosis. This



is especially a concern for software that is not deployed on
millions of machines and bugs that manifest infrequently, such
as concurrency bugs.

In summary, more tools are needed to support production-
run failure diagnosis.

1.2. Contribution

This paper presents a new approach to diagnosing a wide
variety of production-run software failures with low run-time
overhead and low diagnosis latency, while preserving end
users’ privacy. This new approach is based on the following
two observations:

First, short-term memory is valuable and often sufficient
for failure diagnosis. Previous empirical studies [12, 32, 45]
have shown that most bugs have short propagation distances
and hence have root causes located shortly before failures.
Even for bugs with long propagation distances, information
useful for failure diagnose likely does not distribute evenly
throughout the execution. Intuitively, the closer to a failure,
the more likely such information exists.

Second, short-term memory can be maintained with ex-
tremely low cost. In fact, existing hardware already maintains
such short-term memory of software execution through facili-
ties like Last Branch Record (LBR). With only 4-16 record
entries maintained by LBR, the hardware cost is low and the
run-time overhead is negligible.

In short, maintaining a short-term memory of program exe-
cution can achieve a nice balance in the design space. Com-
paring with the failure-site approach, it has access to more
run-time information and hence can achieve better diagnosis
capability. Comparing with the whole-execution approach, it
only maintains a short-term execution history, and hence can
easily achieve better performance without sacrificing diagnosis
latency.

Following these observations, we propose a new production-
run failure diagnosis approach that leverages the short-term
memory of program execution maintained by hardware'. Sev-
eral questions need to be answered to design such an approach.

First, what to remember in the short-term memory? At
every machine cycle, a lot of hardware events occur. We need
to select hardware events that are most useful for diagnosing
software failures.

Second, how large is short-term memory? Are 4 — 16 record
entries, the settings in existing hardware LBR, sufficient for
real-world failure diagnosis? Can this short-term memory pro-
vide information that cannot be inferred by the program states
at the failure site? How often can this short-term memory con-
tain failure root-cause information? These questions have to
be answered by thorough evaluation with real-world failures.

Third, how to use the short-term memory? We need to de-
sign a software system that accesses this hardware short-term

! In this paper, we will refer to the hardware record of recent execution
history as short-term memory. This short-term memory is composed of special
machine registers, and has nothing to do with the main memory.

memory and integrates it into an automated failure diagno-

sis algorithm. The detailed implementation also needs to be

careful not to pollute the precious short-term memory with
irrelevant events, such as those from library or code used to
access the short-term memory.

This paper answers the above questions and makes the fol-
lowing contributions:

* We propose a short-term memory approach to diagnosing
production-run failures, with a good balance among privacy,
run-time overhead, failure-diagnosis capability, and failure-
diagnosis latency (illustrated in Figure 1).

* We identify and design two hardware short-term mem-
ory facilities to support production-run failure diagnosis.
Specifically, we identify existing hardware performance-
monitoring unit, LBR, to help diagnose sequential-bug fail-
ures, and propose a simple hardware extension, Last Cache-
Coherence Record (LCR), to help diagnose concurrency-bug
failures. The details are presented in Section 4.

* We design and implement two ways to use the hardware
short-term memory for production-run failure diagnosis.
The basic way, referred to as LBRLOG and LCRLOG, is
to use LBR and LCR as a generic mechanism to enhance
failure logging. It provides developers a straightforward
and generic mechanism to obtain the execution history right
before a failure, which often contains hints of failure root
causes. The advanced way, referred to as LBRA and LCRA,
uses a statistical model to automatically locate failure root
causes from LBR/LCR records. Section 5 presents the de-
tails.

A thorough evaluation based on 31 real-world failures from

18 open-source applications. Our evaluation based on 6945

failure-logging sites shows that more than 80% of LBR

entries contain useful information that cannot be inferred by
static control-flow analysis. LBRA can automatically locate
branches that are closely related to failure root causes and
bug patches for all the 20 evaluated sequential-bug failures,
with less than 3% run-time overhead. In addition, LCRLOG

and LCRA can help locate the root causes for 7 out of 11

tested concurrency-bug failures. Comparing with state-of-

the-art production-run failure diagnosis systems that rely on
sampling [3, 18, 23, 24], our failure-diagnosis system has
tens to hundreds of times shorter diagnosis latency.

2. Background

There are two types of branch-tracing facilities in Intel proces-
sors. One is called Last Branch Record (LBR), which stores
branch records in a circular ring of hardware registers. The
other is called Branch Trace Store (BTS), which keeps branch
records in cache or DRAM. BTS can store many more records
than LBR. However, it incurs much larger overheads that is
not suitable for production runs, ranging from 20% to 100%
[2]. The following discussion will focus on LBR.

LBR is part of the hardware performance monitoring unit,
originally designed for performance profiling. LBR branch
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1A32_DEBUGCTL ID: 0x1d9
0x801 Enable LBR
0x0 Disable LBR
LBR_SELECT ID: Ox1c8

Ox1  *Filter branches occurring in ring 0.
0x2  Filter branches occurring in other levels.
O0x4  Filter conditional branches.

0x8  *Filter near relative calls.

0x10  *Filter near indirect calls.

0x20  *Filter near returns.

0x40  *Filter near unconditional indirect jumps.

0x80  Filter near unconditional relative branches.
0x100  *Filter far branches.

Table 1: LBR related Machine Specific Registers in Intel Ne-
halem (*: the masks used in this work).

if(a!=0) cmpl $0x0,-0x4 ($rbp)

je label<else>
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at+t; ; Jump of the false edge
addl $0x1,-0x4 (%rbp)

jmp label<end>

; Jump of the true edge
label<else> :

subl $0x1,-0x4 (%rbp)
label<end> :
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Figure 2: Conditional branches in source and machine code.

recording uses special bus cycles on the system bus [14] and
incurs negligible overhead. Its recording can be enabled and
disabled through a special machine register, as shown in Ta-
ble 1. Once enabled, LBR keeps recording newly retired
branch instructions, with each new record evicting the oldest
record. Each record contains the source and target addresses
of a branch instruction. The total number of records in LBR
varies in different microarchitectures, following an increasing
trend over the years — it goes from 4 entries in Pentium 4 and
Intel Xeon processors, to 8 in Pentium M processors, and to
16 in Nehalem processors [16]. All the experiments in this
paper are conducted on Intel Nehalem processors.

LBR can be configured to record different types of branch
instructions, including conditional branches, unconditional
jumps, calls, returns, and others, as shown in Table 1.

A subtle yet important issue in using LBR is that a condi-
tional branch in source code does not simply map to a con-
ditional branch in machine code. Figure 2 shows a simple
example. The conditional branch in Figure 2 (a) is translated
into one conditional jump instruction on Line 2 and one un-
conditional jump instruction on Line 5 in Figure 2 (b). The
former will be taken when the original conditional branch is
evaluated false, and the latter will be taken if the original
branch is evaluated true.

Previous work proposes inserting harmless unconditional
branches along the fall-through edges [38] to make the

/* sort.c x/
void merge (...){
avoid_trashing_input (...);
for (...){
open_input_files (...);
}
}

int open_input_files (...){
if (files[i].pid != 0) // C
open_temp (files[i] .name, files[i].pid);
else ...

}
/* lib/hash.c =/
void » hash_lookup (Hash_table xtable) {
struct hash_entry sbucket = table->bucket ; // F
} //called by wait_proc, which is called by open_temp
/* sort.c x/

int avoid_trashing_input (...) {
for (; 1 < nfiles; i++){

if(...)
same = true;

else if (...)

break;

if (same) {
int num_merged = 0;
while (i + num_merged < nfiles){ // A

num_merged += mergefiles(...);
memmove (¢files([i], &files[i+num_merged],..);//B

IS

Figure 3: A sequential bug in sort utility in Coreutils-7.2.

mapping between machine-code branches and source-code
branches easier. We reuse this technique and skip the details
due to space constraints.

In general, no matter the true edge or the false edge
of a conditional branch in the source code is taken, some
corresponding machine-level branch will get recorded in LBR.
Developers will be able to locate the source-level branch and
know its outcome based on the LBR record.

3. Motivating Examples

3.1. Case 1: a sequential-bug failure

Figure 3 shows a memory bug in sort utility from Coreutils.
When a user tries to merge already sorted files such that the
output file is one of the input files, the program crashes inside
the hash_lookup function.

This segmentation fault is caused by a buffer overflow
in memmove within avoid_trashing_input (marked as B
in Figure 3). This buffer overflow corrupts files[i] .pid,
which causes the control flow to deviate from the intended
path at C. This eventually leads to a segmentation fault at .

This buffer overflow is caused by the wrong while-
loop condition at A. As we can see, the loop condition
(i+num_merged<nfiles) is intended to avoid buffer over-
flow. However, since the value of num_merged is increased



after this sanity check and before the access of files array,
the buffer overflow occurs as long as this while-loop executes
at least one iteration.

The control-flow uncertainty makes this failure very diffi-
cult to diagnose. First, hash_lookup has 9 different callers
across 6 different files. Developers cannot even start their
diagnosis without knowing the execution history. Second,
even if the developers obtain the call-stack or even the core-
dump from the end users’ machines, they will likely ignore
the avoid_trashing_input function, which is not on the
call stack at the moment of failure. Third, even if developers
pay attention to avoid_trashing_input, they do not know
which basic blocks have executed, given the complicated con-
trol flow, not to mention discover the root cause at A.

In short, to successfully diagnose this failure, developers
need to know the execution path leading to the failure. Oth-
erwise, it is difficult to locate the root-cause code region and
the root-cause branch. This execution-path information often
cannot be inferred by core-dumps, call-stacks, or log variables.

3.2. Case 2: a concurrency-bug failure

Figure 4 shows a concurrency bug in Mozilla JavaScript En-
gine. This bug is caused by unsynchronized accesses of the
shared variable st->table. At runtime, the variable is ini-
tialized by InitState at a, and then checked at a;. In most
cases, this check will pass, as long as New has succeeded at
ay. Occasionally, st->table is set to NULL by another thread
at a3 right before the check is conducted. As a result, the
software will fail with an “out of memory” message issued
byReportOutOfMemory

Developers will encounter two major challenges in diagnos-
ing this failure. First, control-flow uncertainties. The failure
location in the source code is difficult to identify, because
“out of memory” can be emitted by any one of the 55 loca-
tions where ReportOoutOfMemory is invoked. Second, inter-
leaving uncertainties. Even if the failure location is resolved,
developers will probably mistakenly attribute the failure to
memory-consumption problems in a;, based on the control
flow of Initstate. Traditional log-enhancing techniques
[43] cannot help as logging extra variables at failure-logging
site F' does not help diagnose this failure.

To successfully diagnose this failure, developers need at
least two pieces of information: (1) “out of memory” isre-
ported at F'; (2) st—>table is overwritten by another thread
after the assignment at a; and before the checking at a;. Both
pieces can be collected from execution shortly before the fail-
ure. Unfortunately, existing production-run failure-diagnosis
techniques cannot deterministically provide these two pieces
of information with low overhead.

4. Maintain Short-term Memory in Hardware

In this section, we identify and design hardware facilities that
maintain short-term memory of program execution to support
production-run failure diagnosis.

InitState(...){
// executed by Threadl
st->table=New (st); // aj

FreeState(...){
//executed by Thread2

Destroy (st->table) ;

if (!st—>table) { // ap st->table = NULL; // a3

ReportOutOfMemory () ; //F
return JS_FALSE; }
}
}

ReportOutOfMemory () {
error ("out of memory");

}

Figure 4: A concurrency bug in Mozilla JavaScript Engine.

Our main task is to identify the right types of information
to keep in the short-term memory. There is a wide variety of
runtime information accessible to the hardware, such as the
program counter of every executed instruction and the value
stored in every register. We cannot record all these hardware
events due to hardware cost and performance concerns. There-
fore, we need to identify events that are most useful for failure
diagnosis to keep in the short-term memory.

4.1. LBR for sequential-bug failure diagnosis

The outcome of conditional branches in software is among
the most useful information for failure diagnosis. It can ad-
dress the control-flow uncertainties discussed in Section 3,
helping developers to reconstruct the execution path leading
to the failure. In addition, previous work has shown that
many sequential-bug failures are exactly caused by control-
flow problems [24, 33].

Fortunately, the hardware facility that maintains the short-
term memory of such information already exists in the form
of Last Branch Record (LBR). There are different types of
branches that could be recorded in LBR. Our system con-
figures LBR to record three types of branches that can help
resolve the outcomes of conditional branches in user-level
programs, as shown in Table 1.

4.2. LCR for concurrency-bug failure diagnosis

4.2.1. LCR design Previous work [3] has found that a specific
set of hardware performance events are very useful in diagnos-
ing concurrency-bug failures. This set of performance events
are L1 data-cache cache-coherence events, which we will sim-
ply refer to as coherence events. Inspired by previous work,
we propose a hardware extension that maintains the short-
term memory of coherence events and hence help diagnose
concurrency-bug failures. We call it Last Cache-coherence

Record, short as LCR. Assuming a MESI cache-coherence

protocol, LCR includes the following components on chip:

1. A special hardware register that configures which type of
coherence events to record. Specifically, we can configure
LCR to record load or store instructions that observe certain
cache-coherence states right before the cache access. The
cache-coherence state can be any combination of mutual



Does FPE exist in failure thread?

FPE Example

RWR Atom. Vio. Yes

Invalid Read

/+Thread 1+/
if(ptr) //ay
fputs(ptr); //ay,F

/+Thread 2+/
ptr=NULL; /a3

/+Thread 1+/

tmp=cnt+deposit1; //a; /xThread 2+/

RWW Atom. Vio. Mostly Invalid Write ent=tmp; //a; tmp=cnt.+deposit2;
printf("Balance=%d" cnt); /F CMt=tmp; //a3
WWR Atom. Vio. Yes Invalid Read Figure 4
/xThread 1+/ /xThread 2+/
WRW Atom. Vio. Sometimes Invalid Read log=CLOSE;//a; if(log!=OPEN) /a3
log=OPEN; //a; {//output failure} //F
Read-too-early Order Vio. Mostly Exclusive Read Figure 5
Read-too-late Order Vio. Mostly Invalid Read Figure 6

Table 2: The failure predicting events (FPE) of concurrency bugs ( Invalid and Exclusive refer to the cache-coherence state
observed by a load or store when it accesses L1 data cache; F denotes where failure occurs.)

state, exclusive state, shared state, and invalid state. This
register can also be configured to filter out kernel-level
instructions or user-level instructions from LCR.

2. K pairs of special hardware registers per core that record
the latest K LCR events. Each pair records the instruction
counter and the specific cache-coherence state observed by
that instruction. By default, we set K to be 16, resembling
the setting of LBR on Nehalem processors.

3. Extra circuits that keep updating LCR on each core. After
the retirement of L1 data cache access instructions, the
program counter of the instruction and the cache-coherence
state observed by this instruction will be recorded in LCR,
if the state matches the LCR configuration.

The LCRs on different cores are separately maintained and
accessed. When we profile LCR from a particular thread in
a multi-threaded program, only the LCR maintained by the
core that is currently running this thread will be accessed.
Since existing hardware performance counters already support
counting L1 data-cache cache-coherence events on each core,
we expect LCR to be a simple hardware extension.

4.2.2. How useful is LCR? To some extent, LCR is always
helpful in diagnosing concurrency-bug failures, because it can
help developers get more understanding about thread interac-
tion right before the failure.

For LCR to directly point out the failure root cause, a failure
predicting coherence event has to exist in the failure thread.
An event is considered failure predicting, if it mostly occurs
during failure runs and is related to the failure root cause
[3, 18, 24]. A failure thread is the thread where the failure
first occurs, such as the thread that encounters a segmentation
fault, violates an assertion, and so on. Coherence events that
occur outside the failure thread cannot be obtained when we
access LCR at the failure site.

Previous work [3] shows that failure predicting coherence
events exist for all common types of concurrency bugs. It is

unclear whether such events occur in failure threads. In the
following, we discuss this issue for two most common types
of concurrency bugs: single-variable atomicity violations and
order violations [25].

Single-variable atomicity violations occur when two con-
secutive memory accesses from one thread, denoted as a
and ap, are unserializably interleaved by an access, denoted
as a3, from another thread. All four types of single-variable
atomicity violations are demonstrated in Table 2.

As discovered by previous work, failure predicting events
exist at ap for all these atomicity violations. The rationale
is that a, would encounter different cache-coherence states
during failure runs and success runs, due to the impact of
as. For example, the invalid state of st->table encountered
by if (!st->table) in Figure 4 is related to the failure root
cause and can predict the failure.

To know whether a; is in the failure thread, we use ob-
servations from previous empirical studies [45, 46], which
show that concurrency-bug failures almost always occur in the
thread that first reads an incorrect value from a shared variable.

ap exists in the failure thread for RWR and WWR atomicity
violations, as the incorrect value read by a; will soon lead
to failure in the same thread as a;, such as a segmentation
fault inside fputs (the RWR example in Table 2) and the
out-of-memory failure in Figure 4.

ap often exists in the failure thread for RWW atomicity
violations — after a, writes an incorrect value, the thread
performing a, will very likely use this incorrect value which
will lead to failure, as shown in the example in Table 2.

For WRW atomicity violations, failures usually occur in the
thread of a3, instead of a;, as shown in Table 2. Unfortunately,
az is not always a failure predicting event, unless it is preceded
by another access to the same memory location.

Order violations occur when the expected order between
two operations from two threads are flipped. The two most



/* Threadl (failure thread)*/ /*Thread2x/

printf ("End at %f", Gend);//Bi //Gend uninitialized

printf ("Take%$f",Gend-init);//By //until here
Gend=time ();//A

Figure 5: An order violation in FFT. Thread 2 should initialize
Gend before thread 1 accesses it.

/*Thread 1%/ /+Thread 2 (failure thread) x/

pthread_mutex_lock (mutex);//Bj
mutex = NULL;//A ..
pthread_mutex_unlock (mutex);//By

pthread_mutex_lock (mutex); //Bj3

Figure 6: A read-too-late order violation in PBZIP2. Thread 2
should use mutex before thread 1 destroys it.

common types of order violations occur either when a read
instruction executes too early and hence accesses an uninitial-
ized value (Figure 5) or when a read instruction executes too
late and hence accesses a stale value (Figure 6).

Previous work [3] has shown that the coherence event at
the read instruction is often a failure predicting event. For the
example shown in Figure 5, B, would encounter an exclusive
state only during failure runs, when Gend is uninitialized.
For the example shown in Figure 6, B3 will encounter an
invalid state only during failure runs, when it executes after
the NULL-assignment from another thread. The above failure
predicting events do exist in failure threads, as the incorrect
values returned by the read instructions quickly lead to failures,
such as wrong outputs (Figure 5) and crashes (Figure 6).

In summary, LCR has a good chance of directly pointing
out the root cause of all common types of concurrency-bug
failures. Even if the root cause cannot be directly pointed out,
the thread interaction information provided by LCR is still
helpful.

LCR configuration For extensibility and generality, we
have designed LCR to record a wide variety of coherence
events. Following the discussion in Table 2, the following
two configurations are most useful for diagnosing user-level
concurrency-bug failures.

The first configuration records invalid loads, invalid stores,
and exclusive loads. These events cover all the different types
of failure-predicting events for common concurrency bugs, as
shown by Table 2. However, this configuration may waste the
LCR space with stack accesses that are often exclusive loads.

A more space-saving configuration is to replace exclusive
loads with shared loads, using the latter to replace the former
in diagnosing read-too-early order violations. For instance,
consider the bug shown in Figure 5. During success runs, B,
will always encounter a shared state. Therefore, failures are
highly correlated with B, not encountering a shared state. This
configuration is more LCR-space saving than the first one, but
it may not be as straightforward as the first configuration for
developers to reason about.

fd = open ("/dev/lbrdriver", O_RDWR);

ioctl (fd, DRIVER_CLEAN_LBR); // Reset LBR entries
ioctl (fd, DRIVER_CONFIG_LBR); // Configure filtering
ioctl (fd, DRIVER_ENABLE_LBR); // Enable LBR recording

ioctl (fd, DRIVER DISABLE_LBR);// Disable LBR recording
ioctl (fd, DRIVER PROFILE_LBR);// Profile LBR
error ();

Figure 7: Interface exported by our LBR kernel module.
4.3. Implementation details

Accessing LBR  Using LBR includes three steps. First, con-
figure which types of branches to record through the spe-
cial register LBR_SELECT, as shown in Table 1. Second,
enable LBR through the IA32_DEBUGCTL register. Fi-
nally, the records in LBR can be accessed through registers
BRANCH_0_FROM_IP through BRANCH_16_FROM_IP,
where BRANCH_n_FROM_IP is the linear address of the
n'" branch instruction. Since the above registers cannot be
accessed at user level, we implemented a Linux kernel mod-
ule to support accesses from user level, mainly using kernel
wrapper functions that execute rdmsr and wrmsr assembly
instructions. The interface is shown in Figure 7.

Minimizing LBR pollution As mentioned earlier, LBR has
a limited capacity — 16 branch entries in Nehalem processors.
To minimize the LBR pollution by branches that are irrelevant
to user-level software failures, we use the following methods.
First, as discussed in Section 4.1, we configure LBR to filter
out kernel level branches. Second, we always disable LBR
right before we read LBR. Our LBR-disabling code does not
contain any user-level branches. Consequently, LBR will not
be polluted by code written to access it. Finally, we remove
pollution from common library functions through a collection
of wrapper functions. Each wrapper function disables LBR on
entry, invokes the original library function, and finally enables
LBR on exit. We will refer to this method as LBR toggling.

LCR simulation We expect that LCR will be added into the
hardware performance-monitoring unit in the future and will
be accessed in a similar way as we access LBR. We expect
that the pollution issue will be similarly solved by toggling
around common library functions, filtering out kernel-level
instructions, and disabling LCR before profiling.

We implement a LCR simulator using PIN binary-
instrumentation infrastructure [28]. Our LCR simulator in-
cludes two parts. The first part is a simulated L.1-cache with
MESI coherence protocol, implemented by instrumenting ev-
ery memory instruction in the user program and libraries. The
second part simulates LCR configuration, disable, enable, and
profiling functions. We implement LCR as a per-thread cir-
cular buffer with a configurable size. Once enabled, every
thread’s circular buffer gets filled by program counters and
coherence states of instructions that are executed by a specific
thread and satisfy the LCR configuration. Once disabled, ev-
ery thread’s circular buffer is frozen. When a thread executes



the profiling function, that thread’s circular buffer content is
retrieved. Finally, we simulate the pollution effect of these
four functions by adding dummy entries into the correspond-
ing circular buffer. Specifically, two user-level exclusive reads
will be introduced by the ioct1 call that enables LCR; two
user-level exclusive reads and one user-level shared read will
be introduced by the ioct1 call that disables LCR.

Our simulation does not simulate OS events, such as excep-
tions and context switches. However, we believe our simulator
is accurate enough to provide a solid evaluation of LCR.

5. Use short-term memory for failure diagnosis

5.1. Log enhancement

The basic way of using LBR or LCR is to enhance failure
logging, which we will refer to as LBRLOG or LCRLOG.
Developers can use the LBR/LCR record collected at a failure
site to reconstruct the control flow and interleaving right before
the failure. They may also find failure predicting events from
the LBR/LCR record.

To ease the adoption and evaluation of LBRLOG and LCR-
LOG, we implemented a source-to-source code transformer
to automatically enhance a program’s failure logging. The
transformation includes several steps:

(1) Changing the program compilation configuration to use
our wrappers for common library functions (Section 4.3).

(2) Inserting LBR/LCR configuration and enabling code at
the entry of main function, as shown in Figure 7.

(3) Inserting LBR/LCR profiling code right before every
existing failure-logging function in the program, as shown in
Figure 7. Currently, our implementation takes a developer
configurable list of application-specific failure-logging func-
tions, such as ap_log_error in Httpd and error in GNU
core utilities software.

(4) Registering a custom signal handler to profile LBR/LCR
whenever the program encounters a segmentation fault.

5.2. Automatic failure diagnosis

A more sophisticated way of using LBR/LCR is to automati-

cally locate failure predicting events based on the LBR/LCR

content collected from both failure runs and success runs.

These failure predicting events are highly related to failure

root causes and can help developers design patches [23, 24].

We will refer to this system as LBRA and LCRA. Like previ-

ous work [23, 24], the design of LBRA/LCRA includes three

components:

1. What is the failure-run profile and how to collect it?

2. What is the success-run profile and how to collect it?

3. How to compare the success-run profiles with the failure-
run profiles?

Failure-run profile A good failure-run profile should have a
high chance to contain failure-predicting events. In our system,
we use the content of LBR and LCR collected by LBRLOG
and LCRLOG as the failure-run profile.

tmp = expr;

LBR_LCR _PROFILE ();//success log site

if (tmp)
if (expr) {
{ LBR_LCR_PROFILE ();//failure log site
error(...); error(...);

(a) Original code (b) Transformed code

Figure 8: The logging sites for success and failure profiles.

Success-run profile A good success-run profile should con-
tain content that is comparable with the failure-run profile. For
example, if the success-run profile contains cache-coherence
events and the failure-run profile contains the outcomes of
conditional branches, it is meaningless to compare them. Fur-
thermore, even if both success-run and failure-run profiles
contain outcomes of conditional branches, the comparison is
still meaningless if the branches contained in these two profiles
do not overlap.

We aim to collect LBR/LCR at locations that are close to
the failure site and are likely to be executed during success
runs. We will refer to these locations as success logging sites.
For a segmentation fault triggered by instruction i, the ideal
success logging site is right after i. For a failure reported by
logging function at F, we choose the success logging site to be
right before the program jumps to the basic block that contains
F, as shown in Figure 8.

The above design naturally provides success-run profiles
that are comparable with failure-run profiles. In addition, it
also naturally excludes irrelevant success runs from the failure
diagnosis process — LBR/LCR will not be profiled during
runs that do not execute the code around the failure site.

We have implemented two schemes to collect LBR/LCR
at the success logging sites. The proactive scheme inserts
LBR/LCR profiling code at every success logging site corre-
sponding to every failure logging site before software release.
The reactive scheme waits until a failure occurs at a particular
location F, and then inserts LBR/LCR-profiling code at the
success logging site corresponding to F. This change can be
conducted either on the end users’ machines through dynamic
binary transformation [6] or at the development site. In the
latter case, the changes will be propagated to the end users in
the form of code patches.

These two schemes each have their own strengths. The
proactive scheme does not require code redistribution, but in-
curs larger run-time overhead due to more frequent LBR/LCR
profiling. In addition, it cannot help diagnose failures that
manifest at unpredicted locations, which is always the case for
crashes. The reactive scheme has better performance. How-
ever, it needs software updates to collect success-run profiles,
which may take time. Of course, since failure runs are much
rarer than success runs, delays in collecting success-run pro-
files rarely lead to longer diagnosis latency.



How to compare? Each success/failure run profile is a set
of events recorded in LBR and LCR. We want to identify the
event whose occurrence can best predict the failure.

Similar to previous work on statistical debugging [3, 24], we
identify the best failure-predicting event based on the expected
prediction precision and recall of the events. Specifically, in
our context, prediction precision measures how many runs
indeed fail among those that are predicted to fail by the event;
prediction recall measures how many runs are predicted to fail
by the event among those that indeed fail. The formulae to cal-
culate these two metrics for an event e are shown below, where
|F| denotes the number of failure runs, |e| denotes the number
of runs where e is recorded in the profile; |F &e| denotes the
number of failure runs that contain e in their profiles.

We rank all events based on the harmonic mean of the ex-
pected prediction precision and recall, and identify the highest
ranked event as the best failure-predicting event.

F F
[F&e| b ecan — P&l

Precision = =
le] |F|
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5.3. Discussion and comparison

Failure sites In our current implementation, LBRLOG
and LCRLOG treat existing failure-logging functions and
segmentation-fault handler as failure sites. Consequently, if
software fails by silently corrupting data, LBR and LCR will
not be collected in a timely manner and hence may not help
the diagnosis. Fortunately, the problem of identifying the right
places to insert log functions has been largely addressed by
recent work [42] and is outside the scope of this work.

Multiple failures It is very natural for large software to
encounter failures caused by different bugs during production
runs. The existence of multiple failures will not affect our
system. From each failure-run profile, we can identify the
location of the failure site and hence separately handle failures
that occur at different program locations. Very rarely, different
root causes may lead to failures at the same location, such as
the example shown in Figure 4. In this case, we will see that
even the best failure predicting event does not appear in every
failure run. Fortunately, this rarely affects the relative ranking
among events, and our system can still identify the best failure
predicting events.

Log enhancement Traditional failure logging either dumps
core images or call stacks, or records the values of selected
program variables. LBR/LCR has its unique advantages and
can well complement these traditional approaches.

In terms of preserving privacy, LBR/LCR is among the best.

In terms of failure diagnosis capability, LCR provides in-
terleaving related information that is difficult to obtain from
traditional approaches. LBR can resolve uncertain control
flows that cannot be inferred by traditional approaches. Note
that, even the recently proposed LogEnhancer [43] can have
difficulty in resolving control flows in sibling functions (i.e.
functions that are not in the call-stack at the failure site). Of

course, LBR and LCR content is limited to the execution
shortly before the failure. In addition, coredumps and logging
variables can provide concrete variable value information that
may be unavailable from LBR/LCR.

In terms of logging latency, logging LBR/LCR is much
faster than dumping cores and logging call-stacks. In our
evaluation, logging LBR/LCR takes less than 20 ps; dumping
core can easily take more than 200 ms; and recording the
call stack takes about 200 ws. If developers want to conduct
logging at locations beyond failure sites, logging LBR/LCR is
more suitable than dumping cores or call-stacks.

In terms of run-time performance, LBR/LCR profiling in-
curs negligible overhead if toggling is disabled. Enabling
toggling around library functions could cause perceivable over-
head for applications that frequently invoke library functions,
which will be evaluated in Section 7.

Finally, logging LBR/LCR is more generic than logging
selected variables. At different program locations, different
variables need to be selected to represent the most important
program states for failure diagnosis. When software fails at
an unpredicted location, such as during a segmentation fault,
variable logging usually cannot be applied.

Automated failure diagnosis The cooperative bug isolation
(CBI) approach, including CBI [23, 24], CCI [18], and PBI
[3], are the state of the art production-run failure diagnosis
techniques. This approach first evaluates certain predicates,
such as whether a branch is taken, at randomly sampled loca-
tions. It then performs statistical analysis on the data collected
from many success and failure runs to identify predicates that
strongly correlate with failures. These predicates are referred
to as failure predictors. To conduct random sampling, CBI
and CCI use source-code instrumentation, while PBI leverages
hardware performance counters.

LBRA/LCRA has much shorter diagnosis latency than the
CBI approach. Suppose e needs to occur in a couple of failure-
run profiles to be identified as a high-confidence failure predic-
tor. To identify e, LBRA/LCRA needs a failure to occur for a
couple of times. The CBI approach needs a failure to occur for
hundreds of times under their default sampling rate (1 out of
100). This difference, hundreds of failure occurrences, could
mean a long time in practice, because most bugs that slip into
production runs manifest rarely.

In terms of run-time performance, LBRA/LCRA is bet-
ter than CBI/CCI and is comparable with PBI. The advan-
tage of LBRA/LCRA mainly comes from two sources. First,
LBRA/LCRA collects failure-run profile only at one location,
the failure-logging site. Instead, the CBI approach periodically
evaluates predicates throughout the execution. Second, CBI
and CCI pay extra cost to enable their random sampling. This
overhead is often more than 30% for CPU-intensive applica-
tions for CBI [4] and more than 800% for CCI [3].

In terms of diagnosis capability, LBRA/LCRA is com-
parable with PBI and CCI when failures have reasonably
short propagation distances, which is true for most failures



[12, 32, 45]. CBl is better than LBR-tools for sequential-bug
failures whose root causes are not related to branches.

Finally, LBRA and LCRA have a much smaller impact
on the executable-file size than CBI and CClI, leaving a much
smaller footprint on cache and memory.

6. Methodology

We conduct all the experiments on an Intel Core i7 machine
with 4 physical cores running Linux 3.5 kernel. We separately
evaluate LBR and LCR related tools, with the LCR-related
experiments conducted on our PIN-based LCR simulator.

We evaluate the failure-diagnosis capability and runtime
performance of LBRLOG and LBRA using 20 real-world
sequential-bug failures. We include in our benchmarks all
the 10 failures from LogEnhancer [43] that we can reproduce.
We also randomly pick 5 failures from 13 reproducible crash
failures from Errlog [42]. Finally, since the above failures are
all from C applications, we randomly selected 5 reproducible
bugs from the bug database of open-source C++ applications
Cppcheck and PBZIP.

To measure performance, we use workloads designed by the
software developers that represent the common scenarios in
production runs and do not lead to failures. The performance
overheads reported are the mean of 10 measurements. To
evaluate failure-diagnosis capability, we use the bug trigger-
ing inputs used by LogEnhancer, Errlog, and the original bug
reports. For all these benchmarks, we conduct a head-to-head
quantitative comparison between LBRA and CBI. Further, we
evaluate how LBRLOG can help resolve control-flow uncer-
tainties using all the 6945 logging points in 13 open-source
applications. The detailed information about these bench-
marks along with the main logging functions instrumented by
LBRLOG are shown in Table 3 and Table 4.

We evaluate the failure-diagnosis capability of our LCR
proposal using all the 11 real-world concurrency-bug failures
used in PBI [3] and CCI [19], following their experiment
settings. Our LCR simulator simulates each core’s L1 data
cache as a 2-way associative cache with a block size of 64
Bytes and a total size of 64 KB.

We will evaluate different configurations of our LBR/LCR
tools. By default, we enable toggling in all tools.

7. Experimental Results

7.1. LBRLOG evaluation

Our evaluation aims to answer the following questions:

1. Is the LBR record profiled by LBRLOG useful in resolving
control-flow uncertainties?

2. Is the LBR record profiled by LBRLOG useful in locating
failure root causes?

3. Is the runtime performance of LBRLOG suitable for
production-run deployment?

7.1.1. Resolving uncertain control flows For each logging

site [, a branch record in LBR is considered useful if the taken-

Root Failure Log
Program Version KLOC  Cause Symptom Points
Sequential-Bug Failures
Apache 1 2.0.43 273 config. error message 2534
Apache 2 223 311 semantic  error message 2511
Apache 3 229 333 semantic  error message 2515
cp 4.5.8 1.2 semantic  error message 108
Cppcheck 1 1.58 138 memory  crash 304
Cppcheck 2 1.56 131  memory  crash 284
Cppcheck 3 1.52 118  memory crash 225
Lighttpd 1.4.16 55  config. error message 857
In 4.5.1 0.7 semantic  error message 29
mv 6.8 4.1 semantic  error message 46
paste 6.10 0.5 memory  hang 23
PBZIP1 1.1.5 5.7 semantic  error message 305
PBZIP2 1.1.0 4.6 memory  crash 269
rm 454 1.3 semantic  error message 31
sort 7.2 3.6 memory  crash 36
Squid1 2.5.85 120  semantic  error message 2427
Squid2 2.3.54 102 memory  crash 2096
tac 6.11 0.7 memory  crash 21
tar 1 1.22 82  semantic  error message 243
tar 2 1.19 76  semantic  error message 188
Concurrency-Bug Failures
Apache 4 2.0.50 263 AV crash 2412
Apache 5 229 333 AV corrupted log 2515
Cherokee 0.98.0 85 AV corrupted log 184
FFT 2.0 1.3 OV wrong output 59
LU 2.0 1.2 OV wrong output 45
Mozilla-JS1 1.5 107 AV crash 343
Mozilla-JS2 1.5 107 AV wrong output 343
Mozilla-JS3 1.5 107 AV. error message 343
MySQL1 4.0.18 658 AV crash 1585
MySQL2 4.0.12 639 AV wrong output 1523
PBZIP3 0.9.4 21 OV crash 163

Table 3: Features of real-world failures evaluated.

ness of this branch cannot be inferred based on the execution
of [ through static control flow analysis. We compute the ratio
of useful branches in LBR record entries collected at every
failure-logging site in an application. We refer to this ratio as
useful branch ratio. Since it is impractical to design inputs to
exercise all the logging sites, we implement an LLVM-based

Application  Useful br. ratio  #LogSites Main Log Fun.
Apache 0.86 2515 ap_log_error
cp 0.77 108  error

cppcheck 0.98 304  reportError
lighttpd 0.84 857  log_error_write
In 0.81 29  error

mv 0.74 46  error

paste 0.86 23 error

pbzip 0.81 305  fprintf

rm 0.79 31 error

sort 0.91 36 error

Squid 0.88 2427  debug

tac 0.89 21  error

tar 0.84 243 open_fatal

Table 4: How LBRLOG resolves control-flow uncertainties.



App. Locate Root Cause Patch distance (LoC) Overhead (%)

LBRLOG LBRLOG LBRA CBI failure LBR LBRLOG LBRLOG LBRA LBRA CBI

w/ tog. w/o tog. site w/ tog. w/o tog. reactive  proactive
Apachel V'3 V'3 vl V2 oo 3 0.31 0.11 0.39 3.87 3.01
Apache2 Vo2 Vo2 Vo2 - oo 475 0.42 0.09 0.43 4.61 5.48
Apache3 V2 V2 vl vl 1 1 0.33 0.17 0.52 3.43 2.70
cp V2 - vl vl 17 15 1.77 0.23 2.13 3.61 25.90
Cppcheckl v 5* v 5* ek N/A oo oo 2.04 0.04 2.73 5.61 N/A
Cppcheck2 V'3 V'3 vl N/A oo 2 0.24 0.02 0.29 2.09 N/A
Cppcheck3 v 6 v 6 'a! N/A oo 10 1.16 0.06 1.39 4.68 N/A
Lighttpd v 4 v 4 vl - 0 1 0.65 0.11 0.73 2.33 6.34
In v 13* - ek vl 254 33 1.88 0.18 1.95 4.69 22.48
my V12 v 14 vl V2 309 0 1.79 0.11 2.84 5.70 15.55
paste v 6 - vl vl 35 3 1.31 0.08 1.78 2.50 14.32
PBZIP1 v 4 - vl N/A 41 1 0.29 0.07 0.34 5.73 N/A
PBZIP2 ! vl vl N/A 12 1 0.79 0.04 0.91 4.62 N/A
rm v'5 v'5 vl V2 31 0 2.28 0.21 2.38 6.29 24.77
sort V'3 v'5 ! vl oo 4 0.44 0.19 0.74 4.16 43.45
Squidl V2 V2 e - 123 2 1.26 0.05 1.45 2.79 6.29
Squid2 v 10 v 10 vl vl 59 1 2.19 0.03 2.42 3.62 7.49
tac v 3 v 3" au v 3 oo oo 2.13 0.06 2.57 2.82 26.43
tarl V4 v 4 vl vl oo 2 0.52 0.09 0.73 3.10 14.30
tar2 V2 - vl V2 24 0 0.40 0.11 0.45 2.63 9.91

Table 5: Results of LBRLOG and LBRA. (The number r after v indicates the n-th latest LBR entry returned by LBRLOG or the
n-th top predictor identified by LBRA/CBI; *: root-cause branch is missed, but a branch related to the root cause is provided; “-”:
no branches related to the root cause are identified; N/A: CBI does not work for C++ applications; oo: in different files.)

analyzer to calculate this ratio. Specifically, given a logging
site, the analyzer explores backwards along all possible paths
until each path contains 16 branches that could fill LBR and
checks which branches are useful. The numbers presented in
Table 4 are the averaged ratio among all logging sites.

As shown by Table 4, the average useful branch ratio ranges
from 0.74 to 0.98 for all the 6945 logging points across 13
applications. This shows that LBR provides a generic and
useful mechanism to resolve control-flow uncertainties.
7.1.2. Failure diagnostic capability To measure the failure-
diagnosis capability of LBRLOG, we compare the branches
captured by LBRLOG with the patches. We consider LBRLOG
to be very helpful in locating the failure root cause, if the patch
mainly changes one of the branches recorded by LBRLOG,
denoted as v'in Table 5. We will refer to this branch changed
by the patch as root-cause branch. We consider LBRLOG
to be helpful, if the patch mainly changes the computation
or usage of a condition variable that involves in one of the
branches recorded by LBRLOG, denoted as v'* in Table 5.

As shown in Table 5, LBRLOG is very helpful for diag-
nosing 16 out of 20 failures. These 16 failures are caused
by different types of software bugs: 8 by semantic bugs, 6
by memory bugs, and 2 by configuration errors. As an exam-
ple, the simplified patch for the sort bug from Section 3.1 is
shown in Figure 9a. The root cause branch A is recorded as
the 3'¢ latest entry in LBR collected by LBRLOG.

LBRLOG fails to contain the root-cause branch, but is still
helpful in diagnosing the remaining 4 failures. For example,
the 1n bug has a long error propagation distance. The root-
cause branch would have been captured, if LBR had 4 more
entries. LBRLOG captures the branch A that is related to the
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avoid_trashing input (...)

- while (i + num_merged < nfiles) // A
+ dof{
+ }while (i < nfiles);
(a) sort patch
int main (int argc, char xxargv)

== 1)

— if (n_files
+ if (!target_directory specified && n_files

if (target_directory_specified) // A

(b) In patch
Figure 9: Branches captured by LBRLOG and patches.

root cause as shown in Figure 9b.

Table 5 also shows that most root-cause branches are lo-
cated within the top 8 entries in LBR. This result validates the
heuristic that most software bugs have short error propagation
distances, and indicates that even on machines with smaller
LBR, LBRLOG is still very useful.

Finally, we measure the distance between the LBR branches
and the patch, comparing it with the distance between the
failure site and the patch. In general, the former is much
shorter than the latter. The patches are within 5 lines of code
from some LBR branches in 14 out of 20 cases, while only 2
failure sites are within 5 lines of code from the patches. For
13 failures, some LBR branches are more than 30 lines of
code closer to the patches than the failure sites, and all these
branches are useful LBR records that cannot be inferred by
static control-flow analysis. This result further shows that

)



LBRLOG can help diagnose failures and design patches.
7.1.3. Performance As shown in Table 5, LBRLOG incurs at
most 2.28% runtime overhead for all the benchmarks, which
is suitable for production-run deployment.

The overhead mainly comes from toggling around library
functions. Without toggling, the overhead is at most 0.23%
across all benchmarks. This performance improvement comes
at the expense of diagnosis capability. As shown in Table 5,
without toggling, LBRLOG will fail to locate any branch that
is related to the patch in 5 cases.

Overall, LBRLOG incurs small overheads across a wide
range of applications and is suitable for production-run de-
ployment. We can turn off toggling to satisfy even higher
performance requirements.

7.2. LBRA evaluation

Our evaluation of LBRA targets the following questions:

1. Is LBRA able to automatically locate root-cause branches?

2. Is the performance of LBRA (reactive and proactive
schemes) suitable for production-run deployment?

3. Can LBRA complement CBI, the state-of-the-art
production-run failure diagnosis system?

Our experiments configure CBI using its default settings:
1/100 sampling rate; 1000 success runs and 1000 failure runs;
with only branch predicates enabled. Our experiments for
LBRA only use 10 success runs and 10 failure runs.

LBRA successfully and automatically locates all the 16
root-cause branches contained in LBR as the top 1 failure
predictors. It identifies root-cause related branches as top
predictors for all the 20 failures. In comparison, CBI iden-
tifies root-cause branches as top predictors for 11 out of 15
C-program failures. CBI fails to report any root-cause related
branches in 3 cases, where its random sampling missed the
relevant predicates for too many times.

The above diagnosis results are achieved with LBRA ana-
lyzing much fewer failure runs than CBI (10 vs. 1000). When
we applied CBI to 500, instead of 1000, failure-run profiles,
CBI failed to identify any useful failure predictors for 10 out
of 15 C-program failures. This difference would be crucial
for software that is not deployed on millions of machines or
failures that do not occur very frequently.

As shown in Table 5, the run-time overhead of LBRA (reac-
tive mode) is always less than 3%, well suitable for production-
run deployment. The overhead of LBRA in proactive mode
is slightly larger, ranging between 2.09% and 6.29%. Itis a
good choice for software where updates are infrequent or very
expensive. CBI incurs an average overhead of 15.23%, much
larger than LBR A, mainly due to the instrumentation done by
CBI to performs sampling.

The evaluation shows that LBRA well complements CBI.

7.3. LCR evaluation

Our evaluation of LCR tries to answer the following questions:
1. Can LCRLOG help diagnose concurrency-bug failures?
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2. Can LCRA automatically locate the root causes of
concurrency-bug failures?

3. Can LCR complement PBI and CCI, the state-of-the-art
production-run concurrency-bug failure diagnosis tools?

LCRLOG We consider LCRLOG to directly locate the fail-
ure root cause, if the LCR profiled by it contains the failure-
predicting coherence event (defined in Section 4.2.2).

As shown in Table 6, LCRLOG directly locates the root
cause for 7 out of 11 concurrency-bug failures, which cover
different types of root causes and symptoms.

LCRLOG does not directly locate the root cause for
Apache5, Cherokee, and Mozilla-JS2 failures, because these
bugs cause silent data corruption with no failure logging near
the root cause. The MySQL1 failure is caused by a WRW
atomicity violation. As demonstrated in Table 2, since the
failure-predicting event does not exist in the failure thread, it
is not profiled by LCRLOG.

Further, as shown in Table 6, the capacity of LCR is not a
problem for the failures we evaluated. Using the more space-
saving configuration, the failure-predicting events are always
contained in top 4 LCR entries. Even with the more space-
consuming configuration, the failure-predicting events are still
located within top 12 LCR entries.

D LCRLOG (Confl) LCRLOG (Conf2) LCRA
Apache4 V'3 v'5 vl
Apache5 - - -
Cherokee - - -
FFT v 4 v 6 v
LU v 4 v 6 v 1
Mozilla-JS1 v 3 v 8 vl
Mozilla-JS2 - - -
Mozilla-JS3 v 3 v 11 vl
MySQL1 - - -
MySQL2 V'3 v 9 v 1
PBZIP3 v 3 v 7 vl

Table 6: Failure diagnosis capability of LCR. (A number 7 af-
ter the v indicates the rn-th latest entry returned by LCRLOG
or the n-th best failure predictor returned by LCRA is the root-
cause failure-predicting event; Conf1 is the space-saving con-
figuration of LCR; Conf2 is the space-consuming configura-
tion of LCR; LCRA uses Conf2.)

LCRA We evaluate whether LCRA can automatically lo-
cate the failure-predicting event by applying LCRA to 10
failure runs and 10 success runs in each case.

LCRA successfully ranks the failure-predicting event at the
top for all the 7 failures where the failure-predicting event is
captured by LCRLOG. For example, for the failure discussed
in Section 3.2 (Mozilla-JS3), LCRA automatically locates the
invalid state observed by a; as the top failure predictor.

We expect LCRA to well complement PBI and CCI. In
terms of performance, CCI incurs up to 10 times slow down,
due to its software based sampling schemes. We expect LCRA



to have similar performance as LBRA, which would be compa-
rable or slightly better than PBI. In terms of failure-diagnosis
capability, LCRA is slightly worse than PBI, which can suc-
cessfully diagnose all the 11 failures, and comparable with
CClI, which can successfully diagnose 7 out of the 11 failures.

The biggest advantage of LCRA is its short failure-
diagnosis latency. LCRA achieves the above diagnosis results
using only 10 failure-run profiles, while PBI and CCI need the
failures to occur hundreds to thousands of times [3, 19]. This
is especially a problem for concurrency-bug failures that often
occur non-deterministically and rarely.

8. Related Work

We briefly discuss related work that has not been discussed.

Hardware performance-monitoring unit The branch trac-
ing facility has been used in several recent work. THeME
uses LBR for testing coverage analysis [38]. Recent work
conducts vulnerability or malware analysis on branch traces
generated by the branch tracing facility [39, 44]. Inte]l GNU*
GDB tool [15] uses BTS to store all executed branches in an
OS-provided ring buffer. Our work uses the branch tracing fa-
cilities for different purposes from previous work, which leads
to different designs. For example, all the above work collects
the branch trace of the whole execution, while we focus on the
LBR collected at the failure site. Our system aims to achieve
very small run-time overhead for production-run deployment,
while the above work does not share the same goal. Some of
them [15, 44] intentionally use the large-overhead BTS.

General hardware performance counters have been used to
identify malware [10] and detect data races [11, 35]. These
tools all monitor and analyze the whole execution, instead of
focusing on the execution leading to a failure. Race detectors
[11, 35] focus on one specific type of software bugs, and
cannot help diagnose general software failures. In addition,
without guided by a specific failure, race detectors would
report a large number of false positives [18].

Production-run failure diagnosis Record-and-replay tech-
niques [1, 13, 20, 21] can help diagnose production-run fail-
ures. However, they could hurt the end users’ privacy and incur
large overhead for deterministic replay of multi-threaded soft-
ware. Overall, record-and-replay techniques and our system
can complement each other in failure diagnosis.

Triage [36] diagnoses production-run failures by applying
automated bug detection during on-site replay. Triage takes
checkpoints throughout the execution, and relies on OS modifi-
cation to support low-overhead checkpoint and replay. Triage
and LBR/LCR-system well complement each other, as they
use completely different diagnosis techniques — Triage relies
on bug detectors; LBRA/LCRA uses statistical debugging;
and LBRLOG/LCRLOG aids developers’ manual investigation
by recording key events right before the failure.

An adaptive version of CBI was proposed based on dynamic
binary rewriting [5]. This adaptive CBI iteratively changes
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sampling locations based on the failure location and the di-
agnosis results from earlier iterations. Without knowing the
exact control-flow leading to failures, CBI-adaptive needs hun-
dreds of iterations and evaluates about 40% of all program
predicates before it finishes failure diagnosis.

Hardware support for bug detection A lot of work has
been done to speed up sequential-bug detection through hard-
ware support [37, 47]. Different from LBRA and LBRLOG,
most of these proposals rely on non-existing hardware.

A lot of work has proposed detecting concurrency bugs
through hardware support [7, 8, 26, 27, 30, 31, 40, 48]. LCR
has drawn inspiration from these work. However, since previ-
ous work focuses on bug detection, it requires the hardware
and software system to contiguously monitor and analyze pro-
gram execution, while maintaining a long execution history.
Many bug detectors need to report suspicious execution pat-
terns even if they do no lead to failures. LCR leverages the
unique need of failure diagnosis and designs a very simple
hardware extension to maintain a short-term execution history.

Bugaboo [27] detects a wide variety of concurrency bugs by
identifying rare communication patterns. The communication
graph in Bugaboo associates with every memory instruction m
from thread ¢ a context, the sequence of communication events
observed by ¢ immediately prior to m. A LCR record is similar
with a context, as they both contain a short-term history of
thread interaction. However, Bugaboo and our system have
very different designs, because they have different goals —
Bugaboo detects concurrency bugs even without failure in-
formation; our system helps diagnose production-run failures.
Bugaboo maintains and checks the context of every memory
instruction in every thread throughout the execution. Our sys-
tem leverages the unique need of failure diagnosis and only
uses LCR collected in the failure thread right before the failure.
In addition, Bugaboo extends existing cache-coherence proto-
col to collect context events, while each LCR event is already
supported by existing hardware performance-monitoring unit.

9. Conclusion

We design and implement a novel mechanism that leverages
hardware’s short-term memory to support production-run fail-
ure diagnosis. We identify existing hardware performance-
monitoring unit, LBR, and design a simple hardware extension,
LCR, to maintain a short-term memory of hardware events
that are useful for failure diagnosis. Our evaluation of 31
sequential-bug and concurrency-bug failures from 18 open-
source software shows that our LBR/LCR based tools can
effectively enhance failure logging and automatically locate
failure root causes with less than 3% run-time overhead. We
believe our LBR/LCR system provides a good balance be-
tween run-time performance, diagnosis latency, and diagnosis
capability. Our experience demonstrates that short-term mem-
ory is sufficient for diagnosing a wide variety of real-world
failures. It also shows that a very simple hardware-extension
can provide significant help for failure diagnosis.
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