
...

AVIO: DETECTING ATOMICITY
VIOLATIONS VIA ACCESS-
INTERLEAVING INVARIANTS

...

THIS ARTICLE PROPOSES AN INNOVATIVE CONCURRENT-PROGRAM INVARIANT THAT

CAPTURES PROGRAMMERS’ ATOMICITY ASSUMPTIONS. IT DESCRIBES A TOOL WITH TWO

IMPLEMENTATIONS, ONE IN SOFTWARE AND THE OTHER USING HARDWARE SUPPORT,

THAT CAN AUTOMATICALLY EXTRACT SUCH INVARIANTS AND DETECT ATOMICITY

VIOLATION BUGS.

......Of all software bugs, concurrency
bugs in multithreaded and multiprocess
programs are among the most difficult to
test for and diagnose. Their notorious
nondeterminism frustrates both in-house
testing and postmortem diagnosis. In the
real world, most server and high-end critical
software is multithreaded or multiprocess.
Concurrency bugs in such applications have
caused some of the most serious computer-
related accidents in history, including
a blackout leaving tens of millions of people
without electricity (http://www.securityfocus.
com/news/8016).

The recent multicore hardware trend has
worsened this problem. Relying on more
concurrent programs to take advantage of
hardware resources, multicore techniques
inevitably create more concurrency bugs.
Addressing this issue is one of computer
architecture’s grand research challenges.

Most previous concurrency-bug detection
work focused on one subclass of concurren-
cy bugs—data races—which occur when
two conflicting accesses, from different
threads to the same memory location,

execute without proper synchronization.
Existing solutions for data races include
lockset bug detection tools,1 happens-before
bug detection tools,2 and hybrids of these
two tools.3 Some researchers have suggested
using hardware support4 to alleviate these
solutions’ bug detection overhead. Although
these approaches can effectively detect some
race bugs in concurrent programs, they have
several limitations.

First, what programmers often want is
atomicity, not freedom from data races. The
absence of data race does not necessarily
indicate correct synchronization. Figure 1 is
a real bug example from the Mozilla applica-
tion suite. Thread 1 sets the shared script
handler gCurrentScript and wants to read the
value to continue processing the script at a later
step. However, thread 2 may nullify gCurrent-
Script midway. This example has no data race
because one common lock protects every access
to gCurrentScript. Nevertheless, it contains
a severe concurrency bug: an atomicity viola-
tion that, once triggered, will lead to a crash.

Many programmers are accustomed to
thinking sequentially and therefore usually

Shan Lu

Joseph Tucek

Feng Qin

Yuanyuan Zhou

University of Illinois at

Urbana-Champaign

...

26 Published by the IEEE Computer Society 0272-1732/07/$25.00 G 2007 IEEE

assume the atomicity of code segments. In
Figure 1, they might expect the two parts of
script processing from thread 1 to be atomic
and free from interference by other accesses
to gCurrentScript. Formally, atomicity—
also called serializability—is a property of
several concurrently executed actions, when
their data manipulation effect is equivalent
to that of their serial execution. If the
implementation fails to satisfy an atomicity
expectation, some executions will have
unserializable interleavings that violate pro-
grammers’ assumptions and manifest as
concurrency bugs. Using locks or transac-
tions is one way to ensure atomicity, but, as
we demonstrated, the absence of data races
doesn’t guarantee proper atomicity.

The second limitation is that although
data races are not a problem for future
transaction-based concurrent programs,
atomicity violations still are. There is a re-
cent, emerging trend toward a transactional
memory programming model using hard-
ware or software support.5,6 Programmers
using this model needn’t worry about data
races because the underlying transaction
system can automatically detect and resolve
memory access conflicts. But atomicity
violations will still occur in transaction-
based programs when programmers do not
group operations that should be atomic into
the same transaction. For example, if a pro-
grammer divides the code segment shown in
Figure 1 into two separate transactions, the
atomicity violation bug remains.

Third, a data race is not always a bug.
Many important synchronization mechan-
isms actually use data races in their
implementation. Examples include barriers,
flag synchronization, and producer-con-
sumer queues. Furthermore, programmers
might choose to allow data races on
unimportant variables to achieve better
performance. The inability to differentiate
these benign races has caused many false
positives in previous tools.

Finally, most previous techniques rely on
specific synchronization semantics. The
happens-before and lockset algorithms both
need to know what synchronization primi-
tives the target program uses. Ignorance of
non-lock-based synchronization, such as
barrier, thread create/join, and many user-

defined synchronizations (for example, flag-
based synchronization), has caused many
false positives in previous work.

Although researchers have known about
this issue for years, the problem of atomicity
violations has few good solutions. Most
state-of-the-art techniques7 rely on pro-
grammers’ annotations to recognize atomic
regions, requiring extensive human effort
and risking errors based on programmers’
unconscious atomicity assumptions. Re-
cently, the serializability violation detector
(SVD) approach has tried to use data/
control dependency to automatically infer
atomic regions.8 However, SVD’s depen-
dency heuristics cover only a limited subset
of atomic regions—those that start with the
read of a shared variable and expand on the
basis of write-after-read or control depen-
dencies. For example, SVD doesn’t cover
the bug-related atomic region in Figure 1
and therefore cannot automatically detect
that bug. In addition, these atomicity
violation bug detection tools are all im-
plemented entirely in software and greatly
reduce program execution speed (up to 653

with SVD).8

Proposed solutions
This article offers three proposals to

address the limitations of previous work.
The first concerns the access interleaving
(AI) invariant, a unique invariant for
concurrent programs. It exists in a code

Figure 1. A real bug in the Mozilla application suite, file

nsXULDocument.cpp, slightly simplified for illustration. When thread 2

violates the atomicity of thread 1’s accesses to gCurrentScript, the

program crashes.

..

JANUARY–FEBRUARY 2007 27

region that programmers expect to be
atomic (regardless of whether the imple-
mentation actually guarantees atomicity).
This invariant accurately reflects the pro-
grammer’s intention concerning shared-
variable accesses: Are conflicting accesses
from other threads welcomed, irrelevant
(don’t care), or forbidden? Violation of such
an invariant, or the programmer’s assump-
tion, results in a concurrency bug. AI
invariants provide a new way to approach
concurrent program correctness.

The second proposal is an innovative,
comprehensive, invariant-based approach
called AVIO, a scheme to detect general
atomicity violations. On the basis of AI
invariants, AVIO automatically identifies
from correct runs (training runs) the impor-
tant code segments that programmers assume
to be atomic and then uses those invariants to
perform online detection of atomicity viola-
tion bugs. AVIO requires no programmer
annotation or knowledge of synchronization.
During its operation, AVIO also uses two
originally notorious properties of concurrent
programs to make the invariant collection
even easier than traditional sequential pro-
gram invariant collection.

The third proposal implements the AVIO
idea in both hardware (AVIO-H) and
software (AVIO-S), and evaluates them using
real-world bugs in server applications. Ex-
periments show that AVIO can detect more
cases of atomicity violations, including those
not addressed by data-race detection, than
previous approaches. Because AVIO can
differentiate benign races and doesn’t rely
on prior knowledge about synchronization
primitives used in the programs, it intro-
duces far fewer false positives (an average of
four) than previous techniques (an average of
51). AVIO-H imposes negligible overhead
(0.4 percent to 0.5 percent) with the help of
a simple hardware extension on a cache
coherence protocol and is fit for production-
run monitoring. AVIO-S is slower (253 on
average) but more accurate and more suitable
for in-house bug detection and diagnosis.

In summary, AVIO can provide effective
help in two scenarios:

N Postmortem analysis. Programmers can
use AVIO to diagnose the root cause

of software failures. Given a failure to
track down, a programmer can use
AVIO to collect and compare AI
invariants during correct runs and
bug-infested runs, and thereby identify
possible atomicity violation root
causes.

N On-the-fly detection. Programmers can
use AVIO to automatically extract AI
invariants during in-house testing.
These AI invariants serve during pro-
duction runs to detect atomicity
violation bugs.

The AVIO concept
In our discussion, we refer to the thread

whose atomicity is interrupted as the local
thread and its accesses as local accesses.
(This does not, however, mean a local
variable.) We refer to the thread with the
interleaving access as the remote thread and
its accesses as remote accesses. A serializable
interleaving is an interleaving between local
and remote accesses that is equivalent to
a serial noninterleaving execution.

Access-interleaving invariance
Atomicity violation bugs are no different

in essence than other types of bugs: They
result from a mismatch between program-
mer intention and implementation. Specif-
ically, programmers who are more comfort-
able with sequential thinking assume that
a sequence of shared-variable accesses is
atomic (serializable), free from interference
by unserializable accesses. If the implemen-
tation doesn’t enforce such atomicity as-
sumptions correctly, bugs emerge.

Programmers’ atomicity intentions take
different forms. The most common and
fundamental can be represented by a type of
invariant that we call an AI invariant. Such
an invariant is held by an instruction if—for
the execution to be correct—the access pair,
composed of itself and its preceding local
access to the same location, should never be
unserializably interleaved. We denote these
as I-instruction (invariant instruction) and
P-instruction (preceding access instruction).

Programmers don’t assume all code re-
gions to be atomic, nor does an AI invariant
hold for every shared-variable access in-

...

TOP PICKS

...

28 IEEE MICRO

struction. For example, a flag-based synchro-
nization, shown in Figure 2a, has no AI
invariant because unserialized interleavings
are actually welcomed in this case. In
contrast, in the classic bank-account exam-
ple, shown in Figure 2b, programmers
assume the read and modification of an
account to be atomic—that is, the AI
invariant should be held for the execution
to be correct. Whether or not an AI invariant
holds indicates programmers’ different as-
sumptions about correct synchronization.

Synchronization primitives, such as locks,
barriers, flags, or transactions, are means for
enforcing AI invariants. If programmers
don’t correctly use synchronization primi-
tives, resulting in a failure to enforce AI
invariants, atomicity assumptions could be
violated and the program would misbehave.

Serializability analysis
Not all interleavings are unserializable,

and serializable interleavings do not lead to
atomicity violation. In this section, we
analyze what interleavings are serializable
and what are not.

There are eight ways in which one remote
access can interleave two consecutive local
accesses to the same shared variable. Table 1
describes each case and shows that four cases
(cases 2, 3, 5, and 6) are unserializable. In
a longer version of this article, we listed bug
examples for each unserializable case.9

Extending this analysis to consider mul-
tiple remote accesses, we encounter more-
general unserializable conditions:

N Case 2: Two local reads are interleaved
by at least one remote write, so they
might have different views.

N Case 3: A local read after a local write
is interleaved by at least one remote
write. Because of this remote write, the
read would fail to get the local result it
expects.

N Case 5: A local write after a local write
is interleaved by a remote access
sequence that starts with a read. This
makes the local intermediate result
visible to a remote thread.

N Case 6: A local write after a local read
is interleaved by at least one remote

write, making the previous reading
result stale.

We use these four case conditions in the rest of
the article as a guide to AVIO bug detection.

Automatic extraction of AI invariants
Because AI invariants reflect program-

mers’ atomicity intentions, we can view the
detection of atomicity violation bugs as
detecting violations to AI invariants. So,
knowing which code regions are intended to
be atomic, how do we obtain AI invariants?
Obviously, we cannot expect programmers
to provide such invariants, because many
atomicity violations occur in code segments
where programmers are not aware of their
assumptions.

The best way to automatically discover
a programmer’s intention is to study the
program’s behavior in correct execution: If
a code segment is always serializable in
correct runs (bug-free runs), then program-
mers probably intend this code segment to
be serializable. In other words, we can
statistically ‘‘learn’’ a program’s AI invar-
iants through training. We just need to

Figure 2. Spin-flag example, without an AI invariant (a). This code segment

is designed for synchronization. (The read access series should be

unserializably interleaved.) Bank-account deposit example, with an AI

invariant (b). The code segment is assumed to be serializable.

..

JANUARY–FEBRUARY 2007 29

observe which shared accesses (such as the
one in Figure 2a) allow unserializable
interleavings and which never have unseri-
alizable interleavings during a set of correct
(training) runs.

Like all previous invariant-based tech-
niques,10–12 AVIO can leverage the software
testing infrastructure: Those test suites will
help collect sufficient training samples, and
the testing oracles (including various meth-
ods beyond crashes or hangs) can serve to
differentiate correct from incorrect runs.

Training in AVIO can also take advantage
of two unique and notorious properties of

concurrency bugs. First, concurrency bugs
are hard to trigger because their manifesta-
tion needs not only bug-exposing inputs but
also special interleaving. This helps AVIO to
easily acquire predominantly correct training
runs. Second, concurrent execution’s non-
deterministic nature makes AVIO training—
especially training in postmortem analysis—
very easy. We simply run the program with
one input (the bug-triggering input during
postmortem analysis) many times to achieve
sufficient and different AI training results.
This is a big advantage over traditional
invariant-based tools.

Table 1. Eight cases of access interleavings. All accesses are to the same shared variables. In the read/write

entries, subscript r denotes remote interleaving access; superscripts i and p denote one access and its

preceding access from the same thread.

Case

no. Interleaving Description Serializability

Equivalent

serial accesses

Problems (for

unserializable cases)

0 Readp Two reads interleaved by a read Serializable Readp N/A

Readr Readi

Readi Readr

1 Writep Read after write interleaved by

a read

Serializable Writep N/A

Readr Readi

Readi Readr

2 Readp Two reads interleaved by a write Unserializable N/A The interleaving write

makes the two reads

have different views

of the same memory

location.

Writer

Readi

3 Writep Read after write interleaved by

a write

Unserializable N/A The local read does not

get the local result it

expects.

Writer

Readi

4 Readp Write after read interleaved by

a read

Serializable Readr N/A

Readr Readp

Writei Writei

5 Writep Two writes interleaved by a read Unserializable N/A Intermediate result that is

assumed to be invisible

to other threads is read

by a remote access.

Readr

Writei

6 Readp Write after read interleaved by

a write

Unserializable N/A The local write relies on

a value from the

preceding local read

that is then overwritten

by the remote write.

Writer

Writei

7 Writep Two writes interleaved by a write Serializable Writer N/A

Writer Writep

Writei Writei

...

TOP PICKS

...

30 IEEE MICRO

AVIO detection and extraction algorithms
Now let’s look at the detailed AVIO

algorithms for detecting AI-invariant viola-
tions and extracting AI invariants.

Detection algorithm. Suppose that we al-
ready have a set of AI invariants, that is, a list
of I-instructions. Then an AI-invariant
violation is an unserializable interleaving
between an I-instruction and its preceding
local access instruction (P-instruction) to the
same shared variable. On the basis of our
serializability analysis for detecting any such
unserializable interleavings, the detection
process can simply follow the binary decision
diagram in Figure 3a, which summarizes all
four unserializable interleaving cases.

Extraction algorithm. Leveraging the AI-
invariant violation detection process can easily
implement AI-invariant extraction. Specifical-
ly, the extraction process is a series of correct
runs with AVIO detection enabled. If the
process encounters an unserializable interleav-
ing at an instruction i, AVIO detects this
violation and removes i from the I-instruction
candidate set (where i is a general instruction
and I-instruction is an invariant-related in-
struction). This process repeats many times
until we get a stable I-instruction set.

AVIO implementation
To study the trade-offs between hardware

and software approaches, we implemented
our AVIO idea and algorithms in a software-
only approach, AVIO-S, and a hardware-
assisted approach, AVIO-H.

Hardware (AVIO-H)
The hardware implementation uses very

simple hardware extensions to the existing
cache coherence protocol and achieves
negligible overhead. (We assume the use
of a chip multiprocessor, or CMP, machine
with an invalidation-based cache coherence
protocol.) The right-hand side of Figure 3b
shows the AVIO-H protocol.

AVIO-H appends each L1 cache line
with two new access information bits. These
new bits, together with the existing in-
validate (INV) bit, provide enough in-
formation for the AVIO detection algo-

rithm to execute. The preceding access
instruction (PI) bit provides the type of P-
instruction information. The AVIO-H
architecture sets it to 1 at each local read

to a cache line and unsets it at each local
write. The downgrade (DG) bit provides
information to determine whether the pre-
vious local write’s result has been read by
a remote thread. In existing invalidation-
based cache coherence protocols, such an
action is associated with a downgrade re-

quest from the reader to the recent writer.
Therefore, AVIO-H simply needs to set the
DG bit upon a downgrade request and
unset the bit after each local access. The
INV bit already exists in current cache
coherence hardware. AVIO-H can leverage
it to determine the existence of an in-

Figure 3. AVIO bug detection procedure. The general protocol (a) can be

better understood in reference to Table 1. AVIO-H uses the hardware

version protocol (b), showing AVIO-H state maintenance (left) and the

AVIO-H detection protocol (right).

..

JANUARY–FEBRUARY 2007 31

terleaving remote write after the previous
local memory access, because in the existing
invalidation-based cache coherence proto-
col, interleaving remote writes will invali-
date all other L1 caches’ copies.

Apart from the extra cache line bits, AVIO-
H adds special instruction encodings for I-
instructions (reads and writes) to indicate
when an I-instruction is accessing memory.

AVIO-H requires very little extra hard-
ware, yet it greatly alleviates the bug detection
overhead problem. (The L2 cache access
latency can easily hide the invariant violation
checking.) Our longer version of this article
provides more details on the design issues.9

Software (AVIO-S)
We also implemented the AVIO tech-

niques just in software. AVIO-S uses binary
instrumentation to collect access informa-
tion at every global memory access and
maintain the information in access-table
data structures. On the basis of this in-
formation, atomicity violation detection
operates easily following the general de-
tection procedure (Figure 3a). Upon detect-
ing an atomicity violation, AVIO-S, like
AVIO-H, either stops the program and
raises an exception or logs all the debugging
information and continues executing.

Trade-offs between AVIO-H and AVIO-S
Each scheme has advantages and dis-

advantages. AVIO-S is cheaper because it
doesn’t require any hardware extensions.
Moreover, AVIO-S is more accurate be-
cause it uses very fine granularity (a byte or
a word) in detection and therefore suffers
much less from the false-sharing problem.
(AVIO-H uses cache-line granularity in
detection and therefore would confuse
accesses to different variables placed in the
same cache line.) AVIO-S is not affected by
cache displacement, context switches, or
other hardware-related issues.

On the other hand, AVIO-S incurs much
higher overhead and runtime perturbation
because of the high demands of instrumen-
tation-based information collection and
violation detection. Such a performance
disadvantage will prevent AVIO-S from
production-run usage and might affect its

bug detection capability due to the larger
execution perturbation.

Experimental results
We implemented AVIO-S on the basis of

the Pin binary instrumentation tool (http://
rogue.colorado.edu/pin/) and evaluated it
on a real machine. We implemented and
evaluated AVIO-H in a full-system, cycle-
accurate simulator that models a four-core
CMP, in-order x86 machine (http://www.
ece.cmu.edu/,simflex/).

Functional results
During our functionality experiments, we

used different inputs for training and bug
detection. All bug detection results were
obtained by training with fewer than 100
client requests (for server programs) or
fewer than 100 program runs.

Bug detection capability. We evaluated the
bug detection capability using six real
atomicity violation bugs from two large
real-world server applications (Apache and
MySQL) and Mozilla. As Table 2 shows,
AVIO detects more tested real bugs than the
three state-of-the-art alternatives: the lockset
algorithm (we use the Valgrind implemen-
tation [www.valgrind.org], which we refer
to as Val-Lockset); the happens-before
algorithm; and SVD. (We conducted an
indirect comparison with happens-before
and SVD on the basis of our understanding
of these two algorithms.)

MySQL bug 3 violates atomicity among
accesses to multiple different global vari-
ables and therefore cannot be detected by
any of the tools we evaluated. Along with
this bug, the lockset algorithm and the
happens-before algorithm miss bugs that are
data-race free but still violating atomicity, as
explained in Figure 1. SVD fails to auto-
matically detect several bugs that are caused
by a violation of write-after-write or read-
after-write access atomicity; it does not
consider these two types of atomic regions.
In contrast, AVIO’s bug detection capabil-
ity is more comprehensive because, unlike
race detectors, it doesn’t rely on synchroni-
zation primitives. Unlike SVD, AVIO can
detect atomicity violations with write-read

...

TOP PICKS

...

32 IEEE MICRO

and write-write dependencies, on the basis
of our serializability analysis.

False positives. Experiments with server
applications and Splash-2 applications (http://
www-flash.stanford.edu/apps/SPLASH/) show
that AVIO introduces far fewer static and
dynamic false positives than the lockset algo-
rithm, as shown in Table 3. This is because the
lockset algorithm incorrectly reports as bugs
those shared accesses that are correctly synchro-
nized using non-lock-based methods. Further-
more, the lockset algorithm cannot differentiate
benign races from real bugs. Previous happens-
before algorithms share similar limitations, but
AVIO addresses them on the basis of AI
invariants. AVIO’s few false positives are caused
by insufficient training (AVIO-H has some
extra false positives caused by the false-sharing
problem). The numerous false positives in the
previous algorithms require much programmer
effort to sift through manually.

Overhead results
Our experiments with four Splash-2

applications (fft, fmm, lu, and radix) show
that AVIO has low detection overhead.
With hardware support, AVIO-H imposes
only 0.4 percent to 0.5 percent overhead
and is therefore suitable for production-run
monitoring. Our software implementation,
AVIO-S, imposes an average slowdown of
253, though it still outperforms many
previous software approaches. Valgrind
lockset imposes an average slowdown of

6943 for the same set of applications (due
partly to Valgrind’s code emulation mech-
anism). SVD can impose a 653 slowdown
on server applications.8 AVIO-S would be
a good choice for offline bug detection.

Training sensitivity
To demonstrate AVIO’s nonstringent

requirement on training runs, we used
different inputs for detection and training
in our experiments. We also conducted
sensitivity studies on the number of training
runs for both server applications and
Splash-2 benchmarks. The results show that
we need no more than 100 server requests
or five training runs to obtain reasonably
accurate AI invariants, resulting in just six
static false positives for AVIO-S on MySQL
2 and no false positives for the Splash-2
benchmarks. Results are similar for MySQL
1 (four false positives). Of course, like other
invariant-based approaches11,12 and general
dynamic bug detectors, AVIO can generate
invariants only from exercised code.

AVIO’s innovative AI-invariant-based ap-
proach provides one of the first

practical, comprehensive, low-overhead so-
lutions—and the first hardware support—
for atomicity violation detection. The
multicore hardware trend and the emerging
transactional memory programming model
will make the atomicity violation bug
increasingly troublesome and critical. To
help AVIO better address the atomicity
violation problem, we are working first to

Table 2. Bug detection results for various techniques, against bug-infested real applications.

Application

Bug detected

AVIO-H AVIO-S Val-Lockset Happens-before SVD

Apache 1 Yes Yes Yes Yes Yes

Apache 2 Yes Yes Yes Yes No*

MySQL 1 Yes Yes Yes Yes No*

MySQL 2 Yes Yes No No No

MySQL 3 No No No No No*

Mozilla extract** Yes Yes No No No*..
* The SVD paper does not discuss these four bugs. We based this evaluation on our understanding of the SVD algorithm. The SVD
work evaluated the other two bugs, and our results agree with those of the authors.
** Since our instrumentation and simulation tools do not support Mozilla’s graphic user interface, we used an extracted version of the
real bug in Mozilla, which was written on the basis of the original nsXULDocument.cpp file.

..

JANUARY–FEBRUARY 2007 33

solve the challenging open question of
detecting multiple-variable atomicity viola-
tion bugs, and second to provide good
training runs to improve AVIO’s bug
detection capability and accuracy. MICRO

Acknowledgments
This research is supported by the Na-

tional Science Foundation career award
CNS-0347854, NSF grant number CCR-
0325603, Department of Energy grant
number DE-FG02-05ER25688, and an
Intel gift grant.

..

References
1. S. Savage et al., ‘‘Eraser: A Dynamic Data

Race Detector for Multithreaded Pro-

grams,’’ ACM Trans. Computer Systems

(TOCS 97), vol. 15, no. 4, Nov. 1997,

pp. 391-411.

2. R.H.B. Netzer and B.P. Miller, ‘‘Improving

the Accuracy of Data Race Detection,’’ Proc.

3rd ACM SIGPLAN Symp. Principles and

Practice of Parallel Programming (PPOPP

91), ACM Press, 1991, pp. 133-144.

3. R. O’Callahan and J.-D. Choi, ‘‘Hybrid

Dynamic Data Race Detection,’’ Proc.

ACM SIGPLAN Symp. Principles and Prac-

tice of Parallel Programming (PPOPP 03),

ACM Press, 2003, pp. 167-178.

4. M. Prvulovic and J. Torrellas, ‘‘ReEnact:

Using Thread-Level Speculation Mecha-

nisms to Debug Data Races in Multi-

threaded Codes,’’ Proc. 30th Ann. Int’l

Symp. Computer Architecture (ISCA 03),

IEEE CS Press, 2003, pp. 110-121.

5. T. Harris and K. Fraser, ‘‘Language Support

for Lightweight Transactions,’’ Proc. Conf.

Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA

03), ACM Press, 2003, pp. 388-402.

6. M. Herlihy, J. Eliot, and B. Moss, ‘‘Trans-

actional Memory: Architectural Support for

Lock-Free Data Structures,’’ Proc. 20th

Ann. Int’l Symp. Computer Architecture

(ISCA 93), IEEE CS Press, 1993,

pp. 289-300.

7. C. Flanagan and S.N. Freund, ‘‘Atomizer: A

Dynamic Atomicity Checker for Multi-

threaded Programs,’’ Proc. Principles of

Programming Languages Symp (POPL 04),

ACM Press, 2004, pp. 256-267.

8. M. Xu, R. Bodı́k, and M.D. Hill, ‘‘A Serial-

izability Violation Detector for Shared-Mem-

ory Server Programs,’’ Proc. ACM SIGPLAN

Conf. Programming Language Design and

Implementation (PLDI 05), ACM Press,

2005, pp. 1-14.

9. S. Lu et al., ‘‘AVIO: Detecting Atomicity

Violations via Access-Interleaving Invar-

iants,’’ Proc. 12th Int’l Conf. Architectural

Support for Programming Languages and

Operating Systems (ASPLOS 06), ACM

Press, 2006, pp. 37-48.

Table 3. False-positive rates for server applications and bug-free Splash-2 benchmarks.

Benchmark

Dynamic false positives Static false positives

AVIO-H AVIO-S Val-Lockset AVIO-H AVIO-S Val-Lockset

Apache 1 6 5 6 3 2 6

Apache 2 1 1 23 1 1 20

MySQL 1 4 4 107 4 4 79

MySQL 2 17 6 338 11 6 101

Average 7 4 118.5 4.75 3.25 51.5

fft 1 0 4,098 1 0 6

fmm 4 0 389 4 0 12

lu 0 0 65,026 0 0 5

radix 0 0 35,740 0 0 10

Average 1.25 0 26,313 1.25 0 8.25..
We determined each server application’s false positives by manually examining the application’s Bugzilla database. Dynamic false
positives are dynamic instances of false positives reported during execution; static false positives are static code segments incorrectly
reported as bugs. Because we obtained the Mozilla extract ourselves, its false-positive number is not objective, and we do not report it
here.

...

TOP PICKS

...

34 IEEE MICRO

10. M. Ernst et al., ‘‘Quickly Detecting Rele-

vant Program Invariants,’’ Proc. 22nd Int’l

Conf. Software Engineering (ICSE 2000),

ACM Press, 2000, pp. 449-458.

11. S. Hangal and M.S. Lam, ‘‘Tracking Down

Software Bugs Using Automatic Anomaly

Detection,’’ Proc. 24th Int’l Conf. Software

Engineering (ICSE 02), ACM Press, 2002,

pp. 291-301.

12. P. Zhou et al., ‘‘AccMon: Automatically

Detecting Memory-Related Bugs via Pro-

gram Counter-Based Invariants,’’ Proc.

37th Ann. IEEE/ACM Int’l Symp. Micro-

architecture (Micro 04), IEEE CS Press,

2004, pp. 269-280.

Shan Lu is a PhD candidate in the
Department of Computer Science of the
University of Illinois at Urbana-Cham-
paign. Her research interests include system
and architecture support for software re-
liability. Lu has a BS in computer science
from the University of Science and Tech-
nology of China. She is a student member
of the ACM.

Joseph Tucek is a PhD candidate in the
Department of Computer Science of the
University of Illinois at Urbana-Cham-
paign. His research interests include systems
and architecture support for reliability and
debugging. Tucek has BS degrees in
computer science and computer engineering
from Washington University in St. Louis.

He is a student member of both the ACM
and Usenix.

Feng Qin is an assistant professor at Ohio
State University. His research interests
include operating systems, software depend-
ability, security, and computer architecture.
Qin has a PhD in computer science from
the University of Illinois at Urbana-Cham-
paign. He is a member of the ACM.

Yuanyuan Zhou is an associate professor in
the Department of Computer Science of the
University of Illinois at Urbana-Cham-
paign. Her research interests include soft-
ware reliability, operating systems, comput-
er architecture, and storage systems. Zhou
obtained her PhD and MA in computer
science from Princeton University. She is
a member of the ACM and the IEEE
Computer Society.

Direct questions and comments about this
article to Shan Lu, 201 N. Goodwin Ave.,
Thomas M. Siebel Center for Computer
Science, Department of Computer Science,
University of Illinois at Urbana-Champaign,
Urbana, IL 61801-2302; shanlu@uiuc.edu.

For further information on this or any

other computing topic, visit our Digital

Library at http://www.computer.org/

publications/dlib.

..

JANUARY–FEBRUARY 2007 35

