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Abstract
Developers frequently use inefficient code sequences that could be
fixed by simple patches. These inefficient code sequences can cause
significant performance degradation and resource waste, referred
to as performance bugs. Meager increases in single threaded per-
formance in the multi-core era and increasing emphasis on energy
efficiency call for more effort in tackling performance bugs.

This paper conducts a comprehensive study of 109 real-world
performance bugs that are randomly sampled from five repre-
sentative software suites (Apache, Chrome, GCC, Mozilla, and
MySQL). The findings of this study provide guidance for future
work to avoid, expose, detect, and fix performance bugs.

Guided by our characteristics study, efficiency rules are ex-
tracted from 25 patches and are used to detect performance bugs.
332 previously unknown performance problems are found in the
latest versions of MySQL, Apache, and Mozilla applications, in-
cluding 219 performance problems found by applying rules across
applications.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging; D.4.8 [Operating Systems]: Perfor-
mance

General Terms Languages, Measurement, Performance, Relia-
bility

Keywords performance bugs, characteristics study, rule-based
bug detection

1. Introduction
1.1 Motivation
Slow and inefficient software can easily frustrate users and cause fi-
nancial losses. Although researchers have devoted decades to trans-
parently improving software performance, performance bugs con-
tinue to pervasively degrade performance and waste computation
resources in the field [40]. Meanwhile, current support for combat-
ing performance bugs is preliminary due to the poor understanding
of real-world performance bugs.

Following the convention of developers and researchers on this
topic [5, 26, 40, 50], we refer to performance bugs as software
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defects where relatively simple source-code changes can signifi-
cantly speed up software, while preserving functionality. These de-
fects cannot be optimized away by state-of-practice compilers, thus
bothering end users. Figure 1 shows an example of a real-world per-
formance bug. Apache HTTPD developers forgot to change a pa-
rameter of API apr stat after an API upgrade. This mistake caused
more than ten times slowdown in Apache servers.

modules/dav/fs/repos.c     

 

 status = apr_stat ( fscontext->info,  

 -                              APR_DEFAULT); 

 +                              APR_TYPE); 

Impact: causes httpd server 10+ times slower in file listing 

Patch for Apache Bug 45464 What is this bug 
 

An Apache-API upgrade causes 

apr_stat to retrieve more 

information from the file system 

and take longer time.  
 

Now, APR_TYPE retrieves exactly 

what developers originally needed 

through APR_DEFAULT. 

Figure 1: A performance bug from Apache-HTTPD (‘+’ and ‘-’
denote the code added and deleted to fix this bug)

Performance bugs exist widely in released software. For exam-
ple, Mozilla developers have fixed 5–60 performance bugs reported
by users every month over the past 10 years. The prevalence of per-
formance bugs is inevitable because little work has been done to
help developers avoid performance-related mistakes. In addition,
performance testing mainly relies on ineffective black-box random
testing and manual input design, which allows the majority of per-
formance bugs to escape [40].

Performance bugs lead to reduced throughput, increased la-
tency, and wasted resources in the field. In the past, they have
caused several highly publicized failures, causing hundred-million
dollar software projects to be abandoned [41, 45].

Worse still, performance problems are costly to diagnose due to
their non fail-stop symptoms. Software companies may need sev-
eral months of effort by experts to find a couple of performance
bugs that cause a few hundred-millisecond delay in the 99th per-
centile latency of their service [49].

The following trends will make the performance-bug problem
more critical in the future:

Hardware: For many years, Moore’s law ensured that hardware
would make software faster over time with no software develop-
ment effort. In the multi-core era, when each core is unlikely to
become faster, performance bugs are particularly harmful.

Software: The increasing complexity of software systems and
rapidly changing workloads provide new opportunities for perfor-
mance waste and new challenges in diagnosis [11].

Energy efficiency: Increasing energy costs provide a powerful
economic argument for avoiding performance bugs. When one is
willing to sacrifice the service quality to reduce energy consump-
tion [3, 31], ignoring performance bugs is unforgivable. For exam-



ple, by fixing bugs that have doubled the execution time, one may
potentially halve the carbon footprint of buying and operating com-
puters.

Performance bugs may not have been reported as often as func-
tional bugs, because they do not cause fail-stop failures. However,
considering the preliminary support for combating performance
bugs, it is time to pay more attention to them when we enter a new
resource-constrained computing world.

1.2 Contribution 1: Characteristics Study
Many empirical studies [7, 34, 43, 46, 53] have been conducted
for traditional bugs that lead to incorrect software functionality,
referred to as functional bugs. These studies have successfully
guided the design of functional software testing, functional bug
detection, and failure diagnosis.

Poor understanding of performance bugs and wrong percep-
tions, such as ”performance is taken care of by compilers and hard-
ware”, are partly the causes of today’s performance-bug problem
[12]. The lack of empirical studies on topics like “how performance
bugs are introduced”, “what input conditions are necessary to ex-
pose performance bugs”, “what the common root causes of real-
world performance bugs are”, and “how performance bugs are fixed
by developers”, have severely limited the design of performance-
bug avoidance, testing, detection, and fixing tools.

This paper makes the first, to the best of our knowledge, com-
prehensive study of real-world performance bugs based on 109
bugs randomly collected from the bug databases of five representa-
tive open-source software suites (Apache, Chrome, GCC, Mozilla,
and MySQL). Our study has made the following findings.

Guidance for bug avoidance. Two thirds of the studied bugs
are introduced by developers’ wrong understanding of workload
or API performance features. More than one quarter of the bugs
arise from previously correct code due to workload or API changes.
To avoid performance bugs, developers need performance-oriented
annotation systems and change-impact analysis. (Section 4.2).

Guidance for performance testing. Almost half of the studied
bugs require inputs with both special features and large scales
to manifest. New performance-testing schemes that combine the
input-generation techniques used by functional testing [4, 17] with
a consideration towards large scales will significantly improve the
state of the art (Section 4.3).

Guidance for bug detection. Recent works [5, 11, 26, 47, 57,
58] have demonstrated the potential of performance-bug detection.
Our study found common root-cause and structural patterns of real-
world performance bugs that can help improve the coverage and
accuracy of performance-bug detection (Sections 4.1 and 4.5).

Guidance for bug fixing and detection. Almost half of the
examined bug patches include reusable efficiency rules that can
help detect and fix performance bugs (Section 4.4).

Comparison with functional bugs. Performance bugs tend
to hide for much longer time in software than functional bugs
(Section 4.5). Unlike functional bugs, performance bugs cannot all
be modeled as rare events, because a non-negligible portion of them
can be triggered by almost all inputs (Section 4.3).

General motivation (1) Many performance-bug patches are
small. The fact that we can achieve significant performance im-
provement through a few lines of code change motivates re-
searchers to pay more attention to performance bugs (Section 4.4).
(2) A non-negligible portion of performance bugs in multi-threaded
software are related to synchronization. Developers need tool sup-
port to avoid over-synchronization traps (Section 4.3).

1.3 Contribution 2: Bug Detection
Rule-based bug detection is effective for detecting functional bugs
[6, 21, 30, 42]. Following our characteristics study, we hypothesize

that (1) efficiency-related rules exist; (2) we can extract rules from
performance-bug patches; and (3) we can use the extracted rules to
discover previously unknown performance bugs.

To test these hypotheses, we collected rules from 25 Apache,
Mozilla, and MySQL bug patches and built static checkers to find
violations to these rules.

Our checkers automatically found 125 potential performance
problems (PPPs) in the original buggy versions of Apache, Mozilla,
and MySQL. Programmers failed to fix them together with the orig-
inal 25 bugs where the rules came from.

Our checkers also found 332 previously unknown PPPs in the
latest versions of Apache, Mozilla, and MySQL. These include 219
PPPs found by checking an application using rules extracted from
a different application.

Our thorough code reviews and unit testings confirm that each
PPP runs significantly slower than its functionality-preserving al-
ternate suggested by the checker. Some of these PPPs are already
confirmed by developers and fixed based on our report.

The main contribution of our bug-detection work is that it con-
firms the existence and value of efficiency rules: efficiency rules
in our study are usually violated at more than one place, by more
than one developer, and sometimes in more than one program. Our
experience motivates future work to automatically generate effi-
ciency rules, through new patch languages [43], automated patch
analysis [36], source code analysis, or performance-oriented anno-
tations. Future work can also improve the accuracy of performance-
bug detection by combining static checking with dynamic analysis
and workload monitoring.

2. Methodology
2.1 Applications

Application Suite Description (language) # Bugs
Apache Suite 25
HTTPD: Web Server (C)
TomCat: Web Application Server (Java)
Ant: Build management utility (Java)
Chromium Suite Google Chrome browser (C/C++) 10
GCC Suite GCC & G++ Compiler (C/C++) 10
Mozilla Suite 36
Firefox: Web Browser (C++, JavaScript)
Thunderbird: Email Client (C++, JavaScript)
MySQL Suite 28
Server: Database Server (C/C++)
Connector: DB Client Libraries (C/C++/Java/.Net)
Total 109

Table 1: Applications and bugs used in the study

We chose five open-source software suites to examine: Apache,
Chrome, GCC, Mozilla, and MySQL. These popular, award-
winning software suites [22] are all large-scale and mature, with
millions of lines of source code and well maintained bug databases.

As shown in Table 1, these five suites provide a good coverage
of various types of software, such as interactive GUI applications,
server software, command-line utilities, compilers, and libraries.
They are primarily written in C/C++ and Java. Although they are all
open-source software, Chrome is backed up by Google and MySQL
was acquired by Sun/Oracle in 2008. Furthermore, the Chrome
browser was first released in 2008, while the other four have had
10–15 years of bug reporting history. From these applications, we
can observe both traditions and new software trends such as web
applications.

2.2 Bug Collection
GCC, Mozilla, and MySQL developers explicitly mark certain re-
ports in their bug databases as performance bugs using special tags,



which are compile-time-hog, perf, and S5 respectively. Apache and
Chrome developers do not use any special tag to mark perfor-
mance bugs. Therefore, we searched their bug databases using a set
of performance-related keywords (‘slow’, ‘performance’, ‘latency’,
‘throughput’, etc.).

From these sources, we randomly sampled 109 fixed bugs that
have sufficient documentation. The details are shown in Table 1.

Among these bugs, 44 were reported after 2008, 38 were re-
ported between 2004 and 2007, and 27 were reported before 2004.
41 bugs came from server applications and 68 bugs came from
client applications.

2.3 Caveats
Our findings need to be taken with the methodology in mind. The
applications in our study cover representative and important soft-
ware categories, workload, development background, and program-
ming languages. Of course, there are still uncovered categories,
such as scientific computing software and distributed systems.

The bugs in our study are collected from five bug databases
without bias. We have followed the decisions made by develop-
ers about what are performance bugs, and have not intentionally
ignored any aspect of performance problems in bug databases. Of
course, some performance problems may never be reported to the
bug databases and some reported problems may never be fixed by
developers. Unfortunately, there is no conceivable way to study
these unreported or unfixed performance problems. We believe the
bugs in our study provide a representative sample of the reported
and fixed performance bugs in these representative applications.

We have spent more than one year to study all sources of infor-
mation related to each bug, including forum discussions, patches,
source code repositories, and others. Each bug is studied by at least
two people and the whole process consists of several rounds of bug
(re-)study, bug (re-)categorization, cross checking, etc.

Finally, we do not emphasize any quantitative characteristic
results, and most of the characteristics we found are consistent
across all examined applications.

3. Case Studies
The goal of our study is to improve software efficiency by inspir-
ing better techniques to avoid, expose, detect, and fix performance
bugs. This section uses four motivating examples from our bug set
to demonstrate the feasibility and potential of our study. Particu-
larly, we will answer the following questions using these examples:

(1) Are performance bugs too different from traditional bugs
to study along the traditional bug-fighting process (i.e., bug avoid-
ance, testing, detection, and fixing)? (2) If they are not too different,
are they too similar to be worthy of a study? (3) If developers were
more careful, do we still need research and tool support to combat
performance bugs?

Transparent Draw (Figure 2) Mozilla developers imple-
mented a procedure nsImage::Draw for figure scaling, composit-
ing, and rendering, which is a waste of time for transparent figures.
This problem did not catch developers’ attention until two years
later when 1 pixel by 1 pixel transparent GIFs became general
purpose spacers widely used by Web developers to work around
certain idiosyncrasies in HTML 4. The patch of this bug skips
nsImage::Draw when the function input is a transparent figure.

Intensive GC (Figure 3) Users reported that Firefox cost 10
times more CPU than Safari on some popular Web pages, such
as gmail.com. Lengthy profiling and code investigation revealed
that Firefox conducted an expensive garbage collection process GC
at the end of every XMLHttpRequest, which is too frequent. A
developer then recalled that GC was added there five years ago
when XHRs were infrequent and each XHR replaced substantial
portions of the DOM in JavaScript. However, things have changed

 

nsImageWW���Á~Y��� 
     Y 

+ if(mIsTransparent) return; 

    Y 

  //render the input image  

} 
 

Mozilla Bug 66461 & Patch What is this bug 
 

When the input is a transparent image, all 

the computation in Draw is useless. 
 

Mozilla developers did not expect that 

transparent images are commonly used by 

web developers to help layout. 
 

The patch conditionally skips Draw. nsImageGTK.cpp     

Figure 2: A Mozilla bug drawing transparent figures

 

XMLHttpRequest::OnStop(){ 

   //at the end of each XHR 

   Y 

-- mScriptContext->GC(); 

} 
          

 

Mozilla Bug 515287 & Patch What is this bug 

This was not a bug until Web 2.0, where 

doing garbage collection  (GC) after every 

XMLHttpRequest (XHR) is too frequent. 
 

It causes Firefox to consume 10X more 

CPU at idle GMail pages than Safari.  nsXMLHttpRequest.cpp 

Figure 3: A Mozilla bug doing intensive GCs

    
 

 

for (i = 0; i < tabs.length; i++) { 

       Y 

-     tabs[i].doTransact(); 
} 

+ doAggregateTransact(tabs); 

 
    

Mozilla Bug 490742 & Patch What is this bug 
 

doTransact saves one tab into 

CERRNPDUN¶�SQLite Database. 
 

Firefox hangs #�CERRNPDUN�DOO��WDEV�¶� 
 

The patch adds a new API to aggregate 

DB transactions.  
nsPlacesTransactionsService.js  

Figure 4: A Mozilla bug with un-batched DB operations

int  fastmutex_lock (fmutex_t *mp){ 
     Y 

-   maxdelay += (double) random(); 

+  maxdelay += (double) park_rng(); 
    Y 

} 

MySQL Bug 38941 & Patch What is this bug 
 

random() is a serialized global-

mutex-protected glibc function. 
 

Using it inside `fastmutex¶�FDXVHV�

40X slowdown LQ�XVHUV¶�H[SHULPHQWV� thr_mutex.c 

Figure 5: A MySQL bug with over synchronization

in modern Web pages. As a primary feature enabling web 2.0,
XHRs are much more common than five years ago. This bug is
fixed by removing the call to GC.

Bookmark All (Figure 4) Users reported that Firefox hung
when they clicked ‘bookmark all (tabs)’ with 20 open tabs. In-
vestigation revealed that Firefox used N database transactions to
bookmark N tabs, which is very time consuming comparing with
batching all bookmark tasks into a single transaction. Discussion
among developers revealed that the database service library of Fire-
fox did not provide interface for aggregating tasks into one trans-
action, because there was almost no batchable database task in
Firefox a few years back. The addition of batchable functionali-
ties such as ‘bookmark all (tabs)’ exposed this inefficiency prob-
lem. After replacing N invocations of doTransact with a single
doAggregateTransact, the hang disappears. During patch review,
developers found two more places with similar problems and fixed
them by doAggregateTransact.

Slow Fast-Lock (Figure 5) MySQL synchronization-library
developers implemented a fastmutex lock for fast locking. Un-
fortunately, users’ unit test showed that fastmutex lock could be
40 times slower than normal locks. It turns out that library func-
tion random() actually contains a lock. This lock serializes every



threads that invoke random(). Developers fixed this bug by replac-
ing random() with a non-synchronized random number generator.

These four bugs can help us answer the questions asked earlier.
(1) They have similarity with traditional bugs. For example, they

are all related to usage rules of functions/APIs, a topic well studied
by previous work on detecting functional bugs [30, 33].

(2) They also have interesting differences compared to tradi-
tional bugs. For example, the code snippets in Figure 2–4 turned
buggy (or buggier) long after they were written, which is rare for
functional bugs. As another example, testing designed for func-
tional bugs cannot effectively expose bugs like Bookmark All. Once
the program has tried the ‘bookmark all’ button with one or two
open tabs, bookmarking more tabs will not improve the statement
or branch coverage and will be skipped by functional testing.

(3) Developers cannot fight these bugs by themselves. They
cannot predict future workload or code changes to avoid bugs
like Transparent Draw, Intensive GC, and Bookmark All. Even
experts who implemented synchronization libraries could not avoid
bugs like Slow Fast-Lock, given opaque APIs with unexpected
performance features. Research and tool support are needed here.

Of course, it is premature to draw any conclusion based on four
bugs. Next, we will comprehensively study 109 performance bugs.

4. Characteristics Study
We will study the following aspects of real-world performance
bugs, following their life stages and different ways to combat them.

1. What are the root causes of performance bugs? This study
will provide a basic understanding of real-world performance bugs
and give guidance to bug detection research.

2. How are performance bugs introduced? This study will shed
light on how to avoid introducing performance bugs.

3. How can performance bugs manifest? This study can help
design effective testing techniques to expose performance bugs
after they are introduced into software.

4. How are performance bugs fixed? Answers to this question
will help improve the patching process.

The result of this study is shown in Table 2.

4.1 Root Causes of Performance Bugs
There are a large variety of potential root causes for inefficient
code, such as poorly designed algorithms, non-optimal data struc-
tures, cache-unfriendly data layouts, etc. Our goal here is not to
discover previously unheard-of root causes, but to check whether
there are common root-cause patterns among real-world perfor-
mance bugs that bug detection can focus on.

Our study shows that the majority of real-world performance
bugs in our study are covered by only a couple of root-cause
categories. Common patterns do exist and performance is mostly
lost at call sites and function boundaries, as follows.

Uncoordinated Functions More than a third of the performance
bugs in our study are caused by inefficient function-call combina-
tions composed of efficient individual functions. This occurs to the
Bookmark All example shown in Figure 4. Using doTransact to
bookmark one URL in one database transaction is efficient. How-
ever, bookmarking N URLs using N separate transactions is less ef-
ficient than calling doAggregateTransact to batch all URL book-
markings in one transaction.

Skippable Function More than a quarter of bugs are caused by
calling functions that conduct unnecessary work given the calling
context, such as calling nsImage::Draw for transparent figures in
the Transparent Draw bug (Figure 2) and calling unnecessary GCs
in the Intensive GC bug (Figure 3).

Synchronization Issues Unnecessary synchronization that in-
tensifies thread competition is also a common cause of performance
loss, as shown in the Slow Fast-Lock bug (Figure 5). These bugs are

especially common in server applications, contributing to 4 out of
15 Apache server bugs and 5 out of 26 MySQL server bugs.

Others The remaining 23 bugs are caused by a variety of
reasons. Some use wrong data structures. Some are related to
hardware architecture issues. Some are caused by high-level de-
sign/algorithm issues, with long propagation chains. For example,
MySQL39295 occurs when MySQL mistakenly invalidates the
query cache for read-only queries. This operation itself does not
take time, but it causes cache misses and performance losses later.
This type of root cause is especially common in GCC.

4.2 How Performance Bugs Are Introduced
We have studied the discussion among developers in bug databases
and checked the source code of different software versions to un-
derstand how bugs are introduced. Our study has particularly fo-
cused on the challenges faced by developers in writing efficient
software, and features of modern software that affect the introduc-
tion of performance bugs.

Our study shows that developers are in a great need of tools that
can help them avoid the following mistakes.

Workload Mismatch Performance bugs are most frequently in-
troduced when developers’ workload understanding does not match
with the reality.

Our further investigation shows that the following challenges
are responsible for most workload mismatches.

Firstly, the input paradigm could shift after code implemen-
tation. For example, the HTML standard change and new trends
in web-page content led to Transparent Draw and Intensive GC,
shown in Figure 2 and Figure 3.

Secondly, software workload has become much more diverse
and complex than before. A single program, such as Mozilla, may
face various types of workload issues: the popularity of transparent
figures on web pages led to Transparent Draw in Figure 2; the high
frequency of XMLHttpRequest led to Intensive GC in Figure 3;
users’ habit of not changing the default configuration setting led to
Mozilla Bug110555.

The increasingly dynamic and diverse workload of modern soft-
ware will lead to more performance bugs in the future.

API Misunderstanding The second most common reason is that
developers misunderstand the performance feature of certain func-
tions. This occurs for 31 bugs in our study.

Sometimes, the performance of a function is sensitive to the
value of a particular parameter, and developers happen to use
performance-hurting values.

Sometimes, developers use a function to perform task i, and
are unaware of an irrelevant task j conducted by this function
that hurts performance but not functionality. For example, MySQL
developers did not know the synchronization inside random and
introduced the Slow Fast-Lock bug shown in Figure 5.

Code encapsulation in modern software leads to many APIs
with poorly documented performance features. We have seen de-
velopers explicitly complain about this issue [51]. It will lead to
more performance bugs in the future.

Others Apart from workload issues and API issues, there are
also other reasons behind performance bugs. Interestingly, some
performance bugs are side-effects of functional bugs. For exam-
ple, in Mozilla196994, developers forgot to reset a busy-flag. This
semantic bug causes an event handler to be constantly busy. As a
result, a performance loss is the only externally visible symptom of
this bug.

When a bug was not buggy An interesting trend is that 29 out
of 109 bugs were not born buggy. They became inefficient long
after they were written due to workload shift, such as that in
Transparent Draw and Intensive GC (Figures 2 and 3), and code
changes in other part of the software, such as that in Figure 1.



Apache Chrome GCC Mozilla MySQL Total
Number of bugs studied 25 10 10 36 28 109

Root Causes of Performance Bugs
Uncoordinated Functions: function calls take a detour to generate results 12 4 2 15 9 42
Skippable Function: a function call with un-used results 6 4 3 14 7 34
Synchronization Issues: inefficient synchronization among threads 5 1 0 1 5 12
Others: all the bugs not belonging to the above three categories 3 1 5 6 8 23

How Performance Bugs Are Introduced
Workload Issues: developers’ workload assumption is wrong or out-dated 13 2 5 14 7 41
API Issues: misunderstand performance features of functions/APIs 6 3 1 13 8 31
Others: all the bugs not belonging to the above two categories 6 5 4 10 13 38

How Performance Bugs Are Exposed
Always Active: almost every input on every platform can trigger this bug 2 3 0 6 4 15
Special Feature: need special-value inputs to cover specific code regions 19 6 10 22 18 75
Special Scale: need large-scale inputs to execute a code region many times 17 2 10 23 19 71
Feature+Scale: the intersection of Special Feature and Special Scale 13 1 10 15 13 52

How Performance Bugs Are Fixed
Change Call Sequence: a sequence of function calls reorganized/replaced 10 2 3 20 12 47
Change Condition: a condition added or modified to skip certain code 2 7 6 10 10 35
Change A Parameter: changing one function/configuration parameter 5 0 1 4 3 13
Others: all the bugs not belonging to the above three categories 9 3 0 4 7 23

Table 2: Categorization for Sections 4.1 – 4.4 (most categories in each section are not exclusive)

In Chrome70153, when GPU accelerator became available, some
software rendering code became inefficient. Many of these bugs
went through regression testing without being caught.

4.3 How Performance Bugs Are Exposed
We define exposing a performance bug as causing a perceivably
negative performance impact, following the convention used in
most bug reports.

Our study demonstrates several unique challenges for perfor-
mance testing.

Always Active Bugs A non-negligible portion of performance
bugs are almost always active. They are located at the start-up
phase, shutdown phase, or other places that are exercised by almost
all inputs. They could be very harmful in the long term, because
they waste performance at every deployment site during every run
of a program. Many of these bugs were caught during comparison
with other software (e.g., Chrome vs. Mozilla vs. Safari).

Judging whether performance bugs have manifested is a unique
challenge in performance testing.

Input Feature & Scale Conditions About two thirds of perfor-
mance bugs need inputs with special features to manifest. Other-
wise, the buggy code units cannot be touched. Unfortunately, this
is not what black-box testing is good at. Much manual effort will
be needed to design test inputs, a problem well studied by past re-
search in functional testing [4, 5].

About two thirds of performance bugs need large-scale inputs
to manifest in a perceivable way. These bugs cannot be effectively
exposed if software testing executes each buggy code unit only
once, which unfortunately is the goal of most functional testing.

Almost half of the bugs need inputs that have special features
and large scales to manifest. For example, to trigger the bug shown
in Figure 4, the user has to click ‘bookmark all’ (i.e., special
feature), with many open tabs (i.e., large scale).

4.4 How Performance Bugs Are Fixed
We have manually checked the final patches to answer two ques-
tions. Are there common strategies for fixing performance bugs?
How complicated are performance patches?

The result of our study is opposite to the intuition that perfor-
mance patches must be complicated and lack common patterns.

Fixing strategies There are three common strategies in fixing
performance bugs, as shown in Table 2.

The most common one is to change a function-call sequence,
referred to as Change Call Sequence. It is used to fix 47 bugs.
Many bugs with uncoordinated function calls are fixed by this
strategy (e.g., Bookmark All in Figure 4). Some bugs with skippable
function calls are also fixed by this strategy, where buggy function
calls are removed or relocated (e.g. Intensive GC in Figure 3).

The second most common strategy is Change Condition. It is
used in 35 patches, where code units that do not always generate
useful results are conditionally skipped. For example, Draw is
conditionally skipped to fix Transparent Draw (Figure 2).

Finally, 13 bugs are fixed by simply changing a parameter in the
program. For example, the Apache bug shown in Figure 1 is fixed
by changing a parameter of apr stat; MySQL45475 is fixed by
changing the configuration parameter TABLE OPEN CACHE MIN
from 64 to 400.

Are patches complicated? Most performance bugs in our study
can be fixed through simple changes. In fact, 42 out of 109 bug
patches contain five or fewer lines of code changes. The median
patch size for all examined bugs is 8 lines of code.

The small patch size is a result of the above fixing strategies.
Change A Parameter mostly requires just one line of code change.
33 out of the 47 Change Call Sequence patches involve only ex-
isting functions, with no need to implement new functions. Many
Change Condition patches are also small.

4.5 Other Characteristics
Life Time We chose Mozilla to investigate the life time of perfor-
mance bugs, due to its convenient CVS query interface. We con-
sider a bug’s life to have started when its buggy code was first writ-
ten. The 36 Mozilla bugs in our study took 935 days on average
to get discovered, and another 140 days on average to be fixed.
For comparison, we randomly sampled 36 functional bugs from
Mozilla. These bugs took 252 days on average to be discovered,
which is much shorter than that of performance bugs in Mozilla.



These bugs took another 117 days on average to be fixed, which is
a similar amount of time with those performance bugs.

Location For each bug, we studied the location of its minimum
unit of inefficiency. We found that over three quarters of bugs are
located inside either an input-dependent loop or an input-event han-
dler. For example, the buggy code in Figure 3 is executed at every
XHR completion. The bug in Figure 2 wastes performance for ev-
ery transparent image on a web page. About 40% of buggy code
units contain a loop whose number of iterations scales with input.
For example, the buggy code unit in Figure 4 contains a loop that
iterates as many times as the number of open tabs in the browser. In
addition, about half performance bugs involve I/Os or other time-
consuming system calls. There are a few bugs whose buggy code
units only execute once or twice during each program execution.
For example, the Mozilla110555 bug wastes performance while
processing exactly two fixed-size default configuration files, user-
Chrome.css and userContent.css, during the startup of a browser.

Correlation Among Categories Following previous empirical
studies [29], we use a statistical metric lift to study the correlation
among characteristic categories. The lift of category A and category
B, denoted as lift(AB), is calculated as P(AB)

P(A)P(B) , where P(AB) is the
probability of a bug belonging to both categories A and B. When
lift(AB) equals 1, category A and category B are independent with
each other. When lift(AB) is greater than 1, categories A and B
are positively correlated: when a bug belongs to A, it likely also
belongs to B. The larger the lift is, the more positively A and B are
correlated. When lift(AB) is smaller than 1, A and B are negatively
correlated: when a bug belongs to A, it likely does not belong to B.
The smaller the lift is, the more negatively A and B are correlated.

Among all categories, the Skippable Function root cause and the
Change Condition bug-fix strategy are the most positively corre-
lated with a 2.02 lift. The Workload Issues bug-introducing reason
is strongly correlated with the Change-A-Parameter bug-fix strat-
egy with a 1.84 lift. The Uncoordinated Functions root cause and
the API Issues bug-introducing reason are the third most positively
correlated pair with a 1.76 lift. On the other hand, the Synchroniza-
tion Issues root cause and the Change Condition fix strategy are
the most negatively correlated categories of different characteristic
aspects1. Their lift is only 0.26.

Server Bugs vs. Client Bugs Our study includes 41 bugs from
server applications and 68 bugs from client applications. To under-
stand whether these two types of bugs have different characteristics,
we apply chi-square test [56] to each category listed in Table 2. We
choose 0.01 as the significance level of our chi-square test. Under
this setting, if we conclude that server and client bugs have differ-
ent probabilities of falling into a particular characteristic category,
this conclusion only has 1% probability to be wrong.

We find that, among all the categories listed in Table 2, only the
Synchronization Issues category is significantly different between
server bugs and client bugs — Synchronization Issues have caused
22% of server bugs and only 4.4% of client bugs.

5. Lessons from Our Study
Comparison with Functional Bugs There are several interest-
ing comparisons between performance and functional bugs. (1) The
distribution of performance-failure rates over software life time fol-
lows neither the bathtub model of hardware errors nor the gradually
maturing model of functional bugs, because performance bugs have
long hiding periods (Section 4.5) and can emerge from non-buggy
places when software evolves (Section 4.2). (2) Unlike functional

1 Two categories of the same aspect, such as the Skippable Function root
cause and the Uncoordinated Functions root cause, usually have a highly
negative correlation.

bugs, performance bugs cannot always be modeled as rare events,
because some of them are always active (Section 4.3). (3) The per-
centage of synchronization problems among performance bugs in
our study is higher than the percentage of synchronization prob-
lems among functional bugs in a previous study for a similar set of
applications [29] (Section 4.1).

Bug Detection Our study motivates future research in performance-
bug detection: performance bugs cannot be easily avoided (Section
4.2); and, they can escape testing even when the buggy code is
exercised (Section 4.3).

Our study provides future bug detectors with common root
cause and location patterns (Section 4.1 and Section 4.5).

Rule-based bug detection [13, 21, 30, 33] are promising for de-
tecting performance bugs. It will be discussed in Section 6 in de-
tail. Invariant-based bug detection and delta debugging [14, 60] are
also promising. Our study shows that the majority of performance
bugs require special inputs to manifest (Section 4.3). In addition,
the same piece of code may behave buggy and non-buggy in differ-
ent software versions (Section 4.2). This provides opportunities for
invariant extraction and violation checking.

Annotation Systems Annotation systems are used in many
software development environments [37, 54]. Unfortunately, they
mainly communicate functionality information.

Our study calls for performance-aware annotation systems [44,
55] that help developers maintain and communicate APIs’ perfor-
mance features and workload assumptions (Section 4.2). Simple
support such as warning about the existence of locks in a library
function, specifying the complexity of a function, and indicating
the desired range of a performance-sensitive parameter can go a
long way in avoiding performance bugs. Recent work that auto-
matically calculates function complexity is also promising [18].

Testing Regression testing and change-impact analysis have to
consider workload changes and performance impacts, because new
performance bugs may emerge from old code (Section 4.2).

Performance testing can be improved if its input design com-
bines smart input-generation techniques used in functional testing
[4, 17] with an emphasis on large scale (Section 4.3).

Expressing performance oracles and judging whether perfor-
mance bugs have occurred are critical challenges in performance
testing (Section 4.3). Techniques that can smartly compare perfor-
mance numbers across inputs and automatically discover the exis-
tence of performance problems are desired.

Diagnosis Profiling is frequently used to bootstrap performance
diagnosis. Our root-cause study shows that extra analysis is needed
to help diagnose performance bugs. It is difficult to use profiling
alone to locate the root cause of a performance bug that has a
long propagation chain or wastes computation time at function
boundaries, which is very common (Section 4.1).

Future Directions One might argue that performance some-
times needs to be sacrificed for better productivity and functional
correctness. However, the fact that we can often achieve signifi-
cant performance improvement through only a few lines of code
change motivates future research to pay more attention to perfor-
mance bugs (Section 4.4). Our study suggests that the workload
trend and API features of modern software will lead to more per-
formance bugs in the future (Section 4.2). In addition, our study ob-
serves a significant portion of synchronization-related performance
bugs in multi-threaded software. There will be more bugs of this
type in the multi-core era.

Finally, our observations have been consistent across old soft-
ware and new software (Chrome), old bugs (27 pre-2004 bugs) and
new bugs (44 post-2008 bugs). Therefore, we are confident that
these lessons will be useful at least for the near future.



6. Rule-Based Performance-Bug Detection
6.1 Overview
Rule-based detection approach is effective for discovering func-
tional bugs and security vulnerabilities [6, 15, 21, 30, 42]. Many
functional bugs can be identified by comparing against certain
function-call sequences that have to be followed in a program for
functional correctness and security.

We hypothesize that rule-based bug detection is useful for de-
tecting performance bugs based on our characteristics study:

Efficiency rules should exist. Those inefficient function-call se-
quences studied in Section 4.1 could all become rules. For ex-
ample, random() should not be used by concurrent threads, and
doTransact() in loops should be replaced by aggregateTransact().

Efficiency rules can be easily collected from patches, as most
patches are small and follow regular fixing strategies (Section 4.4).

Efficiency rules could be widely applicable, as a misunderstand-
ing of an API or workload could affect many places and lead to
many bugs, considering how bugs are introduced (Section 4.2).

This section will test our hypothesis and provide guidance for
future work on combating performance bugs.

6.2 Efficiency Rules in Patches
Terminology Efficiency rules, or rules, include two components:
a transformation and a condition for applying the transformation.
Once a code region satisfies the condition, the transformation can
be applied to improve performance and preserve functionality.

We have manually checked all the 109 performance-bug patches.
50 out of these 109 patches contain efficiency rules, coming from
all five applications. The other 59 do not contain rules, because
they either target too specific program contexts or are too general
to be useful for rule-based bug detection.

Call Sequence Conditions
function C::f() is invoked
function f1 is always followed by f2
function f1 is called once in each iteration of a loop

Parameter/Return Conditions
nth parameter of f1 equals K (constant)
nth parameter of f1 is the same variable as the return of f2
a param. of f1 and a param. of f2 point to the same object
the return of f1 is not used later
the parameter of f1 is not modified within certain scope
the input is a long string

Calling Context Conditions
function f1 is only called by one thread
function f1 can be called simultaneously by multiple threads
function f1 is called many times during the execution

Table 3: Typical conditions in function rules

Most of these 50 rules, according to the lift correlation met-
ric, are related to the Uncoordinated Functions root cause and
the Change Call Sequence fix strategy. The conditions for apply-
ing these rules are composed of conditions on function-call se-
quences, parameter/return variables, and calling contexts, as shown
in Table 3. For example, to apply the Bookmark All patch in Fig-
ure 4 elsewhere, one needs to find places that call doTransact in-
side a loop; to apply the patch in Figure 1 elsewhere, one needs
to ensure that certain fields of the object pointed by the first pa-
rameter of apr stat is not used afterward. There are also non-
function rules, usually containing Change Condition transforma-
tion and other miscellaneous algorithm improvements.

6.3 Building Rule Checkers
Selecting Statically Checkable Rules Some rules’ applying con-
ditions are statically checkable, such as function f1 inside a loop;
some are dynamically checkable, such as function f1 called by mul-
tiple threads at the same time; some are related to workload, such
as having many large input files.

We check three largest application suites in our study: Apache,
MySQL, and Mozilla. We find that 40 bug patches from them
contain rules. 25 out of these 40 have applying conditions that
are mostly statically checkable. Therefore, we have built checkers
based on these 25 efficiency rules.

Checker Implementation We build 25 checkers in total. 14 of
them are built using LLVM compiler infrastructure [27] for rules
from C/C++ applications. LLVM works well for C++ software
that troubles many other static analysis infrastructure [43]. It also
provides sufficient data type, data flow, and control flow analysis
support for our checking. The other 11 checkers are written in
Python for 11 rules from Java, JavaScript, and C# applications.

The checker implementation is mostly straightforward. Each
checker goes through software bitcode, in case of LLVM checkers,
or source code, in case of Python checkers, looking for places
that satisfy the patch-applying condition. We briefly discuss how
our checkers examine typical conditions for function rules in the
following.

Checking call-sequence conditions, exemplified in Table 3, in-
volve mainly three tasks: (1) Differentiating functions with the
same name but different classes; (2) Collecting loop information
(loop-head, loop-exit conditions, loop-body boundaries, etc.); (3)
Control flow analysis. LLVM provides sufficient support for all
these tasks. Checkers written in Python struggle from time to time.

Checking parameter/return conditions, exemplified in Table 3,
typically rely on data-flow analysis. In our current prototype,
LLVM checkers conduct intra-procedural data-flow analysis. This
analysis is scalable, but may lead to false positives and negatives.
In practice, it works well as shown by our experimental results.
Our current Python checkers can extract parameters of particular
function calls, but can only do preliminary data-flow analysis.

6.4 Rule-Checking Methodology
We conduct all the experiments on an 8-core Intel Xeon machine
running Linux version 2.6.18.

We apply every checker to the following software:
(1) The exact version of the software that the original patch was

applied to, which is referred to as original version;
(2) The latest version of the software that the original patch was

applied to, which is referred to as original software;
(3) The latest versions of software applications that are differ-

ent from the one that the original patch was applied to, which is
referred to as different software. This was applied to 13 checkers,
whose rules are about glibc library functions, Java library func-
tions, and some general algorithm tricks. We will refer to this as
cross-application checking. For example, a C/C++ checker from
MySQL will be applied to Mozilla and Apache HTTPD for cross-
application checking; a Java checker from Apache TomCat server
will be applied to the 65 other Java applications in the Apache soft-
ware suite2.

The checking results are categorized into three types: PPPs, bad
practices, and false positives. As discussed in Section 1.3, a PPP is
an inefficient code region that runs slower than its functionality-
preserving alternate implied by the efficiency rule. A bad practice
is a region prone to becoming inefficient in the future. We reported
some PPPs to developers. Among those reported, 14 PPPs detected
by 6 different checkers have been confirmed and fixed by the

2 Development teams behind different Apache applications are different



developers. Other reported PPPs are put on hold due to lack of
bug-triggering input information, which is unfortunately out of the
scope of this work.

Finally, we have also changed each checker slightly to report
code regions that follow each efficiency rule. We refer to these
regions as good practices, the opposite of PPPs.

6.5 Rule-Checking Results
Overall Results As shown in Table 4, 125 PPPs are found in the
original version of software. Programmers missed them and failed
to fix them together with the original bugs.

113 previously unknown PPPs are found in the latest versions
of the original software, including bugs inherited from the original
version and bugs newly introduced. Figure 6 shows an example.

219 previously unknown PPPs are found in the latest versions
of different software. An example is shown in Figure 6.

14 PPPs in the latest versions of Apache, Mozilla, and MySQL
are already confirmed and fixed by developers based on our report.

These results confirm that performance bugs widely exist. Effi-
ciency rules exist and are useful for finding performance problems.

PPPs In Original Versions 17 out of 25 checkers found new
PPPs, 125 in total, in the original versions of the buggy software.

Some developers clearly tried to find all similar bugs when
fixing one bug, but did not succeed. For example, in MySQL14637,
after two buggy code regions were reported, developers found
three more places that were similarly inefficient and fixed them
altogether. Unfortunately, there were another 50 code regions that
violated the same efficiency rule and skipped developers’ checking,
as shown in Table 4. Similarly, MySQL developers found and fixed
3 places that had the inefficiency pattern shown in Figure 6, but
missed the other 15 places.

113 out of these 125 PPPs exist in different files or even dif-
ferent modules where the original bugs exist, which is probably
why they were missed by developers. These PPPs end up in several
ways: (1) 4 of them were fixed in later versions, which took 14–31
months; (2) 20 eventually disappeared, because the functions con-
taining these PPPs were removed or re-implemented; (3) 101 still
exist in the latest versions of the software, wasting computation re-
sources 12–89 months after the original bugs were fixed.

Lesson The above results show that developers do need support
to systematically and automatically find similar performance bugs
and fix them all at once.

PPPs In The Latest Versions 2 of the 25 checkers are no
longer applicable in the latest versions, because the functions in-
volved in these checkers have been removed. The remaining 23
checkers are applied to the latest versions of corresponding soft-
ware and find 113 PPPs. Among them, 101 PPPs were inherited
from the original buggy versions. The other 12 were introduced
later.

Lesson Developers cannot completely avoid the mistakes they
made and corrected before, which is understandable considering
the large number of bugs in software. Specification systems and
automated checkers can prevent developers from introducing old
bugs into new code.

PPPs In Different Software Applications An exciting result is
that 8 out of 13 cross-application checkers have successfully found
previously unknown PPPs in the latest versions of applications that
are different from where the rules came from.

Most of these checkers reflect common pitfalls in using li-
brary functions. For example, Figure 6 shows a pitfall of using
String::indexof(). Apache-Ant developers made this mistake, and
we found Apache-Struts developers also made a similar mistake.

Apache32546 checker presents an interesting case. In the
original bug report, developers from Apache-Slide recognized
that a small buffer size would severely hurt the performance of

java.io.InputStream.read (byte buffer[]) for reasonably large in-
put (e.g., larger than 50KB). Replacing their original 2KB buffer
with a 200KB buffer achieved 80 times throughput improvement in
WebDav server. We first confirmed that this rule is still valid. Our
checker then found 135 places in the latest versions of 36 software
applications where similar mistakes were made. These places use
small buffers (1KB – 4KB) to read images or data files from disk
or web, and are doomed to performance losses.

Some checkers reflect algorithm improvements and are also
applicable to many applications. For example, algorithm im-
provements for string operations proposed by MySQL develop-
ers (MySQL14637 and MySQL49491) also apply for Mozilla and
Apache HTTPD.

Cross-application checking also helps validate efficiency rules.
For example, by comparing how java.util.zip.Deflater.deflate()
is used across applications, we found that Ant developers’ under-
standing of this API, reflected by their discussion, was wrong. They
fixed Apache45396 by coincidence.

Lesson The above results show that there exist general ineffi-
ciency patterns that go beyond one application, just like that for
functional bugs [21]. Maintaining specifications and checkers for
these general patterns can significantly save developers’ effort, and
allow them to learn from other developers and other software. We
can even discover performance bugs in a software where no perfor-
mance patch has ever been filed.

Bad Practices Other than PPPs, some code regions identified
by the checkers are categorized as bad practices. For example, there
are code regions very similar to the MySQL PPP shown in Figure 6,
except that the calculation of end is not completely useless as end
is used in places other than the invocation of ismbchar. Clearly
this practice is more likely to cause performance problems in the
future than directly using mysqlcs→mbmaxlen as the parameter
for ismbchar function.

Good Practices Code regions that have well followed the ef-
ficiency rules are also identified by slightly changed checkers. For
example, we found that in 13 places of various applications devel-
opers do use InputStream.read (byte buffer[]) in a performance
efficient way: buffer has a configurable size or a large size that
suits the workload (e.g., 64K in some Hadoop code).

Lesson Violations to efficiency rules are not always rare com-
paring with good practices. Previous techniques that use statistical
analysis to infer functional rules [13, 30] may not work for effi-
ciency rules.

False Positives Our PPP detection is accurate. On average, the
false-positive-vs-PPP rate is 1:4. The false positives mainly come
from three sources.

First, Python checkers have no object-type information. There-
fore, some rules are applied to functions with right function names
but wrong classes (e.g., Mozilla490742 and Apache32546). This is
not a problem in LLVM checkers.

Second, some non-function rules are difficult to accurately ex-
press and check, which leads to false positives in MySQL14637.

Third, accurately checking some efficiency rules requires run-
time and/or workload information, which inevitably leads to false
positives in our static checkers. False positives in Apache44408 and
Apache48778 mostly belong to this category. These false positives
can be largely eliminated by run-time checkers.

Performance Results Our checkers are efficient. Each Python
checker finishes checking 10 million lines of code within 90 sec-
onds. Our LLVM checkers are mainly applied to MySQL, Mozilla
Firefox, and Apache HTTPD. It takes 4 – 1270 seconds for one
LLVM checker to process one application.

We tried unit testing on PPPs. The performance difference is
significant. For example, for programs that read images and files



ID Orig. Buggy Version Lastest Version of Same Softw. Latest Version of Diff. Softw.
PPP BadPr F.P. GoodPr PPP BadPr F.P. GoodPr PPP BadPr F.P. GoodPr

Mozilla 35294 5 0 10 / - - - / - - - / C++
Mozilla103330 2 0 0 117 0 0 0 7 - - - - C++
Mozilla258793 1 0 2 0 0 1 1 2 - - - - C++
Mozilla267506 6 0 0 9 3 0 0 19 - - - - C++
Mozilla311566 26 0 7 0 25 0 8 2 - - - - C++
Mozilla104962 0 0 0 1 3 0 0 12 0 0 0 0 C#
Mozilla124686 0 1 0 14 0 0 0 1 0 0 0 0 C#
Mozilla490742 1 0 3 5 0 0 0 4 - - - - JS
MySQL14637 50 0 11 / 49 0 11 / 46 0 31 / C/C++
MySQL15811 15 20 5 5 16 20 7 7 - - - - C++
MySQL38769 0 0 1 5 - - - - - - - - C++
MySQL38941 1 4 0 2 1 4 0 2 3 5 2 0 C/C++
MySQL38968 3 0 1 38 2 0 2 43 - - - - C/C++
MySQL39268 7 0 0 4 7 0 0 18 - - - - C++
MySQL49491 1 0 0 0 1 0 0 2 3 0 0 0 C/C++
MySQL26152 0 0 0 0 0 0 0 0 0 0 1 4 C#
MySQL45699 0 2 0 0 0 0 0 0 9 0 0 45 C#/Java
Apache33605 0 2 0 / 0 2 0 / 0 5 0 / C
Apache45464 3 0 0 47 3 0 0 67 - - - - C
Apache19101 1 0 0 1 1 0 0 0 - - - - Java
Apache32546 1 0 0 0 1 0 0 0 135 24 9 13 Java
Apache34464 0 0 0 3 0 0 0 2 1 0 0 12 Java
Apache44408 1 0 1 1 0 0 1 2 3 1 2 2 Java
Apache45396 0 0 0 0 0 0 0 1 0 0 0 1 Java
Apache48778 1 0 0 0 1 0 0 0 19 14 1 17 Java

Total 125 29 41 252 113 27 30 191 219 49 46 94

Table 4: Checking results (BadPr: bad practice; F.P.: false positives; GoodPr: good practices. More detailed definitions are presented in
Section 6.4. ‘-’: not applicable. ‘/’: good-practice checker does not exist. )

-  char *end=str+strlen(str); 

-  if (ismbchar(cs, str, end))  

+ if (ismbchar(cs, str, str + cs->mbmaxlen))  
strings/ctype-mb.c 

Patch for MySQL Bug 15811 (MySQL v5.0.23) What is this bug 

ismbchar checks  

whether a string (2nd param.)  

is coded by a specific  

character-set (1st param). 

 

Since ismbchar only checks the  

first CHARSET::mbmaxlen  

characters of a string,  

calculating the exact length & 

range of a string is unnecessary.    

A PPP we found in the latest version of MySQL 

      l��Z�v�[�]��}voÇ�µ����]v��Z��ismbchar checking*/  

    for (end=s; *end ; end++) ;  

       if (ismbchar(mysqlcs, s, end) ) 

libmysql/libmysql.c  

+  if (ismbchar(mysqlcs, s, s+mysqlcsÆmbmaxlen) 

- 

- 

+  int i = -k.length(); 

-   while (s.indexOf(k) == -1) { 

+  while (i++<0 || s.substring(i).indexOf(k)==-1) 

        {s.append (nextchar());} 

Patch for Apache-Ant Bug 34464 (Ant v1.6.2) What is this bug 

String::indexOf(String sub) looks  

for sub-string sub from the  

beginning of a string s. 

 

If program has already compared  

the first N characters of s with 

sub, it is better not to repeat 

this. 

A PPP we found in the latest version of Struts 

   while (1) { 

     n = s.indexOf("%\\>"); 

 

     if (n < 0) break; 

     ... // replace "%\\>" by "%>" and continue 

  } 

The Struts PPP is already 

confirmed and patched by Struts 

developers based on our report 

+   n = s.substring(n+2).indexOf�³�\\!´�� 

- 

Figure 6: PPPs we found in latest versions of original and different software (the gray area shows how these two PPPs should be fixed)

using InputStream.read(byte buffer[]) with a 4KB-buffer param-
eter, we can stably get 3 times throughput improvement through a
40K-buffer parameter. When we feed the unit test with a 50MB file,
which is a quite common image-file workload these days, the file
operation time decreases from 0.87 second to 0.26 second, a defi-
nitely perceivable difference. As another example, the Struts code
shown in Figure 6 is from a utility function used for processing
JSP files. Our unit testing with a 15K JSP file shows that the simple
patch can decrease latency by 0.1 second, a perceivable difference
in interactive web applications.

Whole system testing turns out to be difficult, as suggested
by our characteristics study (Section 4.3). No PPP detected by our
checkers belongs to the always-active category. Future performance-
oriented input-generation tools will significantly help performance
testing and identify truly severe PPPs. Execution frequency infor-
mation can also help future static performance-bug detectors to
rank the severity of PPPs.

6.6 Discussions
Effectiveness of rule-based performance-bug detection

Effort saving Rule-based detection not only identifies problems,
but also suggests alternative implementations with better efficiency.
These alternative implementations often have small sizes and regu-

lar patterns, as shown in Figure 6, making PPP validation and fixing
easy. It is also conceivable to enhance our checkers for automated
PPP fixing.

Improving performance These PPPs showed significant per-
formance improvement than their alternative implementations in
our unit testing. Without fixing these PPPs, these unit-level perfor-
mance losses could aggregate into intolerable performance prob-
lems that are difficult to diagnose. This is especially significant
considering that many performance bugs are difficult to catch using
other approaches.

Maintaining code readability Like those 109 patches studied
earlier, most PPPs detected by us can be fixed through changes
to a few lines of code, as shown in Figure 6. Even for the few
complicated PPPs, wrapper-functions or macros can easily address
the patch-readability issue.

Other usage Rules and checkers can serve as performance
specifications for future software development. They can aid in
code maintenance when software evolves. Developers can also save
PPPs to an inefficiency list for future performance diagnosis.

Of course, this is only a starting point for rule-based performance-
bug detection. We expect our experience to motivate future work
on automatically generating rules, checkers, or even patches.



Can these problems be detected by other tools?
Copy-paste detectors Most PPPs that we found are not from

copy-paste code regions and cannot be detected by text-matching
tools [16, 28], as we can see in Figure 6. Rule violations are not
rare. When developers misunderstand an API, they tend to make
mistakes whenever they use this API. As a result, these mistakes
usually go beyond copy-paste code regions.

Compiler optimization None of the bugs that provided the effi-
ciency rules could be optimized away by compilers used in Apache,
MySQL, and Mozilla. Many PPPs involve library functions and al-
gorithmic inefficiency, and are almost impossible for a compiler to
optimize (Figure 6). Even for the few cases where compiler opti-
mization might help (Figure 1), the required inter-procedural and
points-to analyses are not scalable for real-world large software.

General rule-based bug detectors Ideas for detecting functional
bugs can greatly benefit and inspire future research on performance
bug detection. However, many approaches cannot be directly ap-
plied. Tools that automatically infer functional correctness rules
[13, 30, 33] may not be suitable for efficiency rules, because rule
violations are not rare, as shown in Table 4. In addition, many effi-
ciency rules either involve only one function or discourage multiple
functions to be used together, making them unsuitable for tools that
focus on function correlations.

7. Related Work
High performance computing (HPC) Performance is a central
topic in the HPC community. Many tools for performance profiling
and visualization have been developed [20, 23, 35, 38]. However,
the performance issues encountered there differ from those in main-
stream software. For example, the inputs of HPC are more regular;
it is relatively easy to achieve high code coverage in testing HPC
programs; load balancing and parallelism are much more important
in HPC world.
Performance diagnosis A lot of progress has been made on
profiling-based performance diagnosis [10, 19, 25, 39]. A better un-
derstanding of the common root causes, hidden locations, and prop-
agation patterns of performance bugs can help profiling research to
save manual effort in performance diagnosis and bug fixing.

Performance debugging in distributed systems has also received
much attention. Many previous works tried to isolate bottlenecks
in (semi-) blackbox systems [1], correlate system metrics with
performance behaviors [8, 48], avoid performance problems at run-
time [52], and diagnose problems through logs [59]. In distributed
systems, a performance problem in a single node could spread
into the entire system. Of course, there are also many performance
problems unique to distributed environment.
Performance testing Performance testing includes load tests,
stress tests, and soak tests. Most existing performance-testing
tools [24] treat software as a blackbox. They mostly rely on devel-
opers to manually design test cases and interpret results, or simply
conduct stress testing by increasing the number of concurrent users
and requests. Consequently, testing is costly and ineffective [9].
It is widely acknowledged in the industry that better performance
testing techniques are needed [40].
Tools for functional correctness Many ideas used for fighting
functional bugs would also work for fighting performance bugs.
The semantic patch project [43] provides a special language for de-
velopers to write patches in and automatically pushes each patch
to multiple locations. We, however, cannot directly use semantic
patches for this work, because the existing semantic patch frame-
work does not provide sufficient data-type information and data-
flow analysis support for our checkers. It also only works for C pro-
grams at this point. Of course, it is conceivable to extend the idea
of semantic patches to cover performance bugs, which coincides

with the goal of our work. We want to demonstrate the significance
of performance bugs, and explore the challenges and opportunities
faced when tackling performance bugs.

Our work only looks at one side of performance problems. It
complements works on other critical issues, such as code optimiza-
tion, architecture design, system resource management, mitigating
false sharing [32], and configuration problems [2]. We omit further
discussion due to the space constraints.

8. Conclusions
Performance bugs have largely been ignored in previous research
on software defects. Facing the increasing significance of per-
formance bugs, this paper provides one of the first studies on
real-world performance bugs based on 109 bugs collected from
five representative software suites. The study covers a wide spec-
trum of characteristics, and provides guidance for future research
on performance-bug avoidance, performance testing, bug detec-
tion, etc. Guided by this study, we further explore rule-based
performance-bug detection using efficiency rules implied by patches,
and find many previously unknown performance problems. This
work is only a starting point for understanding and fighting perfor-
mance bugs. We expect it to deepen our understanding of per-
formance bugs and bring more attention to performance bugs.
More information of this work is available at https://www.
cs.wisc.edu/users/shanlu/performance-bugs.
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