
HALF-PIXEL MOTION ESTIMATION BYPASS BASED ON A LINEAR MODEL

Keman Yu, Shan Lu, Jiang Li and Shipeng Li

Microsoft Research Asia

ABSTRACT

In hybrid video coding schemes, motion estimation at sub-pixel
accuracy, such as 1/2 pixel and 1/4 pixel obviously possesses
higher coding efficiency than that at integer-pixel accuracy only.
However, it requires more computational overhead for additional
processes such as interpolation and search on sub-pixels. We
proposed a novel half-pixel motion estimation bypass algorithm
based on a linear model. The key idea is to skip over blocks that
do not benefit from half-pixel search, therefore we not only
reduce the search points but also the interpolation process.
Experimental results show that significant computation reduction
is achieved while the degradation in video quality is negligible.
The proposed algorithm is very suitable for scenarios where low-
complexity computing is required, such as mobile video coding
applications.

1. INTRODUCTION

In video coding system, motion estimation is efficient in
eliminating temporal redundancy between adjacent frames. At
the same time, motion estimation is also regarded as a vital
component in a video encoder as it consumes the largest amount
of computation resources. Block matching algorithm is the most
widely used technique in motion estimation due to its simplicity.
In Block matching algorithm, a picture frame is divided into
blocks, such as 16x16 pixels size. Motion estimation of the
current block is performed by searching a similar block in the
reference frame. Since the real motion of a moving object is not
always in a multiple of integer-pixel, sub-pixel search may give
more accurate results.

Taking complexity into consideration, video coding
standards such as H.263 [1] and MPEG-4 [2] adopt half-pixel
accuracy motion estimation. In general, a motion estimation
procedure consists of two steps. First, an integer-pixel motion
vector is determined by searching the best matching block within
a defined area in the reference frame. Second, 8 half-pixel points
surround the selected integer-pixel motion vector need to be
examined to obtain the final motion vector.

There has been significant advance in fast integer-pixel
motion estimation techniques in recent years. In Diamond Search
(DS) [3], Small-Cross-Diamond Search (SCSD) [4] and
Predictive Algorithm (PA) [5], an integer-pixel motion vector
usually can be found by searching less than 10 points.
Consequently, the computational overhead required by half-pixel
motion estimation that includes interpolation and search
processes becomes significant and comparable to that of integer-

pixel motion estimation. Therefore, it is meaningful to reduce the
computational cost of half-pixel motion estimation.

To speed up the computation of half-pixel motion
estimation, several fast algorithms have been developed. In a
method that uses horizontal and vertical directions as reference
[6], the number of search points on half-pixel is decreased to 5.
Another half-pixel accuracy fast search method proposed in [7]
reduces the amount of computation to 50%. In the parabolic
prediction based fast half-pixel search [8], there is a 59% saving
in computation for block searching. A fast method based on
directional search and a linear model [9] even reduces the
number of search points to 2.2 in average, while the image
quality of reconstructed sequences is similar to that of
conventional methods. In summary, these methods reduce the
complexity of half-pixel motion estimation by decreasing the
number of search points on half-pixel. However, the calculation
for 1/2 pixel interpolation, which is an important portion of half-
pixel motion estimation, still has not been reduced in these
methods.

In this paper, we propose a half-pixel motion estimation
bypass algorithm based on a linear model. The key idea is to skip
over the blocks that do not benefit from half-pixel search.
Therefore, we not only reduce the search points but also the
interpolation process. The proposed method can also be
combined with any of the aforementioned algorithms.

The rest of this paper is organized as follows. Section 2
describes the proposed half-pixel motion estimation bypass
algorithm. Experimental results are shown in Section 3. Finally,
we conclude this paper and give future directions in Section 4.

2. HALF-PIXEL MOTION ESTIMATION BYPASS
ALGORITHM

In the proposed algorithm, we assume that a video frame is
divided into macroblocks with size of 16×16 integer pixels. Sum
of Absolute Difference (SAD) is used as the cost measure to
select the best matching block in motion estimation.

2.1. Observation and motivation

The motivation of our proposed algorithm comes from the
observation that, for most sequences in relatively low motion
scenes, a significant number of macroblocks, typically 50% to
90% of all macroblocks, have their final motion vectors on
integer-pixels. In 8 MPEG-4 test sequences,we performed a
conventional half-pixel search method on each macroblock, i.e.
searching 8 half-pixel points surround the integer-pixel motion
vector. If the minimum SAD obtained at half-pixel accuracy is
larger than that at integer-pixel accuracy, the motion vector on
the integer-pixel is selected as the final result and the half-pixel

search for this macroblock is regarded as wasted. Otherwise, the
half-pixel motion estimation is regarded as effective. Table 1
shows the Effective half-pixel Search Ratio (ESR) for each
sequence. For relatively low motion scenes, such as Akiyo,
Salesman, News and Miss America sequences, the majority of
half-pixel search is wasted, even for the Foreman sequence,
which possesses larger facial motion and camera panning, only
about 47% of macroblocks possesses effective half-pixel motion
estimation.

Table 1: Effective half-pixel search ratio

Sequence ESR
Akiyo 2.95 %

Salesman 4.21 %
News 10.45 %

Miss America 13.01 %
Trevor 26.70 %

Coastguard 35.77 %
Carphone 38.46 %
Foreman 46.80 %

If we can predict the macroblocks that do not benefit from

half-pixel search, we can eliminate the computation of
interpolation and search associated with those macroblocks.
Therefore we can achieve a substantial saving.

SAD as a cost measure is commonly used in selecting the
best matching block on integer-pixel and half-pixel. A motion
vector with smaller SAD is regarded as highly approximate to
the real motion. If the minimum SAD of an integer-pixel motion
vector is small enough, it is highly probable that half-pixel
search is unnecessary. This inspires us to find a threshold. Only
those macroblocks that possess minimum SAD larger than the
threshold need half-pixel search. A hidden assumption is that
ESR increases along with SAD. We will examine this
assumption in the following experiments.

We divide the range of the minimum integer-pixel SAD for
each macroblock into segments with wide of 100. We calculate
the ESR for each segment. and obtain the ESR-SAD curves.
Here we show the results of three sequences that represent few,
moderate and large motion scenes respectively. As shown in
Figure 1, the trends of the three curves are basically consistent,
i.e. ESR increases along with SAD. This trend also matches the
results of 11 MPEG-4 test sequences. It verifies our assumption
and indicates that SAD of a macroblock can be used to
determine whether we need to perform half-pixel search for the
macroblock.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 800 1600 2400 3200 4000

Integer-pixel SAD

ES
R

Carphone
Miss_am
News

Figure 1: Effective half-pixel search ratio vs. integer-pixel SAD.

2.2. Finding the optimal SAD threshold

The ESR curves shown in Figure 1 do not sharply jump from 0
to 100%. This indicates that there is not a SAD threshold in the
curves, above which effective half-pixel search is worth
performing. Since a smaller threshold preserves more effective
half-pixel search, gives more accurate motion vectors, but
expenses more computation power, we need to find an optimal
SAD threshold which reaches good tradeoff between
compression efficiency and complexity.

To obtain the optimal threshold for a sequence, we encode
the entire sequence with various SAD values. The coding
efficiency, which is measured in Peak Signal-to-Noise Ratio
(PSNR), decreases along with the raise of the threshold. Our
goal is to find a point where PSNR starts sharply decreasing. As
shown in Figure 2, this kind of point is also the point with the
largest curvature in the curve. Table 2 shows the optimal
threshold values of 7 sequences obtained by this method.

Figure 2: The decreasing of PSNR vs. the SAD threshold.

Table 2: Optimal SAD thresholds
Sequence SAD threshold

Miss America 300
Akiyo 400
Suzie 600

Carphone 700
Salesman 800
Foreman 1000

Coastguard 1300

As these optimal thresholds are manually selected through

many times of trials they cannot be applied to run-time encoding.
We need to find a method that can automatically calculate the
optimal threshold. After analyzing various factors such as PSNR,
ESR and the average integer-pixel SAD that may be used to
determine the optimal threshold, we found that there is not an
equation that can directly determine the optimal threshold using
these factors. However, we find that we can know whether the
current threshold is appropriate by examining the compression
results in run-time. In this way, we can increase or decrease the
threshold to approach an appropriate value.

2.3. The “effective search ratio - optimal search ratio”
model

We define Optimal half-pixel Search Ratio (OSR) as the half-
pixel search ratio that is calculated when the SAD threshold is
set at the optimal SAD threshold described in Section 2.2. We
calculate OSR and ESR respectively for 6 sequences and show
in Table 3. Although OSR and ESR vastly vary for different
sequences, OSR basically increases along with ESR.

Table 3: ESR and OSR
Sequence ESR OSR

Akiyo 2.90% 23.88%

Salesman 4.19% 20.85%
Miss America 12.52% 40.97%

Suzie 34.10% 61.19%
Carphone 34.49% 65.66%
Foreman 40.22% 70.73%

After we draw these OSR and ESR values into a figure

(Figure 3), we find that they basically obey a linear relationship
(the solid line in Figure 3). This inspires us to find an adjustment
method to approach OSR in real-time encoding. Given the
current SAD threshold, we can calculate the Actual half-pixel
Search Ratio (ASR) and the ESR. Using the linear relationship,
we can calculate the OSR. After that, we can exam whether the
current SAD threshold is appropriate by comparing the
calculated OSR with the current ASR. For example, If ASR is
larger than OSR, the current SAD threshold is regarded as too
small and needs to be increased. This can be completed in real-
time.

y = 1.24*x + 0.25

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

ESR

O
SR

`

Figure 3: A linear model of ESR and OSR.

In practice, the prevention of loss in video quality may be

more important than a little bit increase in complexity of half-
pixel motion estimation. Therefore, we slightly moved up the
solid line to the position of the dashed line shown in Figure 3. It
actually increases the value of OSR, and preserves more
effective half-pixel search. Finally, we define the linear model of
ESR and OSR as follows.

3.024.1 +×= ESROSR (1)

2.4. Dynamically adjusting the SAD threshold

Here we describe a programming procedure to dynamically
adjust the SAD threshold. The following is the pseudo-code.

Step 1: Let Block = 0, Block_Search = 0, Block_Useful = 0,
 SAD_Threshold = SAD0
Step 2: For each macroblock in a frame
 Block++
 Perform integer-pixel search, obtain IntSAD
 If IntSAD > SAD_Threshold then
 Perform half-pixel search, Block_Search++
 If the half-pixel search is effective
 Block_Useful++
Step 3: Let ESR = Block_Useful / Block,

ASR = Block_Search / Block
 Calculate OSR using Eq. (1)

Step 4: Adjust SAD_Threshold for next frame

In practice, we use a moderate SAD value 600 as the initial
threshold, namely SAD0.

The last issue is how to adjust SAD_Threshold in Step 4. A
simple and straightforward approach is to increase or decrease
the threshold with a fixed step size. However, the result is very
sensive to the selected step size. If the step size is too small, the
approaching speed will be very slow. On the other hand, if the
step size is too large, it is possible to incur oscillation. A
desirable method should adaptively change the step size in terms
of the difference between ASR and OSR.

The requirement is similar to that of the rate-control of a
video codec. In H.263 TMN5 [10], the quantization parameter
(QP) is adjusted by comparing the consumed bits length Bi-1 and
the target length B . Referring to the idea of TMN5 rate-control,
we defined our SAD threshold adjustment equation as follows. It
should be noted that the computational overhead for the SAD
threshold is negligible.

×
−+= − OSR

OSRASRThresholdSADThresholdSAD inew 2
1__ 1

 (2)

3. EXPERIMENTAL RESULTS

To examine the effectiveness of the aforementioned algorithm,
we chose 7 sequences with vastly varying content from the
standard MPEG-4 test video clips and implement in an H.263-
compatible encoder [5]. These sequences are classified into 4
categories, which represent different kinds of motion:

1) Few motion scenes: Salesman and Akiyo sequences, which

possess little movements and a still background.
2) Moderate motion scenes: News and Silent sequences.
3) Large motion scenes: Carphone which possesses large facial

motion and a fast moving background, and Coastguard
which possess large but uniform motion.

In order to better evaluate the half-pixel motion estimation

algorithm, we use full search method in the integer-pixel motion
estimation stage. All sequences are in QCIF format and encoded
at 15 frames per second and 56 Kbps. Moreover, all frames
except the first frame is encoded as P-frames.

Table 4 shows the comparison of the coding efficiency of
the integer-pixel accuracy method, the conventional Full Half-
Pixel Search (FHPS) method and the proposed method.
Obviously, FHPS outperforms the integer-pixel accuracy method
by 1.49 dB in average. It shows that half-pixel accuracy motion
estimation is really necessary in reaching higher visual quality.
In Table 4, we can see that the proposed method only has 0.04
dB degradation in average. The difference is negligible while the
computational savings of the proposed method will be shown in
the next table.

Table 4: Performance comparison in terms of PSNR (dB)

Sequence Integer FHPS Half-pixel bypass
Salesman 36.91 37.72 37.69

Akiyo 41.30 42.16 42.09
News 33.59 34.99 34.96
Silent 33.93 35.52 35.50

Carphone 30.49 32.84 32.82
Coastguard 28.08 30.01 29.95

The complexity reduction of the proposed method is clearly
shown in Table 5. Comparing to FHPS, there is an average
49.0% saving in both half-pixel search and interpolation, thus
the average number of the half-pixel SAD computation (namely
the number of search points) for each macroblock is only about
4.01. It is also shown in the table that scenes such as Carphone
sequence and Coastguard sequence with relatively large motion
need more half-pixel search than those with few motion.

Table 5: Complexity reduction

Sequence Bypassed SAD computation
Salesman 64.11% 2.87

Akiyo 66.40% 2.69
News 58.34% 3.33
Silent 51.88% 3.85

Carphone 25.96% 5.92
Coastguard 32.70% 5.38

As mentioned in Section 1, many fast integer-pixel motion

estimation algorithms have been developed in recent years. They
are commonly preferred in real-time video coding application. In
the following experiments, we combine the proposed half-pixel
accuracy method with a fast integer-pixel search method in [5]
(i.e. PA) to show how important the complexity reduction in
half-pixel motion estimation is and what the overall performance
is. As shown in Table 6, only 5 search points in average are
needed in finding an integer-pixel motion vector, and only 4
points in average are needed in half-pixel refinement. Therefore,
the total number of search points for determining the final
motion vector is only 9 in average while the PSNR degradation
is only 0.07 dB in average comparing to the combination of
integer-pixel full search and half-pixel full search.

Table 6: Average number of search points and PSNR loss (dB)

Sequence Integer-search Half-search PSNR loss
Salesman 4.63 2.88 0.03

Akiyo 4.60 2.69 0.00
News 4.78 3.33 0.06
Silent 4.87 3.83 0.10

Carphone 5.29 5.90 0.12
Coastguard 5.77 5.31 0.12

We also examined the proposed method on video clips

captured from real scenes using PC cameras. The proposed
method works well in different video clips with low and high
motion activities.

4. CONCLUSIONS

We propose a novel half-pixel motion estimation bypass
algorithm for video coding. In the proposed algorithm, we built a
linear model to determine the optimal SAD threshold, and then
used the threshold to predict the macroblocks that do not need
half-pixel search. As a result, the computation of search and
interpolation associated with those macroblocks are saved.
Experimental results show that significant computation reduction
is achieved by using the proposed method without leading to
visible loss in video fidelity.

Future directions may include further decreasing the half-
pixel search ratio, which is still much larger than the effective
half-pixel search ratio, whereas preserve the prediction accuracy
at the same time.

5. REFERENCES

[1] ITU-T Recommendation H.263 Video coding for low bit
rate communication, 02/98.

[2] ISO/IEC JTC1/SC29/WG11 N3312 Coding of moving
pictures and audio March 2000/Noordwijkerhout.

[3] S. Zhu and K.K Ma, “A new diamond search algorithm for
fast block-matching motion estimation,” IEEE Trans. On
Image Processing, vol. 9, no. 2, pp.287-290, Feb 2000.

[4] C.H. Cheung, L.M. Po, “A Novel Small-Cross-Diamond
Search Algorithm for Fast Video Coding and
Videoconferencing Applications,” Proc. ICIP 2002,
pp.681-684.

[5] K.M. Yu, J.B. Lv, J. Li and S.P. Li, “Practical Real-time
Video Codec for Mobile Devices,” Proc. ICME 2003,
pp.509-512, Jul 2003.

[6] K.H. Lee, J.H. Choi, B.K. Lee and D.G. Kim, “Fast two-
step half-pixel accuracy motion vector prediction,”
Electronics Letters, vol. 36, pp.625-627, Mar. 2000.

[7] D.N. Kwon, “Half-pixel accuracy fast search in video
coding,” Proc. ISSPA 2003, pp.73-76, Jul 2003.

[8] C. Du, Y. He and J.L. Zheng, “PPHPS: A Parabolic
Prediction-Based, Fast Half-Pixel Search Algorithm for
Very Low Bit-Rate Moving-Picture Coding,” IEEE Trans.
On CSVT, vol. 13, no.4, pp.514-518, Jun 2003.

[9] Y.G. Lee, J.H. Lee and J.B. Ra, “Fast half-pixel motion
estimation based on directional search and a linear model,”
SPIE Proc. VCIP 2003, vol. 5150, pp.1513-1520, Jul 2003.

[10] ITU - Telecommunications Standardization Sector Q.15/16,
Portland, 24-27 June, 1997.

