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Lecture 3: Random variables, distributions, and
transformations
Definition 1.4.1.
A random variable X is a function from S into a subset of R such that
for any Borel set B ⊂R {X ∈ B}= {ω ∈ S : X (ω) ∈ B} is an event.

It is convenient to deal with a summary variable than the elements
in the original sample space.
The range of a random variables is simpler than S.
In some problems, there is a natural random variable; e.g., the
number of accidents, number of successes, etc. In other cases,
we may define a random variable according to our interests.

Example 1.4.3. (Toss a coin 3 times)

outcome hhh hht hth thh tth tht htt ttt
X : number of heads 3 2 2 2 1 1 1 0

The range of X , {0,1,2,3}, is simpler than S.
X treats hht, hth, thh the same, and tth, tht, htt the same.
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Induced probability
The induced probability of X is

PX (B) = P(X ∈ B) = P({ω ∈ S : X (ω) ∈ B})

The probability PX is called the distribution of X .

Example 1.4.3 (continued)
If the coin is fair, then

x 0 1 2 3
P(X = x) 1

8
3
8

3
8

1
8

A table like this effective for X taking finite many values.

Definition 1.5.1.
The cumulative distribution function (cdf) of a random variable X ,
denoted by FX (x), is defined by

FX (x) = PX (X ≤ x), x ∈R

Even if X may not take all real numbers, the cdf is defined for all x ∈R
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Example 1.4.3 (continued)
The cdf of X is a step function

FX (x) =


0 −∞ < x < 0
0.125 0≤ x < 1
0.5 1≤ x < 2
0.875 2≤ x < 3
1 3≤ x < ∞
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Theorem 1.5.3.
The function F (x) is a cdf iff
a. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1;
b. F (x) is nondecreasing in x ;
c. F (x) is right-continuous: limε→0,ε>0 F (x + ε) = F (x) for any x ∈R.

This theorem says that
if F is the cdf of a random variable X , then F satisfies a-c (this is
easy to prove);
if F satisfies a-c, then there exists a random variable X such that
the cdf of X is F (this is not easy to prove).

Definition 1.5.7.
A random variable X is continuous if FX (x) is continuous in x .
A random variable X is discrete if FX (x) is a step function of x .

There are random variables that are neither discrete nor continuous;
e.g., a mixture of the two types.
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Example
Let c be a constant and

Gc(x) =
{

0 x < 0
1−ce−3x x ≥ 0

For what values of c, Gc is a cdf?
Clearly,

lim
x→−∞

Gc(x) = 0, lim
x→∞

Gc(x) = 1

G′c(x) =
{

0 x < 0
3ce−3x x > 0

If c < 0, Gc is decreasing.
If c > 1, Gc(0) = 1−c < 0.
If 0≤ c ≤ 1, then Gc is nondecreasing.
Gc is always right-continuous.

Hence, Gc is a cdf iff 0≤ c ≤ 1.
If c = 1, then Gc is continuous.
If c = 0, then Gc is a special discrete cdf.
If 0 < c < 1, then Gc is neither continuous nor discrete.
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Definition 1.5.8/Theorem 1.5.10.
Two random variables X and Y with cdf’s FX and FY respectively are
identically distributed iff FX (x) = FY (x) for any x ∈R, which is
equivalent to P(X ∈ B) = P(Y ∈ B) for any Borel set B.

Note that two identically distributed random variables are not
necessarily equal (see Example 1.5.9).
The cdf’s can be used to calculate various probabilities related to
random variables but sometimes it is more convenient to use another
function to calculate probabilities.

Definition 1.6.1.
The probability mass function (pmf) of a discrete random variable X is

fX (x) = P(X = x) x ∈R

For discrete X , fX (x)> 0 for only countably many x ’s.
fX (x) is the size of the jump in the cdf FX at x .
For any Borel set A,

P(X ∈ A) = ∑
k∈A

fX (k) and FX (x) = P(X ≤ x) = ∑
k≤x

fX (k)

How to obtain the pmf for a discrete random variable X?UW-Madison (Statistics) Stat 609 Lecture 3 2015 6 / 18



beamer-tu-logo

How to define something similar to a pmf for a continuous X?
Defining fX (x) = P(X = x) does not work for a continuous X .
For any ε > 0,

P(X = x)≤ P(x− ε < X ≤ x) = FX (x)−FX (x − ε)

Since FX is continuous at x , we obtain

P(X = x)≤ lim
ε→0

[FX (x)−FX (x − ε)] = 0

Hence, P(X = x) = 0 for any x ∈R (compare this to a discrete X ).
For a discrete X , we have

FX (x) = ∑
k≤x

fX (k)

An analog for the continuous case is to replace the sum by an integral.

Definition 1.6.3.
The probability density function (pdf) of a continuous random variable
X (if it exists) is the function fX (x) satisfying

FX (x) =
∫ x

−∞

fX (t)dt x ∈R
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Unlike the discrete case, a pdf of a continuous X may not exist.
For a continuous X , it is convenient to use the pdf to calculate
probabilities
If FX is differentiable, then fX (x) = F ′X (x) =

d
dx FX (x).

A continuous random variable has a pdf iff its cdf is absolutely
continuous.
If f is a pdf, the set {x : f (x)> 0} is called its support.

Theorem 1.6.5.
A function f (x) is a pdf iff
a. f (x)≥ 0 for all x ;
b.
∫

∞

−∞
f (x)dx = 1.

Calculation of probabilities
For a continuous X with pdf fX ,

P(X ∈ A) =
∫

A
fX (x)dx
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For example,

P(a < X < b) = P(a < X ≤ b) = P(a≤ X < b)

= P(a≤ X ≤ b) = FX (b)−FX (a) =
∫ b

a
fX (t)dt

which is the area under the curve fX (t).
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Example (finding the cdf, given a pdf)
Suppose that

fX (x) =


1+x −1≤ x < 0
1−x 0≤ x < 1
0 otherwise

FX (x) =?
Obviously, FX (x) = 0 when x <−1.
For −1≤ x < 0,

FX (x) =
∫ x

−∞

fX (t)dt =
∫ x

−1
(1+ t)dt =

t2

2
+ t
∣∣∣∣x
t=−1

=
x2

2
+x +

1
2

For 0≤ x < 1,

FX (x) =
∫ x

−∞

fX (t)dt =
∫ 0

−1
(1+ t)dt +

∫ x

0
(1− t)dt =

1
2
− x2

2
+x

For x ≥ 1,

FX (x) =
∫ x

−∞

fX (t)dt =
∫ 0

−1
(1+ t)dt +

∫ 1

0
(1− t)dt =

1
2
+

1
2
= 1
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Finding the pdf, given a cdf
If FX is differentiable everywhere, then fX = F ′X .
What if FX is differentiable except for some (at most countably
many) points?
fX (x) = F ′X (x) for x at which FX is differentiable;
fX (x) can be any c ≥ 0 for x at which FX is not differentiable.

Example

FX (x) =


0 x < 0
x/2 0≤ x < 1/2
x2 1/2≤ x < 1
1 x ≥ 1

fX (x) =?
FX is differentiable except at 0, 1/2 and 1.

fX (x) =


0 x < 0
1/2 0≤ x < 1/2
2x 1/2≤ x < 1
0 x ≥ 1
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Example.
What values of θ and β will make f (x) a pdf?

f (x) = βeθx−|x | x ∈R

If θ ≥ 1, then limx→∞ eθx−|x | = ∞; if θ ≤−1, then limx→−∞ eθx−|x | = ∞;
hence, θ has to be in (−1,1).
For θ ∈ (−1,1),∫

∞

−∞

eθx−|x |dx =
∫ 0

−∞

eθx+xdx +
∫

∞

0
eθx−xdx =

1
1+θ

+
1

1−θ
=

2
1−θ 2

Hence, in orde to have a pdf, we must have β = (1−θ 2)/2.
What is the cdf of f?
For x ≤ 0,

F (x) =
∫ x

−∞

f (t)dt =
1−θ 2

2

∫ x

−∞

eθ t+tdt =
1−θ

2
e(1+θ)x

For x > 0,

F (x)=
∫ x

−∞

f (t)dt =
1−θ 2

2

[∫ 0

−∞

eθ t+tdt +
∫ x

0
eθ t−tdt

]
=1− 1+θ

2
e(1−θ)x
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Transformations
For a random variable X , we are often interested in a transformation,
Y = g(X ), which is also a random variable.
Here g is a function from the space for X to a new space.
For an event A in the Y -space,

P(Y ∈ A) = P(g(X ) ∈ A) = P(X ∈ g−1(A))

where
g−1(A) = {x : g(x) ∈ A}.

Here, g−1 is not the inverse function and g−1(A) is an event.

Example: g(x) = x2

If A = {t}, a single point with t ≥ 0, then g−1({t}) = {−
√

t ,
√

t}, since
g(−
√

t) = (−
√

t)2 = t and g(
√

t) = (
√

t)2 = t .
If A = [a,b] with 0≤ a≤ b, then g−1(A) = [−

√
b,−
√

a]∪ [
√

a,
√

b].
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How to obtain FY (or fY ) using FX (or fX )?
If X is discrete, then Y is also discrete.
The pmf for Y is

fY (y) = P(Y = y) = P(g(X ) = y)

= ∑
x : g(x)=y

P(X = x) = ∑
x : x∈g−1({y})

fX (x).

For discrete X , we often can directly work out a formula for fY .

Example
Suppose X has the following distribution

x −2 −1 0 1 2 3
fX (x) 0.1 0.2 0.1 0.2 0.3 0.1

Let Y = X 2.
Then Y can take values 0, 1, 4, and 9 and the distribution of Y is

y 0 1 4 9
fY (y) 0.1 0.4 0.4 0.1
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Continuous random variables
If X is continuous with a pdf fX , then

FY (y) = P(Y ≤ y) = P(g(X )≤ y) =
∫
{x : g(x)≤y}

fX (x)dx

In general, the region {x : g(x)≤ y} may be difficult to identify.
Sometimes it is possible to find simple formulas for the cdf and pdf of
Y in terms of the cdf and pdf of X .

Example: Y = X 2

If y ≤ 0, FY (y) = 0 and fY (y) = 0.
If y > 0,

FY (y) =
∫
{x : x2≤y}

fX (x)dx =
∫
{x : −√y≤x≤√y}

fX (x)dx

=
∫ √y

−√y
fX (x)dx = FX (

√
y)−FX (−

√
y)

fY (y) =
d
dy

FY (y) = fX (
√

y)
1

2
√

y
+ fX (−

√
y)

1
2
√

y
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If g is strictly monotone, then the inverse function g−1 exists and

{x : g(x)≤ y}=

{
{x : x ≤ g−1(y)} if g is increasing
{x : x ≥ g−1(y)} if g is decreasing

Theorem 2.1.3/Theorem 2.1.5
Let X be a continuous random variable and Y = g(X ) with range Y .
a. If g is increasing, then FY (y) = FX (g−1(y)), y ∈ Y .
b. If g is decreasing, then FY (y) = 1−FX (g−1(y)), y ∈ Y .
c. If fX is continuous and g is continuously differentiable, then

fY (y) =

{
fX (g−1(y))

∣∣ d
dy g−1(y)

∣∣ y ∈ Y

0 otherwise

Example 2.1.5.
Suppose that Y = g(X ), g(x) = 1/x , and X has the pdf

fX (x) = [(n−1)!β n]−1xn−1e−x/β , x > 0

Then Y = (0,∞), g−1(y) = 1/y , d
dy g−1(y) =−1/y2, and

fY (y) = fX (g−1(y))
∣∣−1/y2∣∣= [(n−1)!β n]−1y−(n+1)e−1/(βy), y > 0
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Many useful functions are not monotone.
The next theorem extends Theorem 2.1.5 to the case where g is
piecewise monotone.

Theorem 2.1.8.
Let X be a continuous random variable with pdf fX . Suppose that there
are disjoint A1,...,Ak such that P(X ∈ ∪k

t=0At) = 1, fX is continuous on
each At , t = 1, ...,k , and there are functions g1(x),...,gk (x) defined on
A1,...,Ak , respectively, satisfying
i. g(x) = gt(x) for x ∈ At ;
ii. gt(x) is strictly monotone on At ;
iii. the set Y = {y : y = gt(x) for some x ∈ At} is the same for each t ;
iv. g−1

t (y) has a continuous derivative on Y for each t .
Then Y has the pdf

fY (y) =


k

∑
t=1

fX (g−1
t (y))

∣∣∣ d
dy g−1

t (y)
∣∣∣ y ∈ Y

0 otherwise
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Example 2.1.9 (Y = X 2)
Let A1 = (−∞,0), A2 = (0,∞), Y = (0,∞).
On A1, g1(x) = x2 is decreasing, g−1

1 (y) =−√y ;
On A2, g2(x) = x2 is increasing, g−1

2 (y) =
√

y .
By Theorem 2.1.8,

fY (y) = fX (−
√

y)
∣∣∣∣− 1

2
√

y

∣∣∣∣+ fX (
√

y)
∣∣∣∣ 1
2
√

y

∣∣∣∣ y > 0

We obtained this previously.
As a special case, consider

fX (x) =
1√
2π

e−x2/2, x ∈R (the standard normal)

Then, for y > 0,

fY (y) =
1√
2π

e−(−
√

y)2/2
∣∣∣∣− 1

2
√

y

∣∣∣∣+ 1√
2π

e−(
√

y)2/2
∣∣∣∣ 1
2
√

y

∣∣∣∣= 1√
2πy

e−y/2,

which is the chi-square pdf with 1 degree of freedom.
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