Lecture 5: Moment generating functions

Definition 2.3.6.

The moment generating function (mgf) of a random variable X is
Lx % fx(X) if X has a pmf
[~ eXf(x)dx  if X has a pdf

provided that E(eX) exists. (Note that My (0) = E(€°X) = 1 always
exists.) Otherwise, we say that the mgf Mx(t) does not exist at .

My (t) = E(e) = {

Theorem 2.3.15.

For any constants a and b, the mgf of the random variable aX + b is
Max1b(t) = €” Mx(at) |

By definition,
MaX+b(t) _ E(et(aX+b)) _ E(etaXebt) _ eth(e(ta)X) _ ethX(at)

v
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The main use of mgf

@ It can be used to generate moments.
@ It helps to characterize a distribution.

Theorem 2.3.7.

If Mx(t) exists at £t, then E(X") exists for any positive integer n and

n (n) d"
E(X) =M (0) = giaMe(t)|

i.e., the nth moment is the nth derivative of Mx(t) evaluated at { = 0.

Assuming that we can exchange the differentiation and integration
(which will be justified later),

dn dn = ¢ oo dnetX o ¢
WMX(I‘) = wlwexfx(x)dx = mwfx(x)dx:/ x"e™ fx(x)dx

Hence
dn

k()] = / " X"y (x)dx = / " X" (x)dx = E(X™)
t=0 J— =
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The condition that Mx(t) exists at +t is in fact used to ensure the
validity of the exchange of differentiation and integration.

Besides this, we also need to argue that E|X|" < o for any positive
integer n under the condition that Mx(t) exists at +t.

We first show that, if Mx(t) exists at £t, then for any s € (—t,t), Mx(s)
exists:

My(s) = E(e%X) = E[eXI(X > 0)] + E[eSXI(X < 0)]
< E[e¥I(X > 0)] + E[e ¥ I(X < 0)] < E(e¥) + E(e™¥)
= Mx(t) + Mx(—t) <eo
where /(X > 0) is the indicator of X > 0.

Next, we show that, for any positive p > 0, E|X|P < o under the
condition Mx(t) exists at +t.

For a given p > 0, choose s such that 0 < ps < t.
Because s|X| < eSXI, we have sP|X|P < ePsIX| < ePsX | @=PSX and
E|X|P < s PE(e”X + e PX) = s PMx(ps) + Mx(—ps) < o
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In fact, the condition that Mx(t) exists at +t ensures that Mx(s) has
the power series expansion
> E(XK)sk
e - 5. 50
If the distribution of X is symmetric (about 0), i.e., X and —X have the
same distribution, then

Mx(t) = E(e) = E(e")) = E(e7™) = Mx(~1)
i.e., Mx(t) is an even function and Mx(t) exists at +t is the same as
My (t) exists ata t > 0.

—t<s<t

Example 2.3.8 (Gamma mgf)
Let X have the gamma pdf
_ 1 o—1,—x/B
fx(x) = F(a)BO‘X e /P, x>0,
where o > 0 and 8 > 0 are two constants and
M(e) :/ X leXdx  a>0
0

is the so-called gamma function.
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Ift<1/pB,
1 o
_ Xy _ a—1g-x/B
My(t) = E(e™) r(a)ﬁa/o ex dx
_ 1 ® a1 o—x/(vE5)
= F(oc)B“/oX e =Bt/ dx
(%m)a = a—1,—s 1
= e S~ e
If t >1/B, then E(e¥) =
We can obtain
d B off B
For any integer n > 1,
d" o(ac+1)---(ax+n—1)B"
E Xn = M t =
X7 at” ()t 0 (1—Bt)xtn t=0
= afoe+1)---(a+n-1)B"
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Can the moments determine a distribution?

Can two random variables with different distributions have the same
moments of any order?

Example 2.3.10.
Xi has pdf fi(x) = ﬁe—(log)&/{ X >

Xo has pdf  fr(x) = f(x)[1 +sin(2zlogx)], x>0

|
.

For any positive integer n,

1 5]
E(X1n) _ \/E/O Xn—1 e—(logx)2/2dx
1 )2
= — [ evV/ag —logx
\/E/_w y y =log
2/2 oo
= en / ef(yfn)z/zdy
Vor J-w

= g7/ using the property of a normal distribution

v
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E(X)) = /0 X, (x)[1 +sin(2xlog x)]dx

_ E(X1 / XN 1 — Iogx) /2

= E(X{’)+\/§/w eV e ¥V*/2sin(2rmy)dy
o7 /2 .

= E(XM+ \ﬁ e W=n/2gin(2my)dy

— E(X")+ / e~ /2sin(21(s+ n))ds

= E(X")+ \ﬁ e~5"/2sin(27s)ds

= E(X7)

since e~5°/2 sin(2rs) is an odd function.

This shows that X; and X5 have the same moments of order

n=1,2,..., but they have different distributions.

sin(2rlog x)dx
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In some cases, moments determine the distributions.
The mgf, if it exists, determines a distribution.

Theorem 2.3.11
Let X and Y be random variables with cdfs Fx and Fy, respectively.
a. If X and Y are bounded, then Fx(u) = Fy(u) for all u iff
E(X")=E(Y") forallr=1,2,...
b. If mgf’s exist in a neighborhood of 0 and Mx(t) = My(t) for all £,
then Fx(u) = Fy(u) for all u.

The key idea of the proof can be explained as follows.

Note that e
My (t) = / %y (x)dx

—o0

is the Laplace transformation of fx(x).

From the uniqueness of the Laplace transformation, there is a
one-to-one correspondence between the mgf and the pdf.

We will give a proof of this result in Chapter 4 for the multivariate case,
after we introduce the characteristic functions.
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From the power series result in the last lecture, if the mgf of X exists in
a neighborhood of 0, then it has a power series expansion which is
determined by moments E(X"), n=1,2,....

Therefore, knowing the mgf and knowing moments of all order are the
same, but this is under the condition that the mgf exists in a
neighborhood of 0.

Once we establish part (b), the proof of part (a) is easy: if X and Y are
bounded, then their mgf’s exist for all t and thus their cdf’s are the
same iff their moments are the same for any order.

The condition that the mgf exists in a neighborhood of 0 is important.
There are random variables with finite moments of any order, but their
mgf’s do not exist.

Example
The pdf

|

fy(x) = ———g (09022 x> ¢
x(x) N >
is called the log-normal distribution or density, because if X has pdf fx,

then log X has a normal pdf.
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In Example 2.3.10, we have shown that the log-normal distribution has

finite moments of any order.

For t > 0, o Afx

Mx(t) :/ & o (09x)/2 gy — oo
0 V2mx

because, when t > 0,

tx
lim —&__g—(ogx)?/2 _

X—=o0 \/2TTX
When t < 0,
oo etX 2 oo 1 2
My (t :/ = g (logx) /2dx</ e (109X)2/2 gy _ 1
x() 27X —Jo V2mx

and, hence, Mx(t) exists for all t < 0.

How do we find a distribution for which all moments exist and the mgf
does not exists for any t £ 07

Consider the pdf

[ k)2 x>0
fY(X)_{fX(—x)/Z x<0
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For this pdf,
o 0 _ o
E(|Y|”):/0 x”fxéx)dx—|—/ (—x)”fx(zx)dx:/ X" (x)dx = E(X")
—oo 0

which has been derived forany n=1,2, ...
On the other hand,

E(etY)_/ XX( )dX+/ tXX2X)dX

_/ tX X dX+/ —tXfX

and we have shown that one of these integrals is oo (depending on
whether t > 0 or < 0).

Theorem

If a random variable X has finite moment a, = E(X") for any
n=1,2, ..., and the series

oo

n
ZM«» with [t >0

then the cdf of X is determined by a,, n=1,2...
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Example
Suppose that a, = n! is the nth moment of a random variable X.

Since ’a Ht‘
n
"= <1
Z \t!

Z

and this functlon |s the mgf of Gamma(1 1) at |t|, we conclude that
X ~ Gamma(1,1).
Suppose that the nth moment of a random variable Y is
2 — n!/(n/2)! if nis even
"1 0 if nis odd
Then

texz

ylalll? g AUE)E & B

= nis even n'(n/2)! /= k!
Later, we show that this is the mgf of N(0,v/2), hence X ~ N(0,+/2).
For a log-normal distributed random variable X discussed in the
beginning of this lecture, E(X") = €™/2 and ¥=_, "/2|t|"/n! = o for
any |t| > 0 and, hence, the theorem is not applicable.
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In applications we often need to approximate a cdf by a sequence of
cdf’s.
The next theorem gives a sufficient condition for the convergence of
cdf’s and moments of random variables in terms of the convergence of
mgf’s.
Theorem 2.3.12
Suppose that Xi, Xo, ... is a sequence of random variables with mgf’s
My (t), and

M}n My (t) = Mx(t) < forall t in a neighborhood of 0

where Mx(t) is the mgf of a random variable X.
Then, for all x at which Fx(x) is continuous,

,!i_rQoFXn(X) = Fx(X).
Furthermore, for any p > 0, we have
lim E|X,|°P = E|X|P and lim E|X,—X|P=0
nN—oo Nn—roo
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Example 2.3.13 (Poisson approximation)
The cdf of the binomial pmf,

Fe(X) = ()’Z) PX(1—p)"™*, x=01,..n,

where nis a positive integer and 0 < p < 1, may not be easy to
calculate when nis very large.
It is often approximated by the cdf of the Poisson pmf,
—A 9 x
e A

fy(x) = IR x=0,1,2,...

where A > 0 is a constant.
For this purpose, we first compute the mgf’s for the binomial and
Poisson distributions.

Example 2.3.9 (binomial mgf)

Using the binomial formula

[/ v = (u+v)"
2, =

x=0
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we obtain

Ma(t) = ze (7)e-pr
: Xgo (X)(pe’)xu—p)“
= (pe'+1—p)"
Note that
EX) = SMx(n)| =n(pet+1-p)pel| = np
t=0 t=0
2 a?
EX) = geMx(t)]
= [n(n—1)(pe'+1—p)" " (pe")? + n(pe' +1—p)""
= n(n—1)p?+np

We got the same results previously, but the calculation here is simpler.

UW-Madison (Statistics)

Stat 609 Lecture 5

pe']

2015

t=0

15/16



Example 2.3.13 (continued)
If Y has the Poisson pmf, then

Z & A _MX o (EA) _ hgelh _ gi(e-1)

which is finite for any te #.

Let X, have the binomial distribution with n and p.

Suppose that lim,_...np = A > 0 (that means p also depends on n and
p— 0 when n— o).

Then, for any t, as n — oo,

t n (mp)(e'=1)1" | aet1y
My,(t) = (pe' +1-p)"= |14+ 72— | = e = My(1)
using the fact that, for any sequence of numbers a, converges to a,
: an\" .
im (1+7) e

With this result and Theorem 2.3.12, we can approximate P(X, < u) by
P(Y < u) when nis large and np is approximately a constant.

v
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