# Lecture 5: Moment generating functions

#### Definition 2.3.6.

The moment generating function (mgf) of a random variable X is

$$M_X(t) = E(e^{tX}) = \left\{ egin{array}{ll} \sum_X e^{tX} f_X(x) & ext{if } X ext{ has a pmf} \\ \int_{-\infty}^{\infty} e^{tX} f_X(x) dx & ext{if } X ext{ has a pdf} \end{array} 
ight.$$

provided that  $E(e^{tX})$  exists. (Note that  $M_X(0) = E(e^{0X}) = 1$  always exists.) Otherwise, we say that the mgf  $M_X(t)$  does not exist at t.

#### Theorem 2.3.15.

For any constants a and b, the mgf of the random variable aX + b is

$$M_{aX+b}(t) = e^{bt}M_X(at)$$

#### Proof.

By definition,

$$M_{aX+b}(t) = E(e^{t(aX+b)}) = E(e^{taX}e^{bt}) = e^{bt}E(e^{(ta)X}) = e^{bt}M_X(at)$$

### The main use of mgf

- It can be used to generate moments.
- It helps to characterize a distribution.

#### Theorem 2.3.7.

If  $M_X(t)$  exists at  $\pm t$ , then  $E(X^n)$  exists for any positive integer n and

$$E(X^n) = M_X^{(n)}(0) = \frac{d^n}{dt^n} M_X(t) \Big|_{t=0}$$

i.e., the *n*th moment is the *n*th derivative of  $M_X(t)$  evaluated at t = 0.

### Proof.

Assuming that we can exchange the differentiation and integration (which will be justified later),

$$\frac{d^n}{dt^n}M_X(t) = \frac{d^n}{dt^n} \int_{-\infty}^{\infty} e^{tx} f_X(x) dx = \int_{-\infty}^{\infty} \frac{d^n e^{tx}}{dt^n} f_X(x) dx = \int_{-\infty}^{\infty} x^n e^{tx} f_X(x) dx$$

Hence

$$\left. \frac{d^n}{dt^n} M_X(t) \right|_{t=0} = \int_{-\infty}^{\infty} x^n e^{0x} f_X(x) dx = \int_{-\infty}^{\infty} x^n f_X(x) dx = E(X^n)$$

The condition that  $M_X(t)$  exists at  $\pm t$  is in fact used to ensure the validity of the exchange of differentiation and integration.

Besides this, we also need to argue that  $E|X|^n < \infty$  for any positive integer n under the condition that  $M_X(t)$  exists at  $\pm t$ .

We first show that, if  $M_X(t)$  exists at  $\pm t$ , then for any  $s \in (-t, t)$ ,  $M_X(s)$  exists:

$$M_X(s) = E(e^{sX}) = E[e^{sX}I(X > 0)] + E[e^{sX}I(X \le 0)]$$

$$\leq E[e^{tX}I(X > 0)] + E[e^{-tX}I(X \le 0)] \leq E(e^{tX}) + E(e^{-tX})$$

$$= M_X(t) + M_X(-t) < \infty$$

where I(X > 0) is the indicator of X > 0.

Next, we show that, for any positive p > 0,  $E|X|^p < \infty$  under the condition  $M_X(t)$  exists at  $\pm t$ .

For a given p > 0, choose s such that 0 < ps < t.

Because  $s|X| \le e^{s|X|}$ , we have  $s^p|X|^p \le e^{ps|X|} \le e^{psX} + e^{-psX}$  and

$$E|X|^{p} \le s^{-p}E(e^{psX} + e^{-psX}) = s^{-p}M_{X}(ps) + M_{X}(-ps) < \infty$$

In fact, the condition that  $M_X(t)$  exists at  $\pm t$  ensures that  $M_X(s)$  has the power series expansion

$$M_X(s) = \sum_{k=0}^{\infty} \frac{E(X^k)s^k}{k!} \qquad -t < s < t$$

If the distribution of X is symmetric (about 0), i.e., X and -X have the same distribution, then

$$M_X(t) = E(e^{tX}) = E(e^{t(-X)}) = E(e^{-tX}) = M_X(-t)$$

i.e.,  $M_X(t)$  is an even function and  $M_X(t)$  exists at  $\pm t$  is the same as  $M_X(t)$  exists at a t > 0.

## Example 2.3.8 (Gamma mgf)

Let X have the gamma pdf

$$f_X(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-x/\beta}, \quad x > 0,$$

where  $\alpha > 0$  and  $\beta > 0$  are two constants and

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx \qquad \alpha > 0$$

is the so-called gamma function.

If  $t < 1/\beta$ ,

$$M_X(t) = E(e^{tX}) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \int_0^{\infty} e^{tx} x^{\alpha-1} e^{-x/\beta} dx$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \int_0^{\infty} x^{\alpha-1} e^{-x/(\frac{\beta}{1-\beta t})} dx$$

$$= \frac{(\frac{\beta}{1-\beta t})^{\alpha}}{\Gamma(\alpha)\beta^{\alpha}} \int_0^{\infty} s^{\alpha-1} e^{-s} ds = \frac{1}{(1-\beta t)^{\alpha}}$$

If  $t \geq 1/\beta$ , then  $E(e^{tX}) = \infty$ .

We can obtain

$$E(X) = \frac{d}{dt}M_X(t)\Big|_{t=0} = \frac{\alpha\beta}{(1-\beta t)^{\alpha+1}}\Big|_{t=0} = \alpha\beta$$

For any integer n > 1,

$$E(X^n) = \frac{d^n}{dt^n} M_X(t) \bigg|_{t=0} = \frac{\alpha(\alpha+1)\cdots(\alpha+n-1)\beta^n}{(1-\beta t)^{\alpha+n}} \bigg|_{t=0}$$
$$= \alpha(\alpha+1)\cdots(\alpha+n-1)\beta^n$$

### Can the moments determine a distribution?

Can two random variables with different distributions have the same moments of any order?

## Example 2.3.10.

$$X_1$$
 has pdf  $f_1(x) = \frac{1}{\sqrt{2\pi}x} e^{-(\log x)^2/2}, \qquad x \ge 0$   
 $X_2$  has pdf  $f_2(x) = f_1(x)[1 + \sin(2\pi \log x)], \qquad x \ge 0$ 

For any positive integer n,

$$E(X_1^n) = \frac{1}{\sqrt{2\pi}} \int_0^\infty x^{n-1} e^{-(\log x)^2/2} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty e^{ny-y^2/2} dy \qquad y = \log x$$

$$= \frac{e^{n^2/2}}{\sqrt{2\pi}} \int_{-\infty}^\infty e^{-(y-n)^2/2} dy$$

$$= e^{n^2/2} \qquad \text{using the property of a normal distribution}$$

$$E(X_{2}^{n}) = \int_{0}^{\infty} x^{n} f_{1}(x) [1 + \sin(2\pi \log x)] dx$$

$$= E(X_{1}^{n}) + \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} x^{n-1} e^{-(\log x)^{2}/2} \sin(2\pi \log x) dx$$

$$= E(X_{1}^{n}) + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ny} e^{-y^{2}/2} \sin(2\pi y) dy$$

$$= E(X_{1}^{n}) + \frac{e^{n^{2}/2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(y-n)^{2}/2} \sin(2\pi y) dy$$

$$= E(X_{1}^{n}) + \frac{e^{n^{2}/2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-s^{2}/2} \sin(2\pi (s+n)) ds$$

$$= E(X_{1}^{n}) + \frac{e^{n^{2}/2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-s^{2}/2} \sin(2\pi s) ds$$

$$= E(X_{1}^{n})$$

since  $e^{-s^2/2}\sin(2\pi s)$  is an odd function. This shows that  $X_1$  and  $X_2$  have the same moments of order n=1,2,..., but they have different distributions. In some cases, moments determine the distributions.

The mgf, if it exists, determines a distribution.

#### Theorem 2.3.11

Let X and Y be random variables with cdfs  $F_X$  and  $F_Y$ , respectively.

- a. If X and Y are bounded, then  $F_X(u) = F_Y(u)$  for all u iff  $E(X^r) = E(Y^r)$  for all r = 1, 2, ...
- b. If mgf's exist in a neighborhood of 0 and  $M_X(t) = M_Y(t)$  for all t, then  $F_X(u) = F_Y(u)$  for all u.

The key idea of the proof can be explained as follows.

Note that

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$$

is the Laplace transformation of  $f_X(x)$ .

From the uniqueness of the Laplace transformation, there is a one-to-one correspondence between the mgf and the pdf.

We will give a proof of this result in Chapter 4 for the multivariate case, after we introduce the characteristic functions.

From the power series result in the last lecture, if the mgf of X exists in a neighborhood of 0, then it has a power series expansion which is determined by moments  $E(X^n)$ , n = 1, 2, ...

Therefore, knowing the mgf and knowing moments of all order are the same, but this is under the condition that the mgf exists in a neighborhood of 0.

Once we establish part (b), the proof of part (a) is easy: if X and Y are bounded, then their mgf's exist for all t and thus their cdf's are the same iff their moments are the same for any order.

The condition that the mgf exists in a neighborhood of 0 is important.

There are random variables with finite moments of any order, but their mgf's do not exist.

### Example

The pdf

$$f_X(x) = \frac{1}{\sqrt{2\pi}x} e^{-(\log x)^2/2}, \quad x \ge 0$$

is called the log-normal distribution or density, because if X has pdf  $f_X$ . then log X has a normal pdf.

In Example 2.3.10, we have shown that the log-normal distribution has finite moments of any order.

For t > 0,

$$M_X(t) = \int_0^\infty \frac{e^{tx}}{\sqrt{2\pi}x} e^{-(\log x)^2/2} dx = \infty$$

because, when t > 0,

$$\lim_{x\to\infty}\frac{e^{tx}}{\sqrt{2\pi}x}e^{-(\log x)^2/2}=\infty$$

When t < 0,

$$M_X(t) = \int_0^\infty \frac{e^{tX}}{\sqrt{2\pi}x} e^{-(\log x)^2/2} dx \le \int_0^\infty \frac{1}{\sqrt{2\pi}x} e^{-(\log x)^2/2} dx = 1$$

and, hence,  $M_X(t)$  exists for all t < 0.

How do we find a distribution for which all moments exist and the mgf does not exists for any  $t \neq 0$ ?

Consider the pdf

$$f_Y(x) = \begin{cases} f_X(x)/2 & x > 0 \\ f_X(-x)/2 & x < 0 \end{cases}$$

For this pdf,

$$E(|Y|^n) = \int_0^\infty x^n \frac{f_X(x)}{2} dx + \int_{-\infty}^0 (-x)^n \frac{f_X(-x)}{2} dx = \int_0^\infty x^n f_X(x) dx = E(X^n)$$

which has been derived for any n = 1, 2, ...

On the other hand,

$$E(e^{tY}) = \int_0^\infty e^{tx} \frac{f_X(x)}{2} dx + \int_{-\infty}^0 e^{tx} \frac{f_X(-x)}{2} dx$$
$$= \int_0^\infty e^{tx} \frac{f_X(x)}{2} dx + \int_0^\infty e^{-tx} \frac{f_X(x)}{2} dx$$

and we have shown that one of these integrals is  $\infty$  (depending on whether t > 0 or < 0).

#### Theorem.

If a random variable X has finite moment  $a_n = E(X^n)$  for any n = 1, 2, ..., and the series

$$\sum_{n=0}^{\infty} \frac{|a_n||t|^n}{n!} < \infty \quad \text{with } |t| > 0$$

2015

11 / 16

then the cdf of X is determined by  $a_n$ , n = 1, 2...

## Example.

Suppose that  $a_n = n!$  is the *n*th moment of a random variable *X*.

Since

$$\sum_{n=0}^{\infty} \frac{|a_n||t|^n}{n!} = \sum_{n=0}^{\infty} |t|^n = \frac{1}{1-|t|} \qquad |t| < 1$$

and this function is the mgf of Gamma(1,1) at |t|, we conclude that  $X \sim Gamma(1,1)$ .

Suppose that the *n*th moment of a random variable *Y* is

$$a_n = \begin{cases} n!/(n/2)! & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$$

Then

$$\sum_{n=0}^{\infty} \frac{|a_n||t|^n}{n!} = \sum_{\substack{n \text{ is even}}} \frac{n!(t^2)^{n/2}}{n!(n/2)!} = \sum_{k=0}^{\infty} \frac{t^{2k}}{k!} = e^{t^2} \quad t \in \mathcal{R}$$

Later, we show that this is the mgf of  $N(0, \sqrt{2})$ , hence  $X \sim N(0, \sqrt{2})$ .

For a log-normal distributed random variable X discussed in the beginning of this lecture,  $E(X^n) = e^{n^2/2}$  and  $\sum_{n=0}^{\infty} e^{n^2/2} |t|^n/n! = \infty$  for any |t| > 0 and, hence, the theorem is not applicable.

12 / 16

In applications we often need to approximate a cdf by a sequence of cdf's.

The next theorem gives a sufficient condition for the convergence of cdf's and moments of random variables in terms of the convergence of mgf's.

#### Theorem 2.3.12

Suppose that  $X_1, X_2,...$  is a sequence of random variables with mgf's  $M_{X_n}(t)$ , and

$$\lim_{n \to \infty} M_{X_n}(t) = M_X(t) < \infty$$
 for all  $t$  in a neighborhood of 0

where  $M_X(t)$  is the mgf of a random variable X.

Then, for all x at which  $F_X(x)$  is continuous,

$$\lim_{n\to\infty}F_{X_n}(x)=F_X(x).$$

Furthermore, for any p > 0, we have

$$\lim_{n\to\infty} E|X_n|^p = E|X|^p \quad \text{and} \quad \lim_{n\to\infty} E|X_n - X|^p = 0$$

## Example 2.3.13 (Poisson approximation)

The cdf of the binomial pmf,

$$f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, ..., n,$$

where n is a positive integer and 0 , may not be easy to calculate when <math>n is very large.

It is often approximated by the cdf of the Poisson pmf,

$$f_Y(x) = \frac{e^{-\lambda} \lambda^x}{x!}, \quad x = 0, 1, 2, ...$$

where  $\lambda > 0$  is a constant.

For this purpose, we first compute the mgf's for the binomial and Poisson distributions.

### Example 2.3.9 (binomial mgf)

Using the binomial formula

$$\sum_{x=0}^{n} \binom{n}{x} u^{x} v^{n-x} = (u+v)^{n}$$

we obtain

$$M_X(t) = E(e^{tX}) = \sum_{x=0}^{n} e^{tx} \binom{n}{x} p^x (1-p)^{n-x}$$
$$= \sum_{x=0}^{n} \binom{n}{x} (pe^t)^x (1-p)^{n-x}$$
$$= (pe^t + 1 - p)^n$$

Note that

$$E(X) = \frac{d}{dt} M_X(t) \Big|_{t=0} = n(pe^t + 1 - p)^{n-1} pe^t \Big|_{t=0} = np$$

$$E(X^2) = \frac{d^2}{dt^2} M_X(t) \Big|_{t=0}$$

$$= [n(n-1)(pe^t + 1 - p)^{n-1}(pe^t)^2 + n(pe^t + 1 - p)^{n-1} pe^t] \Big|_{t=0}$$

$$= n(n-1)p^2 + np$$

We got the same results previously, but the calculation here is simpler.

## Example 2.3.13 (continued)

If Y has the Poisson pmf, then

$$M_Y(t) = \sum_{x=0}^{\infty} e^{tx} \frac{e^{-\lambda} \lambda^x}{x!} = e^{-\lambda} \sum_{x=0}^{\infty} \frac{(e^t \lambda)^x}{x!} = e^{-\lambda} e^{e^t \lambda} = e^{\lambda(e^t - 1)}$$

which is finite for any  $t \in \mathcal{R}$ .

Let  $X_n$  have the binomial distribution with n and p.

Suppose that  $\lim_{n\to\infty} np = \lambda > 0$  (that means p also depends on n and  $p\to 0$  when  $n\to \infty$ ).

Then, for any t, as  $n \to \infty$ ,

$$M_{X_n}(t) = (pe^t + 1 - p)^n = \left[1 + \frac{(np)(e^t - 1)}{n}\right]^n \to e^{\lambda(e^t - 1)} = M_Y(t)$$

using the fact that, for any sequence of numbers  $a_n$  converges to a,

$$\lim_{n\to\infty}\left(1+\frac{a_n}{n}\right)^n=e^a$$

With this result and Theorem 2.3.12, we can approximate  $P(X_n \le u)$  by  $P(Y \le u)$  when n is large and np is approximately a constant.