Lecture 6: Characteristic functions and inequalities

The mgf’s are useful, but they sometimes are not finite.

Another function that can characterise a distribution is the so-called
characteristic function, which is always well defined but it is a complex
function.

Definition (characteristic functions).

The characteristic function (chf) of the distribution of a random variable
X is defined as

ox(t) = E(e'™) = E[cos(tX)] +iE[sin(tX)], te #
where i = /—1 and &' = cos(s) +isin(s).

@ If the mgf Mx(t) of X is finite in a neighborhood of 0, then the chf
of X'is ¢X(t) = Mx(it), te %.

@ If Y= aX 4 bfor constants a and b, then the chf of Y in terms of
the chf ¢x(t) of X is ¢y(t) = ePlox(at), t € Z.

@ A chf is uniformly continuous in Z.

v
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Example
Let X be a random variable with pdf
1

When t > 0,
ox(t) = E[cos(tX)]+iE[sin(tX)]
:/‘” cos(ix) dx+i/w sin(x) dx
) _

7r(1—|—x2 o (1 +Xx2)
B cos(t ot
B 7/ 1 +x2
since sin(s) is an odd function and cos(s) is an even function, where

the last equality follows from the Fourier transformation.
Fort <O,

ox(t) = E[cos(tX)] +iE[sin(tX)] = E[cos(—tX)] = &' = e/
When t =0, ¢x(0) = 1 for any chf, and hence we obtain that
ox()=ell  tex
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Theorem C1.

If a random variable X has finite E|X|" for a positive integer r, then

d"ox(t)

o — i"E(X")

t=0

@ The proof will be given in the next lecture.
@ Thus, like the mgf, the chf can be used to calculate the moments,
but we have to first know the existence of moments.

@ For the Cauchy distribution, the chf is e~ I1l.
Note that this chf is not differentiable at t = 0 and previously we
showed that the expectation of X does not exist.

Uniqueness and inversion

Similar to the mgf, the chf characterizes the distribution in the sense
that there is a one-to-one correspondence between chf and cdf.

We state some inversion formulas.
The proof of the following theorem is omitted.
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Theorem C2

Let X be a random variable with cdf F and chf ¢.
For any real numbers y < u,
PX=y)+P(X=u) . /T e 'V — g il
2 =M am W

Ply<X<u)+

Theorem C3.
Let F be a cdf with chf ¢.
() If Fis continuous at y and u with y < u, then

|

. T efity o efitu
Flu=F=1m | 5z

(i) If Fis continuous at x, then

o(t)dt

T efity o efitu
F(u)= lim lim ——0(t)dt
(1) y=—oToeo) T  27il o)

(iii)y There is a one-to-one correspondence between cdf and chf.

v
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Proof

(i) follows from Theorem 2C.
(ii)-(iii) follow from the fact that any cdf can only have countably many
discontinuous points and, hence, it is determined by the F values at
continuity points of F.

If a cdf is continuous, then Theorem 3C(ii) gives an inversion formula.
For a discrete cdf, we have the following result whose proof is similar
to that of Theorem 2C and is omitted
Theorem C4
Let F be a discrete cdf with chf ¢.

(i) If F has ajump at x, then

|

F(x) = F(x=) — “m217T " e o (t)ot

(i) If D is the set of all discontinuous points of F then

Y [FO)—F(x=)l = lim 5= 1 |¢( t)[2alt

xeD

UW-Madison (Statistics) Stat 609 Lecture 6 2015 5/17



Theorem 4C(ii) gives a sufficient and necessary condition for a cdf to
be continuous.

We know that eIt is a chf, and
T oo oo
/ (ef'”)zdtgf e*2“|dt:2/ e?ldt=1 T>0
—-T —o0 0

Hence, the corresponding cdf must be continuous.

In fact, in this case we know that the cdf corresponding to eIl has a
pdf.

Theorem C5.

Suppose that X, X5, ... is a sequence of random variables with chf’s
ox, (1), and lim,_.. ox, (t) = ¢(1), t € Z, where ¢(t) is continuous in t.
Then ¢ must be the chf of a random variable X and for all x at which
Fx(x) is continuous,

lim FXn(X) = Fx(X)

N—o0

The proof is omitted. )
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Symmetric random variables

A random variable X is symmetric about 0 if —X has the same
distribution as X.

Theorem C6.

A random variable X is symmetric about 0 iff its chf ¢x is real-valued
function.

@ If X and —X have the same distribution, then ¢x(t) = ¢_x(1).
But ¢_x(t) = ¢x(-1).
Then ¢x(t) = ¢x(—1).
Note that sin(—tX) = —sin(tX) and cos(tX) = cos(—tX).
Hence E[sin(tX)] = 0 and, thus, ¢x is real-valued.

@ If ¢x is real-valued, then ¢x(t) = E[cos(tX)] and
¢_x(t) = ox(—1t) = ox(1).

By Theorem C3, X and —X must have the same distribution.

v
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Inequalities
Inequalities are useful for statistical theory.

Theorem 3.6.1 (Chebychev’s inequality)

Let X be a random variable and let g(x) be a nonnegative function.
For any r > 0,

Pg(x) = r) < S8

>n< =2 |

Assuming that X has a pdf (if X has a pmf, we replace integral by
summation), we have

Elg) = [ gtom(x)ax= [ I({g00) = rhg(x)fx(x)ex

> L Z I{g(x) > r})fe(x)dx = r /{ yony X)X
— Pg(X) =

where /(A) is the indicator function of the set A.

V.
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Different forms of Chebychev’s inequality

@ If g is nondecreasing, then another form of Chebychev’s inequality

is, for € > 0,
P(X > g) < M
a(e)
@ Suppose that X has expectation u and variance o?.
For g(x) = (x —u)?/o?, we have

P(|X—u|2ta):P<(X_”)22t2><1E(X_“)2:1

o2 - 12 o2 2

@ If X has a finite kth moment with an integer k, then, for t > 0,
E|X—ul
P(|X—H|Zt)§‘tk

@ If X has a finite mgf Mx(t) for t € (—h, h), then, for r >0 and t > 0,

E(e™) _ Mx(t) E(e™) _ Mx(-1)

) P(XS—I’)S

< Mx() + Mx(-1)
- elr

P(IX| > r)

UW-Madison (Statistics) Stat 609 Lecture 6 2015 9/17



Chebychev’s inequality is useful, but sometimes it is too loose because
it does not require much from the distribution of X except some
moment conditions.

More useful probability inequality can be derived when we know
something about the distribution of X.

|

Cauchy-Schwartz’s inequality
This is another simple but very useful inequality.
If X and Y are random variables with E£(X?) < e and E(Y?) < , then
the following Cauchy-Schwartz’s inequality holds:

[E(XY)? < E(X?)E(Y?)

with equality holds iff P(X = cY) =1 for a constant c.
In fact, we also have

[EIXY[]? < E(X?)E(Y?)
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Proof of Cauchy-Schwartz’s inequality
Let &% = E(X?) <« and b? = E(Y?) < o.
Forany t >0and s >0,

2Vst<s+t because (vVs—V1)?>0
Letting s = X?/a° and t = Y?2/b?, we obtain
Xvp X2 v2 o EIXYI_E(X®), E(Y?)

ab —2a% 2b? ab — 2a 2b?

which means

=1

[E|XY|]? < &b? = E(X?)E(Y?)
The other inequality follows since
[E(XY)]? < [EIXY|]? < E(X*)E(Y?)
We next consider what happens if the equality holds.
If [E|XY|]2 = E(X?)E(Y?), then
2 2 2
E|XY| _ E(X%) E(Y?) ie. E X1 1Yl _0
ab 2a? 2b?

a b
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It follows from a result established previously that

XU YD\ o
P<a—b_0 =1 e, P<|X|_B\Y|> =1
Finally, consider the situation where [E(XY)]? = E(X?)E(Y?).
Since [E(XY)]? < [E|XY/]?, this implies

[E(XY)]? = [EIXY[]? = E(X?)E(Y?)
and, by the early proof, P(|X| = 2|Y|) =1.
From [E(XY)]? = [E|XY]?, we must have +E(XY) = E|XY.
Suppose E(XY) = E|XY| (the proof for —E(XY) = E|XY/| is similar).
Since |XY|— XY >0, E|XY|— E(XY) = 0 implies P(|XY| = XY) = 1.
Combining this with the early result, we must have P(X = 2Y) =1.

Cauchy-Schwartz’s inequality is a special case of the following result.

@ Hoélder’s inequality: If p and g are positive constants satisfying
p>1andp'+qg '=1and X and Y are random variables, then

EIXY| < (EIXIP)/P(E|Y|9)"/
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Using Hoélder’s inequality, we can obtain the following two inequalities.

@ Liapounov’s inequality: If r and s are constants satisfying
1 <r<sand X is a random variable, then

(EIX|DV" < (EIX[%)*

@ Minkowski’s inequality: If p > 1 is a constant and X and Y are

random variables, then

(EIX+Y[P)!/P < (EIXIP)'/P+(E| Y|P)'/P )
@ Aset Ac #*isconvexiff xc A ye A and te (0,1)imply
x+(1-t)yeA

@ A function g from a convex A C %X to Z is convex iff x € A, y € A,

and t € (0,1) imply

gltx+(1-t)y) <tg(x)+(1-1)a(y)

and g is strictly convex iff the previous inequality holds with <
replaced by <.
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@ If g is twice differentiable on a convex A, then a necessary and
sufficient condition for g to be convex (or strictly convex) is that the
k x k second order partial derivative matrix d2g/dxdx’ is
nonnegative definite (or positive definite).

@ If g is convex, then —g is concave.

@ The following is a very useful inequality in statistics.

| 8lx)
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Jensen’s inequality
If g is a convex function on a convex A C % and X is a random variable
with P(X € A) =1, then

9(E(X)) < E[g(X)]

provided that the expectations exist. If g is strictly convex, then < in
the previous inequality can be replaced by < unless P(g(X) =c¢) =1
for a constant c.

Jensen’s inequality also holds for a convex g defined on A c #* and a
random vector X defined on % introduced in Chapter 4.

|

Proof of Jensen’s inequality

Let /(x) = a+ bx be the tangent line to g(x) at g(E(X)) (see the figure).
Since g is convex, g(x) > a+ bx for all x and, hence,

Elg(X)] = E(a+bX) = a+ bE(X) = [(E(X)) = 9(E(X)).

If E[g(X)] = g(E(X)), then P(g(X) = a+ bX) =1, which cannot occur
if g is strictly convex and g(X) is not a constant.
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@ The function g(x) = x~' is strictly convex. Hence,
(EX) "< E(X7T)
unless P(X = ¢) =1 for a constant c.
@ The function g(x) = —log x is strictly convex (log x is strictly
concave). Then
—log(EX) < —E(log X) ie., E(log X) < log(EX)
unless P(X = ¢) =1 for a constant c.

@ Let f and g be positive functions satisfying
0< /7. g(x)dx < [%_f(x)dx =1. We want to show that

= g(x)
/_w f(x)log ) dx <0
Note that f is a pdf.
Let X ~ fand ¥ = 9.

—"
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By Jensen’s inequality,

9, _ 9(x) _
/7 f(x)log X )dx = E(Iog f(X)) E(logY)
< log(EY)=log (E?&?)

= log ( _: ff((:) dx) log < /_ o; g(x)dx)

< log </Z f(x)dX> =log(1)
=0

where the last inequality follows from the fact that log x is increasing.
Also, the strict < holds unless P(f(X) =g(X))=1.
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