Lecture 8: Useful distributions

Binomial distribution binomial(n, p)

Let n be a positive integer and p € [0,1].
The binomial pmf with size n and probability p is

g PA=pr x=0t
0 otherwise,
@ We have previously obtained that, if X ~ f, then
E(X) = np;

Var(X) = np(1—p); ,
mgf Mx(t) = (pe! +1—p)”, chf ox(t) = (pet +1—p)", t € %.

@ In the special case of n= 1, the binomial distribution is also called
the Bernoulli distribution with probability p.

@ If Xi,..., X, are n Bernoulli random variables from n independent
Bernoulli trials with the same probability p, then X =Y7_, X; has
the binomial distribution with size n and parameter p.

v
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Poisson distribution Poisson(1)
The Poisson distribution with parameter A > 0 has pmf

AXe? _
F(x) = 5 x_0,1.,2,...
0 otherwise,

The mgf has been obtained previously, which is e*(¢-1), t e 2.
The chf is then e*(€'~1), tec %.

If X ~ f, then

E(X) = gte“et‘”

A(el—1) -2

t=0

_1 [etex(efq) _’_etletel(e’q)}

= rele
t=0

=A+A2

d t
2 t A(et—1)
E(X )_l—,tee o

t=0
Hence,
Var(X) = E(X?) = [E(X)P=A+A%2 -2 =2

Example 3.2.4 (Waiting time)

As an example of a waiting-for-occurrence application, consider a

telephone operator who, on the average, handles 5 calls per 3 minutes.
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Let X = number of calls in a minute.

If X follows a Poisson distribution, what is A ?

Since E(X) = average of calls in a minute, A = E(X) =5/3.

What is the probability that there will be no calls in the next minute?
-5/3 0

P(x=0)="7—22°) (5,5/3) e °/3=0.189

What is the probability that there will be at least two calls?

975/3(5/3)1

1!
Hypergeometric distribution hypergeometric(K,M,N)

Let K, M, and N be positive integers with M < N. The hypergeometric
distribution has pmf

{ (M)((NNK)M) X =0,1,..min{K,M}, M— N+ K < x

P(X>2)=1-P(X=0)-P(X=1)=1-0.189— —0.496

K
0 otherwise

If we select K balls at random without replacement from a box filled
with M red balls and N — M green balls, then

f(x) = P(exactly x of the balls are red)
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Typically, K < min{M, N} and then
()G _
f(x){ ™ x=0,1,..,K,

0 otherwise
Thus K (M) (N—M)
Y KX = (not trivial to verify)
x=0 (K)
If X ~ f, then
E(X) = ) x>~

x=0 (%) X N(;\(Ij)
MK K= ( y )((NK 1(A§I/ 1)) MK

- R

A similar but more lengthy argument leads to
KM(N — M)(N — K)
N2(N—1)
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Negative binomial negative-binomial(r, p)
Let r be a positive integer and p € [0, 1].
The negative binomial pmf is

f(X): ();::)pr(‘I_p)Xir X:r7r+1a“'
0 otherwise,

@ In a sequence of independent Bernoulli trials with probability p, if
X is the number of trials needed to have the rth success (1 in the
Bernoulli trial), then X ~ f.

@ If Y= X—r (the number of 0’s before the rth 1), then

P(Y:y)z(”i”)p’u—p)y, y=0,1.2,.

This is also called the negative binomial distribution.

@ The special case of negative binomial distribution with r =1 is
called the geometric distribution:

p(1—p)*' x=12,..

0 otherwise,
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The expectation of the negative binomial distribution (2nd definition) is

y=0 y = 1)!(f )
_ ; <r+y > p) = Z ,( ) "1 — )+
_ (1 i <r+1 +(z 1))p,+1(1 -

r(1 —p)
P

The expectation of the negative binomial distribution (1st definition) is

E(X):E(Y)Jrr:r“;p)Jrr:

A similar calculation shows

Var(Y) = Var(X) = I’(1p;,0)
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Uniform distribution uniform(a, b)

The uniform distribution on the interval [a, b], where a and b are real
numbers with a < b, has pdf

S a<x<b
f(x)—{g_a -

otherwise
If X ~ f, then
1 b X2 P pP-2  atb
E(X) b—a/a XX = oh—a)|,” 2(b-a) 2
1 b x3 P pP-aB pPrad+ab
2y _ 2 5 _ _
E(XT) = —a/aXdX_S(b—a)a_2(b—a) 3
5, 2 2 a2
var(X) = E(X?)— [E(X)2 = 2+ & +ab_(a+h)”  (b—2a)
3 4 12
- 1 btx _etb_eta
Mx(t)—m/a e dX— t(b_a)’ te%
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Normal distribution N(u, c?)
The normal distribution plays a central role in statistics.

@ The normal distributions and distributions associated with it are
very tractable analytically.

@ The normal distribution has the familiar bell shape, whose
symmetry makes it an appealing choice for many population
models.

@ Under the Central Limit Theorem (Chapter 5), the normal
distribution can be used to approximate a large variety of
distributions in large samples.

Let u € # and o > 0 be two constants.
The normal distribution N(u,c?) has pdf

f(x) = e~/ e g
2no
When u=0and o =1, N(0,1) is called the standard normal
distribution.

The following is a figure of N(0,1) pdf curve.
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Standard normal pdf curve

-4 -3 -2 -1 0 1
Figure 3.3.1. Standard normal density
We first need to show that f is indeed a pdf.
By the transformation z = (x — u) /o,
1 o 2 2 1 o 2 2 o 2
—(x—m)?/(202) gy — ' / 22y, S / ~22/2
e ax e az e az
2no /—oo Vam J—o Var Jo

2 o g
because e~?"/? is symmetric.

v
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Note that
- 2
(/ e‘zz/zdz> =

0

< ‘22/2dz> < /0 ) e‘”2/2du>
[
bk

/ o ()2 quaz

0
_ —r2/2 r2/2 -
z / re” ar = 2 2

re" *2dedr  z—=rcos6, u=rsin®

oo

Thus,

1 o 2 2 2 bl 2 2 T
_(X_“') /(20) :7/ L /2 = — — =
e ax e az
V2no /—w Van Jo Vor\ 2

A consequence of this result is

T = B . 1 - —w _ 1 —
\@:/O e /2ofz_ﬁ/0 w2e o = r(1/2) (w=2/2)

Hence

(1/2)= V7
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Properties of normal distributions
@ X~ N(u,o0?)iff Z=(X—pu)/o ~ N(0,1) (by transformation).
@ If Z~ N(0,1), then for any t € Z, its mgf is

1 tz \—22/2 e/ / (2122 /2
e“e dz = e dz=¢e
\Vern / o2 J—oo

If X ~ N(u,02),then Z= (X —u)/o ~ N(0,1) and the mgf of X is
Mx(t) = Moz, (1) = e“tMz(ct) = et 02 tep

If X ~ N(u,02), then its chf is ¢x(t) = e!=0"F/2 tc 7.

If X ~ N(0,02), by differentiating Mx(t) = e°*/2, we obtain that

E(X7) = (r—1)(r—3)---3-16”  when ris an even integer
10 when r is an odd integer

Mz(t) =

If Z ~ N(0,1), then E(Z) =0 and Var(Z) = E(Z?) = 1.
If X ~ N(u,0?), then E(X) = u and Var(X) = ¢2.
@ If X ~ N(u,c?), the distribution of Y = X is called the log-normal

- - o o 2 2 2
distribution with E(Y) = e#*+9°/2 and Var(Y) = g?(#+0°) _g2u+0",
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@ The cdf of the standard normal is called the standard normal cdf
and denoted by

1 X *t2/2

=— e at, xe%

Varn /—oo

But this cdf does not have a close form.
@ If X ~ N(u,c?), then its cdf is

Fx(x):P<X_“ <X= “) P<Z< X— “) q><x_“>
c c c c
We can then use the standard normal cdf to calculate probabilities
related to all normal random variables.

@ The pdf of N(u,c?) is a bell shaped curve that is symmetric about
W, maximized at u, and changes from concave to convex at u +o.

@ When X ~ N(u,c?),

P(x)

P(X—-pul<o) = ®(1)—d(—1)=0.6826
P(X—p|<20) = ®(2)—d(—2)=0.9544
P(X—-pl <o) = &(3)—d(—3)=0.9974

UW-Madison (Statistics) Stat 609 Lecture 8 2015 12/18



Gamma distribution gamma(a, B)
Let @ > 0 and 8 > 0 be two constants.
The gamma distribution with shape parameter a and scale parameter

h df

0 x<0
where e
M(a) = / X% e~*dx
0

is called the gamma function,

r1/2)=vr, Ma+1)=al(a), T(N)=((n-1),n=12 ...
If o < 1, then the pdf of gamma(ea., ) is decreasing in x and
unbounded at x = 0.
If o« > 1, then the pdf of gamma(e, B) is bounded, increasing in
x < (a—1)B, and decreasing in x > (¢ —1)p.
Previously, we showed that, if X ~ gamma(a, ), then

Mx(t)=(1-pt)"% t<1/B
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EX")Y=a(a+1)---(a+n—1)B", n=1,2,..
In particular,
E(X)=aB, E(X?) =a(a+1)p2% Var(X)=ap?

From the mfg, the chf is
ox(t)=(1—iBt)™ %, tex

Some gamma pdf curves
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Chi-square distribution

The gamma distribution gamma(ea, B) with B =2 and a = k/2 for a
positive integer k is called the chi-square distribution with k degrees of
freedom, and its pdf is

1 y(k/2)-1g—x/2 x>0
F(x) = r(k/2)2k2
0 x<0

@ If X ~ f, then
E(X)=k, Var(X)=2k,
and the mgf Mx(t) and chf ¢x(t) are given by
Mx(t)=(1—2t)K2 t<1/2, ¢x(t)=(1-2it) "2 tez
@ The chi-square distribution is closely related to the normal
distribution.

@ In Example 2.1.9, we showed that if X ~ N(0,1), then X? ~
chi-square with 1 degree of freedom.

@ A similar result about the chi-square distribution with k degrees of
freedom will be introduced later.
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Exponential distribution exponential(B)

A special case of the gamma distribution with @ = 1 is called the
exponential distribution, i.e., gamma(1, ) = exponential(B).

The exponential(f) distribution has pdf

lefx/ﬁ x>0
fx)=2 "
0 x<0

For any x > 0,
0
=1—gX/B

X

X
P(X < x)= ;/ e /Pdt=e71/P
0

Hence, the cdf of exponential(B) has an explicit form

1] @ >0
F(x) = € A=
0 x<0

An example of X ~ exponential(f) is the lifetime.

V.
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Since exponential(f) = gamma(1,B), if X ~ exponential(

),
E(X)=PB, Var(X)=p2, Mx(l‘)=11ﬁ f< ;

1

The exponential distribution has a memoryless property, i.e.,
P(X>sX>t)=P(X>s—-1)

forany s >t > 0, because

P(X>s,X>t) P(X>s)

PX>8IX>0 = = s>t ~ Pix>1)
_1=F(s) _ e s
1—F(t) et/F

=1-F(s—t)=P(X>s—1)

That means, if X is the lifetime of a product, then the lifetime of a

product that has been used t hours has the same distribution as that of

a new product (new = used).
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Cauchy distribution Cauchy(u, o)
For constants u € # and o > 0, the Cauchy(u, o) distribution has pdf

c
)= 2o ¥
The Cauchy pdf is bell-shaped and symmetric about u.

Its biggest difference from the normal pdf is that, if X ~ Cauchy(u, o),
then E|X| = (and hence E|X|" =, n=2,3,...)

The mgf of X is o except at 0 and the chf of X is e*+olll t ¢ .

u still measures the center of Cauchy(u, o) although the expectation
does not exist: y is the median in the sense that P(X < u) = 3.

Standard normal and Cauchy pdf curves

|
“a ) —2 -1 1) 1 2 3 s
UW-Madison (Statistics) Stat 609 Lecture 8 2015 18/18



