Chapter 4: Multiple Random Variables

Lecture 10: Joint and conditional distributions

So far we focus on the distribution of a single random variable.

In applications we need to consider a set of random variables jointly.
In some cases we study relationships among random variables.
Definition 4.1.1.

For an integer n, X = (Xj,..., X») is called an n-dimensional random
vector iff each X; is a random variable.

Joint cdf’s

The joint cdf of an n-dimensional random vector X is a function Fx in
2" such that

FX(X17"'7XN) =P<ﬁ{)(,§x,}> Xi€ER

i=1

|

|

=P(X1 <X1,...Xn<Xp) i=1,..,n

v
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Properties of cdf’s

@ Fx is nondecreasing and right-continuous in any of its n
arguments.

@ Forany i=1,....nand fixed X{,...,Xj_1,Xit1, .-, Xn,

lim F(X1,...., Xi—1,Xj, Xiz1,-.-,Xn) =0
Xj—r—00

lim F(Xq,...,Xn) =1
Xj—oo, I=1,...,n

|

Marginal cdf’s
For a random vector X = (Xi,..., Xp) and any /, the cdf of X; is called
the marginal cdf of X; and is equal to

FX,-(XI): lim Fx(X1,...,Xn)

Xj—voo, j=1,....i—1,i+1,...,n

Knowing the joint cdf Fx we can obtain n marginal cdf’s, but in general,
knowing Fy, , ..., Fx, is not enough to determine the joint cdf F.

Similar to the univariate case, we mainly consider two types of random
vectors, discrete random vectors and continuous random vectors.
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Definition 4.1.3 (Discrete joint pmf)
A random vector X = (X, ..., Xp) is discrete iff each X; is discrete.
The joint pmf of X is

fx(X1 5 ...,Xn) = P(X1 = X1, ...,Xn = Xn),

which is positive only for countably many (xi,...,Xx,) € Z".

@ Forany event AC 2",
P(XEA): Z fx(X~|,...,Xn)

(X1,...,Xn)EA
@ For any /, the marginal pmf of X; is
fx.(Xi) = ) fx (X1, ..., Xn)

X1 50003 Xj—1,Xi4 15, Xn

@ For any function g(x1,...,Xn), the expected value of g(Xj,..., X,) is
Elg(X1,... Xa)l= Y, 9(X1,.... Xn)fx (X1, ... Xn)
X{ yeuny Xn
@ If n=2 and each X; takes finitely many values, then the joint and

marginal pmf’s can be listed in a 2 x 2 table.
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Values and joint and marginal pmf’s of a 2-dimensional random vector

value Xo1 Xoo -+ Xoc | marginal
X11 P11 P12 - Prc P1.
X12 P21 P22 -0 Poc Po.
Xir Pri Pr2 - Pre Pr.
marginal | p4 p2 - P 1

pj = P(Xi =i,X2=]), pi. = P(X1 =), pj(X2 = ).
Example: Multinomial distribution

An experiment has r possible outcomes Ay, ..., A, with P(A;) = p;,
i=1,...,r,p1+---+pr=1.

We independently repeat the experiment n times.

If X; is the number of times A; is the result in n experiments, i=1,...,r,
then X = (X, ..., X;) has joint pmf

n! 4
P(X; :x1,...,X,:x,):mpf1---pf’ 0<x, Y xi=n
I x,! :

=il
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Multivariate hypergeometric distribution

A bag contains N balls with r different colors.

N; = the number of balls for color i, Ny +---+ N, = N.

We randomly select n balls from the bag.

If X; is the number of selected balls having color i, i =1,...,r, then
X = (Xi,...,X;) has joint pmf

N. Nr
(x:) o (x,)
N
()
What are the marginal pmf’s for the multinomial and multivariate

hypergeometric distributions?

,
P(Xi=Xx1,...Xr =X) = 0 <x, in:n
i=1

Definition 4.1.10 (continuous pdf)

A random vector X = (Xj,..., Xp) has a continuous joint pdf if there
exists a nonnegative function fy on 2" such that

P(X € A) = // F (Xt oees Xn) AXq -+ - X
(X1,...,Xn)EA

v
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If X =(Xi,...,Xn) has joint pdf fx, a short notation is
P(XeA) = / fx(x)dx X =(X1,...,Xn)
A

If the joint pdf fx exists, then
Fx(X1,...,Xn / /fx ty,....th)aty - - dity

If the joint cdf Fy is differentiable, then the joint fy exists and

d"Fx(X1,...,X

If the joint pdf fx exists, then the jith margianl pdf fx. exists and
B0 = [ [ it Xa) et - 11+ ey

If the joint pdf fx exists, then for any function g(xq, ..., Xn), the
expected value of g(Xj,...,Xp) is

E[g(X1,...,X,,)]:/7 1 G(X1 oo, Xn) Fx (X1, .o, Xn)dXq - X

: (X1,...,Xp) € Z"
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Suppose that a 2-dimensional random vector (X, Y) has pdf

fx.y) = Ce (&+3%)  x>0,y>0
Y73 o otherwise

/ ) / " f(x,y)dxdy = / / Ce (+39) gxdy
e—2x
- o[ %
) {(1—3—2X)(1—e‘3y) x>0,y>0

@ What should C be? Since
= C/ 2de/ e ¥ady
0 e_3y 0 B 9
] 6
must be 1, we obtain that C = 6.
@ The joint cdf of (X, Y) is
e )= otherwise
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This is because, for x >0 and y > 0,
Fix,y) — / ; / “6e () gxdy — 6 / "o 2ax / “6e ¥y
0 JO 0 0
= (1—-e(1-e¥)

@ Calculate P(2X+3Y <6).
It is not convenient to use the joint cdf.
Using the joint pdf, we obtain

P(2X+3Y <6) = /2 BRI

iy
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_ 6/ /6 2x)/ ,(2x+3y)dy dX:6/392X 76*3}/
0 3
(6 2x)
— 6/ S| = 2/ e 2 _ e %)dx

—2x

(6—2x)/3
ax
0

- —e —2e%x3=1-¢%_6e"°

0
= 1-767° )

Example 4.1.12.

Suppose that a 2-dimensional random vector (X, Y) has pdf

e O<x<y
f(x,y) :{

0 otherwise

We want to calculate P(X+ Y >1).

v
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Note that
12 / p1-x
PX+Y<1) = / f(x,y)dxdy:/ (/ e‘ydy> dx
x+y<1 0 X

= /1/2(ex —e 0™MNdx=1-¢12_g /21 ¢!
0

= 14+e1-2¢712
Hence,
PX+Y>1)=1-P(X+Y<1)=2e""2_¢"

y=x

172 2
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Example
Let

x* N(y—x)B-1e Y
fx,y)={ T@r@ ~ 0<X<Y
0 otherwise
where a > 0 and 8 > 0 are constants.
We want to show this is a pdf and find its two marginal pdf’s.

For x > 0, consider
0o B <><>X05*1 (y_x)ﬁ*‘l e*y

XU B ()
= ———=a | U e du y—x=u
r(Ot)F(B)/o

Xa_1efx

M)

This is the pdf of Gamma(a, 1), which also shows that f(x, y) is a pdf.
The other marginal pdf is, for y > 0,

v
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_ _ rx Ty —x)f e
fr(y) = /_m f(x,y)ax —/0 farp)
_ ei_y ! o—1 - B-1 .
ya+ﬁ—1 yOH-ﬂ—1 ey

_ e [N a1y nB—1
= e b -0
which is the pdf of Gamma(a + f,1).

Definition 4.2.1 (conditional pmf)

Let (Xj,...,X,) be a discrete random vector with joint pmf f(x) and k be
an integer satisfying 1 < k < n—1. The conditional pmf of (Xx.1,...,Xn)
given that (Xj,..., Xx) = (X1,..., Xx) with P(X1 = xq,..., Xk = xx) >0 is

f(Xk+1,...,Xn|X1,...,Xk) = P(Xk+1 = Xk+1,...,Xn :Xn’X~| = X1,...,Xk :Xk)
f(X1,..., Xn)
Y F(X15 ooy Xk Vit s - i)
(Ykt1,--,Yn)EMk
where Ak = {(Vk+1,-,¥n) : P(Xkt1 = Ykt1,---Xn = ¥n) > 0}
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@ It can be easily verified that f(xx1, ..., Xa|X1,..., Xk) is @ pmf for any
(X1, ..., Xk) with P(Xqy = xq,..., Xk = xx) > 0.
@ The conditional pmf f(Xki1, ..., Xn|X1,..., Xk) vary with xq,..., Xx.
@ For any event Ac %"k,
P((Xki1,--, Xn) € AlXy = X1, ..., Xk = Xk)

= Z f(Xk+17"'7Xn|X1a"'7Xk)
(Xka15--,Xn)EA

Definition 4.2.3 (conditional pdf)

Let (Xj,...,Xn) be a random vector with joint pdf f(x) and k be an
integer satisfying 1 < k < n—1. The conditional pdf of (Xx.1,...,Xn)
given that (Xj,..., Xk) = (X1, ..., Xk) IS

f(X1 ) ~~,Xn)

F(Xkats ooy Xn| X1, ooy Xk ) =
/ F(X1, e X, Ykt s> Yn) AWkt - - AYn

gpn—k
assuming that the denominator is not 0.
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It can be easily verified that f(xx.1, ..., Xa| X1, ..., Xk) is @ pdf and for any
event Ac " K,

P((Xer 110+ Xn) € AXy = X1, Xic = X)

= /4f(xk+17-~-,xn|X1,...,Xk)ka+1 . .an

In general, for random vectors X and Y (discrete or conditions), we
use the notation Y| X = x or Y|X to denote the conditional distribution
Y given X = x or given X.

Example 4.2.4.
Suppose that a 2-dimensional random vector (X, Y) has pdf

e O0<x<y
fx.y) = { 0 otherwise

The marginal pdf of X is
K= [ " H(x,y)dy = / TeVdy=e*
o X

if x > 0; fx(x) =0if x <0;i.e., X ~ exponential(0,1).
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For each x > 0,
_fxy)_ [ S=e U y>x
VPI=%00 _{5 y<x
i.e., f(y|x) is the pdf of exponential(x,1) for x > 0.
Thus, Y|X = x ~ exponential(x,1) or Y|X ~ exponential(X,1).

Conditional expectations
Let (Xj,...,Xn) be a random vector with joint pmf or pdf f(x), k be an
integer satisfying 1 < k < n—1, and g be a function on 2"*. The
conditional expectation of g(Xk.1,...,Xn) given (Xi,..., Xx) = (X1,..., Xk)
is
E[Q(Xk+1 . ...,Xn)‘X1 = X1, ...,Xk = Xk]
= Y 9kt Xn) (X5 oo X X1y e X))
when f is a pmf and
= O/ZnikQ(Xk+17---aXn)f(Xk+1,--';Xn’X1,---,Xk)ka+1"'an
when f is a pdf.
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@ The condition expectation E[g(Xki1,...,Xn)| X1 = X1,..., Xk = Xk| IS
a function of x, ..., X.

@ It is an expectation of the conditional distribution.

@ Let h(xq,...,xk) = E[9(Xks1,---s Xn)| X1 = X150y Xk = X].
Then h(Xi,..., Xk) is a random variable and is denoted by
E[g(Xk-H ] ...,Xn)|X1 5 ...,Xk].

Example 4.2.4

Since Y|X ~ exponential(X,1), the conditional expectation of Y given
Xis E(Y|X) =1+ X, and the conditional expectation of [Y — E(Y|X)]?
given X is

E(QY-E(YIXPX) = [ y—(1+X)eVdy
= /Xye‘ydy—( +X)?
= 1+(1+XP2-(1+X)2=1

Note that the function g may depend on X (ireated as a constant).
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Properties of conditional expectations

Conditional expectations have the following useful properties.
Let X, Y, and Z be random variables.

@ If P(Y =c) =1 for aconstant c, then E(Y|X) =c.
Q If Y <Z then E(Y|X) < E(Z|X).
© For constants aand b, E(aY + bZ|X) = aE(Y|X)+ bE(Z|X).

Q E[E(Y|X)]=E(Y) (Theorem 4.4.3). This can be interpreted as:
the average of averages is the overall average.

© Var(Y) = E[Var(Y|X)] + Var(E(Y|X)) (Theorem 4.4.7), where
Var(Y|X) is the variance of the conditional distribution Y|X.

© For any function g(X), E[Yg(X)|X] = g(X)E(Y|X).
Except for property 2, all properties can be extended to random vectors
X, Y, and Z with appropriate modifications on vector multiplications.

Proof of Theorem 4.4.3.
Consider the continuous case where (X, Y) has pdf f(x,y).

E(Y) = /_nyv(y)dy—/_iy[/Zf(&y)dX] dy
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- /_Z V_ny(x,y)dy] dx = /_Z U—ny'f;(;)) dy} fx(x)ax

_ /:o [/ny(y|x)dy] fx(x)dx:/w E(Y|X = x)fx(x)dx

—oo

= E[E(Y|X)] /
Proof of Theorem 4.4.7.

Using properties 1, 3, 4, and 6, we obtain
Var(Y) = E[Y-E(Y)P=E <E{[Y— E( Y)]Z]X})
= E(E{Y-E(YIX)+E(YIX) - E(V)PIX})
= E(E{Y - E(YIX)PRIX}) +E (E{E(YIX) - E(V)PIX})
+2E (E{[Y - E(YIX)IIE(Y|X)— E(Y)]IX})
— E(Var(Y|X))+E ([E( Y|X) - E( Y)]2>

+2E([E(Y[X) - E(V)IE{[Y - E(YIX)]IX})
= E[Var(Y|X)]+ Var(E(Y|X))
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