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Lecture 11: Correlation and independence
Definition 4.5.1.
The covariance of random variables X and Y is defined as

Cov(X ,Y ) = E [(X −E(X )][Y −E(Y )] = E(XY )−E(X )E(Y )

provided that the expectation exists.

Definition 4.5.2.
The correlation (coefficient) of random variables X and Y is defined as

ρX ,Y =
Cov(X ,Y )√

Var(X )Var(Y )

By Cauchy-Schwartz’s inequality, [Cov(X ,Y )]2 ≤ Var(X )Var(Y )
and, hence, |ρX ,Y | ≤ 1.
If large values of X tend to be observed with large (or small)
values of Y and small values of X with small (or large) values of
Y , then Cov(X ,Y )> 0 (or < 0).
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If Cov(X ,Y ) = 0, then we say that X and Y are uncorrelated.
The correlation is a standardized value of the covariance.

Theorem 4.5.6.
If X and Y are random variables and a and b are constants, then

Var(aX +bY ) = a2Var(X )+b2Var(Y )+2abCov(X ,Y )

Theorem 4.5.6 with a = b = 1 implies that, if X and Y are positively
correlated, then the variation in X +Y is greater than the sum of the
variations in X and Y ; but if they are negatively correlated, then the
variation in X +Y is less than the sum of the variations.
This result is useful in statistical applications.

Multivariate expectation
The expectation of a random vector X = (X1, ...,Xn) is defined as
E(X ) = (E(X1), ...,E(Xn)), provided that E(Xi) exists for any i .
When M is a matrix whose (i , j)th element if a random variable Xij ,
E(M) is defined as the matrix whose (i , j)th element is E(Xij), provided
that E(Xij) exists for any (i , j).
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Variance-covariance matrix
The concept of mean and variance can be extended to random
vectors: for an n-dimensional random vector X = (X1, ...,Xn), its mean
is E(X ) and its variance-covariance matrix is

Var(X ) = E{[X −E(X )][X −E(X )]′}= E(XX ′)−E(X )E(X ′)

which is an n×n symmetric matrix whose i th diagonal element is the
variance Var(Xi) and (i , j)th off-diagonal element is the covariance
Cov(Xi ,Xj).
Var(X ) is nonnegative definite.
If the rank of Var(X ) is r < n, then, with probability equal to 1, X is in a
subspace of Rn with dimension r .
If A is a constant m×n matrix, then

E(AX ) = AE(X ) and Var(AX ) = AVar(X )A′

Example 4.5.4.
The joint pdf of (X ,Y ) is

f (x ,y) =
{

1 0 < x < 1, x < y < x +1
0 otherwise
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The marginal of X is uniform(0,1), since for 0 < x < 1,

fX (x) =
∫

∞

−∞

f (x ,y)dy =
∫ x+1

x
dy = x +1−x = 1

For 0 < y < 1,

fY (y) =
∫

∞

−∞

f (x ,y)dx =
∫ y

0
dx = y −0 = y

and for 1≤ y < 2,

fY (y) =
∫

∞

−∞

f (x ,y)dx =
∫ 1

y−1
dx = 1− (y −1) = 2−y

i.e.,

fY (y) =


2−y 1≤ y < 2
y 0 < y < 1
0 otherwise

Thus, E(X ) = 1/2 and Var(X ) = 1/12, and

E(Y ) =
∫ 1

0
y2dy +

∫ 2

1
y(2−y)dy =

1
3
+4−1− 1

3
(8−1) = 1

Var(Y )=E(Y 2)−1=
∫ 1

0
y3dy+

∫ 2

1
y2(2−y)dy−1=

1
4
+

14
3
− 15

4
−1=

1
6
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Also,

E(XY ) =
∫ 1

0

∫ x+1

x
xydydx =

∫ 1

0

(
x2 +

x
2

)
dx =

1
3
+

1
4
=

7
12

Hence,

Cov(X ,Y ) = E(XY )−E(X )E(Y ) =
7
12
− 1

2
=

1
12

ρX ,Y =
Cov(X ,Y )√

Var(X )Var(Y )
=

1/12√
1/12×1/6

1√
2

Theorem 4.5.7.
For random variables X and Y , |ρX ,Y |= 1 iff P(Y = aX +b) = 1 for
constants a and b, where a > 0 if ρX ,Y = 1 and a < 0 if ρX ,Y =−1.

The proof of this theorem is actually discussed when we study
Cauchy-Schwartz’s inequality (when the equality holds).
If there is a line, y = ax +b with a 6= 0, such that the values of the
2-dimensional random vector (X ,Y ) have a high probability of
being near this line, then the correlation between X and Y will be
near 1 or −1.
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On the other hand, X and Y may be highly related but have no linear
relationship, and the correlation could be nearly 0.

Example 4.5.8, 4.5.9.
Consider (X ,Y ) having pdf

f (x ,y) =
{

10 0 < x < 1, x < y < x +0.1
0 otherwise

This is the same as the pdf in Example 4.5.4 except that
x < y < x +0.1 (instead of x < y < x +1) in the region {f (x ,y)> 0}.
The same calculation as in Example 4.5.4 shows that
ρX ,Y =

√
100/101, which is almost 1 (the first figure below).
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Consider (X ,Y ) having a different pdf (the 2nd figure)

f (x ,y) =
{

5 −1 < x < 1, x2 < y < x2 +0.1
0 otherwise

By symmetry, E(X ) = 0 and E(XY ) = 0; hence, Cov(X ,Y ) = ρX ,Y = 0.
There is actually a strong relationship between X and Y .
But this relationship is not linear.
The correlation does not measure any nonlinear relationship.

Whether random variables are related or not related at all is described
by the concept of independence.

First definition of independence of random variables/vectors
Let X1, ...,Xk be random variables, F (x1, ...,xk ) be their joint cdf., and
FXi (xi) be the marginal cdf of Xi , i = 1, ...,k .
X1, ...,Xk are (statistically) independent iff

F (x1, ...,xk ) = FX1(x1) · · ·FXk (xk ) (x1, ...,xk ) ∈Rk

We define the independence of random vectors X1, ...,Xk (they may
have different dimensions) in the same way, except that F is the joint
cdf of (X1, ...,Xk ) and FXi is the (joint) cdf of Xi , i = 1, ...,k .
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Clearly, this definition is equivalent to the following definition.

Second definition of independence of random variables/vectors
Random vectors X1, ...,Xk are independent iff for any permutation
i1, ..., ik of 1, ...,k , and any r = 1, ...,k −1, the conditional distribution of
Xi1 , ...,Xir given Xir+1 , ...,Xik is the same as the distribution of Xi1 , ...,Xir .

The joint cdf is determined by the n marginal cdf’s if X1, ...,Xn are
independent; otherwise, the joint cdf depends on marginal cdf’s
and conditional distributions.
If X1, ...,Xk are independent, then Xi1 , ...,Xir are independent for
any subest {i1, ..., ir} ⊂ {1, ...,k}.
When k = 2 and both X1 and X2 are discrete random variables,
they are independent iff all pij = pi ·p·j in the probability table.
If Xi has pmf (or pdf) fXi , i = 1, ...,k , then X1, ...,Xk are
independent iff the joint pmf (or pdf) satisfies

f (x1, ...,xk ) = fX1(x1) · · · fXk (xk ) (x1, ...,xk ) ∈Rk

In fact, sometimes the following lemma can be applied.
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Lemma 4.2.7.
Let X and Y be random variables having joint pmf or pdf f (x ,y).
X and Y are independent iff there exist functions g(x) and h(y) with

f (x ,y) = g(x)h(y) x ∈R, y ∈R

A similar result holds for any fixed number of random variables/vectors.

In the definition of independence of random vectors, the components
of each random vector may be dependent or independent.
For example, if X , Y , and Z are 3 random variables, we may have that
(X ,Y ) and Z are independent but X and Y are not independent.

Example
Suppose that (X ,Y ,Z ) has pdf

f (x ,y ,z) =

{
e−ye−z 0 < x < y ,z > 0
0 otherwise

It can be shown that f (x ,y ,z) = g(x ,y)h(z) with

g(x ,y) =

{
e−y 0 < x < y
0 otherwise

h(z) =

{
e−z z > 0
0 z ≤ 0
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Hence, Z and U = (X ,Y ) are independent.
In Example 4.2.4, we showed that Y |X = x ∼ exponential(x ,1),
The marginal pdf of Y is i.e., gamma(2,1), because∫

∞

−∞

∫
∞

−∞

f (x ,y ,z)dxdz =
∫ y

0
e−ydx = ye−y y > 0

By the 2nd definition of independence, X and Y are not independent.
In fact, when Y |X = x has a pdf varying with x , we have already known
that X and Y are not independent.
Consequently, X , Y , and Z are not independent.

Note that “X , Y , and Z are independent" may be different from “(X ,Y )
and Z are independent".
Hence, when random vectors are involved, it is important to specify
which variables/vectors are independent.

Third definition of independence of random variables/vectors
Random vectors X1, ...,Xk are independent iff events {X1 ∈ B1},
...,{Xk ∈ Bk} are independent for any Borel sets B1, ...,Bk , where the
dimension of Bi is the same as the dimension of Xi .
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It can be shown that this definition is equivalent to the first definition.
In fact, it is easy to show this definition implies the first definition, by
considering Bi = (−∞,xi ].
A rigorous proof is out of the scope of this course.

Theorem 4.6.12.
If X1, ...,Xk are independent random vectors and g1, ...,gk are
functions, then
(i) g1(X1), ...,gk (Xk ) are independent, and
(ii) E [g1(X1) · · ·gk (Xk )] = E [g1(X1)] · · ·E [gk (Xk )].

The following is an important corollary.

Theorem 4.5.5.
If X1, ...,Xk are independent random variables, then Xi and Xj are
uncorrelated for every pair (i , j).

The converse is not true, i.e., there are uncorrelated X and Y but they
are not independent.
An example is X and Y in Example 4.5.9 with quadratic relationship.
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Example

Let (X ,Y ) be a random vector on R2 with pdf

f (x ,y) =

{
π−1 x2 +y2 ≤ 1
0 x2 +y2 > 1.

Let D = {(x ,y) : x2 +y2 ≤ 1}.
By changing variables, we obtain that

E(XY ) = π
−1
∫

D
dxdy

= π
−1
(∫

D,xy>0
dxdy +

∫
D,xy<0

dxdy
)

= π
−1
(∫

D,xy>0
dxdy −

∫
D,xy>0

dxdy
)

= 0
Similar, EX = EY = 0 and, hence, Cov(X ,Y ) = 0.
How do we show X and Y are not independent?
It is unnecessary to derive the marginal distributions for showing that X
and Y are not independent.
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By the 3rd definition of independence, we just need to find two Borel
sets A and B such that

P(X ∈ A,Y ∈ B) 6= P(X ∈ A)P(Y ∈ B)

A direct calculation shows that

P(0 < X < 1/
√

2,0 < Y < 1/
√

2) =
1

2π

and
P(0 < X < 1/

√
2) = P(0 < Y < 1/

√
2) =

1
4
+

1
2π

.

Thus, X and Y are not independent because
1

2π
6=
(

1
4
+

1
2π

)2

.

This example indicates that if the distribution of (X ,Y ) is
symmetric in some way, then Cov(X ,Y ) = 0 and X and Y don’t
have any linear relationship.
Uncorrelated X and Y means that there is no linear relationship
between X and Y , but X and Y may have a strong nonlinear
relationship.
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Example 4.5.10 (bivariate normal distribution).

Consider (X ,Y )∼ the bivariate normal distribution pdf on R2:

f (x ,y) =
exp

(
− (x−µ1)

2

2σ2
1 (1−ρ2)

+ ρ(x−µ1)(y−µ2)
σ1σ2(1−ρ2)

− (y−µ2)
2

2σ2
2 (1−ρ2)

)
2πσ1σ2

√
1−ρ2

(x ,y) ∈R2

where µ1 ∈R, µ2 ∈R, σ1 > 0, σ2 > 0, and −1 < ρ < 1 are constants.
This 2-dimensional pdf has a very nice shape, as the following figure
shows.
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The marginal pdf of X is

fX (x) =
exp

(
− (x−µ1)

2

2σ2
1 (1−ρ2)

)
2πσ1σ2

√
1−ρ2

∫
∞

−∞

exp

(
ρ(x−µ1)(y −µ2)

σ1σ2(1−ρ2)
− (y −µ2)

2

2σ2
2 (1−ρ2)

)
dy

=
exp

(
− (x−µ1)

2

2σ2
1

)
2πσ1σ2

√
1−ρ2

∫
∞

−∞

exp

(
−
[(y −µ2)− ρσ2

σ1
(x−µ1)]

2

2σ2
2 (1−ρ2)

)
dy

=
1√

2πσ1
exp

(
−(x−µ1)

2

2σ2
1

)

which is the pdf of N(µ1,σ
2
1 ) (as expected).

Similarly, the marginal pdf of Y is that of N(µ2,σ
2
2 ).

We now calculate the correlation coefficient

ρX ,Y =
Cov(X ,Y )√

Var(X )Var(Y )
= E

(
X −µ1

σ1

)(
Y −µ2

σ2

)
=
∫

∞

−∞

∫
∞

−∞

(
x −µ1

σ1

)(
y −µ2

σ2

)
f (x ,y)dxdy
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Letting s =
(

x−µ1
σ1

)(
y−µ2

σ2

)
and t = x−µ1

σ1
, we obtain

ρX ,Y =
∫

∞

−∞

∫
∞

−∞

sf
(

σ1t +µ1,σ2
s
t
+µ2

)
σ1σ2

|t |
dsdt

=
∫

∞

−∞

∫
∞

−∞

s exp
(
− t2−2ρs+s2/t2

2(1−ρ2)

)
2πσ1σ2

√
1−ρ2

σ1σ2

|t |
dsdt

=
∫

∞

−∞

exp(−t2/2)
2π
√

(1−ρ2)t2

[∫
∞

−∞

s exp
(
− (s−ρt2)2

2(1−ρ2)t2

)
ds
]

dt

=
∫

∞

−∞

exp(−t2/2)√
2π

ρt2dt =
ρ√
2π

∫
∞

−∞

t2 exp(−t2/2)dt

= ρ

Thus, all 5 parameters in f (x ,y) have meanings:
µ1 and µ2 are two marginal means.
σ2

1 and σ2
2 are two marginal variances.

ρ is the correlation coefficient for the two marginal variables.
The conditional pdf of Y |X can be derived as follows.

UW-Madison (Statistics) Stat 609 Lecture 11 2015 16 / 17



beamer-tu-logo

f (x ,y)
fX (x)

=
exp

(
− (x−µ1)

2

2σ2
1 (1−ρ2)

+ ρ(x−µ1)(y−µ2)
σ1σ2(1−ρ2)

− (y−µ2)
2

2σ2
2 (1−ρ2)

)
2πσ1σ2

√
1−ρ2

/exp
(
− (x−µ1)

2

2σ2
1

)
√

2πσ1

which is equal to

exp
(
− ρ2(x−µ1)

2

2σ2
1 (1−ρ2)

+ ρ(x−µ1)(y−µ2)
σ1σ2(1−ρ2)

− (y−µ2)
2

2σ2
2 (1−ρ2)

)
√

2πσ2
√

1−ρ2
=

exp
(
−

[y−µ2−
ρσ2
σ1

(x−µ1)]
2

2σ2
2 (1−ρ2)

)
√

2πσ2
√

1−ρ2

Hence,
Y |X ∼ N

(
µ2 +

ρσ2

σ1
(X −µ1),σ

2
2 (1−ρ

2)

)
From the second definition of independence, X and Y are independent
if they are uncorrelated (ρ = 0).
On the other hand, if ρ 6= 0, then X and Y are correlated and they
cannot be independent (Theorem 4.5.5).
This means that for bivariate normal (X ,Y ), independence of X and Y
is equivalent to ρ = 0: either X and Y have a linear relationship or they
don’t have any relationship at all (they cannot have a nonlinear
relationship).
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