Lecture 12: Multivariate transformation

We have considered transformations of a single random variable.
We now consider a vector of transformations of a random vector.
First, we consider the sum of two random variables.

The pdf of the sum of two random variables (convolution)

Let X and Y be random variables having joint pdf f(x, y).
Forany t € #,

PX+Y<t) // f(x,y)dxdy = / [/ xydy]d
x+y<t

Hence, the pdf of the sum X+ Y'is

fxry(t)= gtP(XJrYg t):/_i; [/t_x f(x,y)dy] dx:/oo f(x,t—x)dx

—o0 —o0

Similarly, -
feer(t)= [ f(t=y.y)dy
The pdf fx y is called a convolution.

The interchange of differentiation and integration can be justified.
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If X and Y are independent and fy and fy are their marginal pdf’s, then

(D)= [ KCOR(E=x)ax= [ h(t=y)iv(y)ay

Example

If X ~ uniform(0,1) and Y ~ exponential(0,1) are independent, what is
the pdf of X + Y?

o - [otone |
e — (oo £+
= { fietXdx=1-¢"" 0<t<t
0 t<0
When fx or fy is 0 in some regions, we need to be careful about the

integration limits.
Sometimes, one of the two formulas is easier to work with.

her(t) = [ ixlt=p)iv(y)dy = e Yoy =7
—oo O<t—y<1,y>0
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Example
Suppose that (X, Y) has the following bivariate normal pdf:

2 xy ¥
exp _21)(,2 + 1[12 T 2(1—p2
f(X,y): < (1-p?) (1-p2) ( p)) (X7y)€%2

21+\/1—p?

What is the pdf of X+ Y?
X2 x(t—x t—x)2
(gt + N (P,
2(1-p2)  (1-p%) 2(1-p°)
_ XP42pxP 4+ X2 —2ptx —2tx + 1 dx
2(1-p2?)

Ary(t) = W/ZGXP
. ,
v
- zwl—*z few <‘(X1_ —t/pZ) ‘4(1ip)>dx
t2
2¢Tp < +p)>

which is N(0,2(1+p)).
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The pmf of the sum of two discrete random variables

We now turn to discrete random variables X and Y with joint pmf

f(x.).
By definition, the pmf of X+ Y'is

frev()=PX+Y=t)= Y fx.y)=Yf(xt-x)=Y ft-y.y)
xX+y<t X y
and if X and Y are independent with marginal pmf’s fxy and fy, then

fxyy(1) fo My (t—x) =Y K(t—y)fy(y)
v

However, in some cases it is more convenient to work out the
probability P(X + Y = t) directly.

|

Example 4.3.1

Let X ~ Poisson(0) and Y ~ Poisson(A) be independent Poisson
random variables so that the joint pmf of (X, Y) is

0¥ 0 Aye
f(x,y)= —

x! yt 7
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What is the pmf of U= X+ Y?
Using the formula, for u=0,1,2,...
u eufyefﬂ Ayefl
f u == fu— 9 =
u(u) ; (u=y.y) ygo CE
e (1) (g 4 1)V
u!

e ) Uy
N u! 7, y

)muy _
y=0

This is the pmf of Poisson(6 + 1).
What is the joint pmfof U= X+ Y and Y.

fuy(uy) = PlU=uY=y)=P(X+Y=u,Y=y)

gu—Ye0 1Yot
= PX=u-y,Y=v)=
( VY=

foru=y,y+1,y+2,....,and y=0,1,2,...
U and Y are not independent, because

P(U=0,Y=1)=0#P(U=0)P(Y=1)=e 0+t e*
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To deal with a sum of independent random variables, it is convenient to
use mgf’s.

Theorem 4.2.12.

If Xi,..., X, are independent random variables with mgf’s
Mx, (1),...,Mx,(t), then the mgf of the sum T =X +--- + X is

Mr(t) = Mx, (t)--- Mx,(t)
and Mr(t) <ooiff My (t) <eo,i=1,...,n.

Proof.
By definition,
Mr(t) = E(eT) = E(el*a++Xn)) = E(ei ... gXn)
= E(e™)--- E(e%) = Mx, (t)--- Mx,(t)
where the 4th equality follows from the independence of Xj,..., X, and
Theorem 4.6.12.

This result and the uniqueness theorem (Theorem 2.3.11) lead to
many useful results concerning the sum of independent random

variables.
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Theorem 4.2.14.

If X ~ N(u,02) and Y ~ N(y,7?) are independent, then
T=X+Y~N(u+y,02%+12).

This is easy to show, because the mfg’s of X and Y are
My (t) = e"t+9°/2 and My (t) = e"+7 /2 and thus the mgf of T is

My (£)My(t) = eHtHot/2gn+78/2 _ glutnti(o®+a)i/2
which is the mgf of N(u + 7,62 + 12).
By the uniqueness theorem, we must have T ~ N(u + 7,62 + 72).

Note that this result does not apply to the bivariate normal distribution
example with p # 0, since in that example X and Y are not
independent.

The previous result can be generalized to more than two independent
random variables having normal distributions: If Xj,..., Xi are
independent random variables, X; ~ N(u,-,o,?), i=1,...,k, then the sum
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This type of results is called additivity of distributions; i.e., if X and Y
have distributions in a class of distributions and X + Y has a
distribution also in that class, then the distributions in this class are
called additive distributions.

Additivity of the chi-square distributions

In Chapter 2 we showed that if Z ~ N(0,1), then Z2 ~ the chi-square
distribution with degree of freedom 1.

A more general result is as follows.

If X; ~ N(uj,02), i =1,...,k, are independent, then the distribution of

y_ <x1 m) - <xk—uk>2
O1 Ok

is the chi-square distribution with degrees of freedom k.
First, Z; ~ N(0,1), i=1,...,k, and Z’s are independent.
Second, each Z? ~ chi-square with degree of freedom 1.
Third, the chi-square distribution with degrees of freedom r is the
gamma(r/2,2) distribution.
Finally, the result follows from the next result.

UW-Madison (Statistics) Stat 609 Lecture 12 2015 8/17



Additivity of the gamma distributions
If X; ~ gamma(a;,B), i=1,...,k, are independent, then the sum
T=Xy+--+ Xk ~gamma(oq +---+ ok, B).
This is because the mgf of X; is (1 — Bt)~% when t < 8.
By Theorem 4.2.12, the mgf of T is

(1=BO~ - (1=Bt) % = (1= p) (e < p
which is the mgf of gamma(oy + - - - + o, B).

A non-additive class of distributions
The class of all uniform distributions is not additive.
If X ~ uniform(0,1) and Y ~ uniform(0,1) are independent and f(x) is
the indicator function of the interval (0, 1), then the pdf of X+ Y is
heort) = [ H(t=y)f(y)dy = ay
—oo0 O<t—y<1,0<y<1
f[lydy=2-t 1<t<2
=9 fldy=t 0<t<1
0 otherwise

which is not a uniform pdf.
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The next result is useful if the mgf is not finite in a neighborhood of 0. |

Theorem 4.2.12A.

If Xi,..., X, are independent random variables with chf’s

Ox, (1),..,0x,(t), then the chf of the sum T = X; +--- 4 X, is
o7(t) = 0x,(1)---ox,(t) tez

Additivity of the Cauchy distribution

If U and V are independent random variables having the Cauchy(0,1)
distribution, what is the distribution of U+ V?

Since the mgf of a Cauchy distribution is not finite except at 0, we
apply Theorem 4.2.12A.

Note that the chf of Cauchy(0,1) is e l!l, t € %.

By Theorem 4.2.12A, the chf of U+ V is e llle~lll = =21l t € , which
is the chf of Cauchy(0,2).

By the uniqueness theorem, U+ V ~ Cauchy(0,2).

Of course, the same result can be derived using the convolution, but

the argument is much more complicated (exercise).
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We now consider a more general transformation, a vector of
transformations of a random vector.

The pdf of a multivariate transformation

Let X be a k-dimensional random vector with a joint pdf 7x and let
Y = g(X), where g is a Borel function from %* to #* (so that Y is a
k-dimensional random vector). Let Aq, ..., A, be disjoint sets in %%
such that P(X € AjU---UApR) =1 and g on A; is one-to-one with a
nonvanishing Jacobian, i.e., the determinant |dg(x)/dx| # 0 on A,
j=1,...,m. Then Y has the following joint pdf

=Y e (X)),

J=1

|9hi(x)/ox|

where h; is the inverse function of g on A;, and ||dh;(x)/dx|| is the
absolute value of the determinant of the matrix dh;(x)/dx, j=1,....m

Example

Let X = (X1, X2) be a 2-dimensional random vector with joint pdf fx.
Consider first the transformation u = g(x1,x2) = (u1, Uz) = (X1, X1 + X2).
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8U1
du_( ox
ox |\ 9%
3X1

uy
8X2 _
dup |
an

(17)

@
ox

ax

=1 ou

=1

Using the transformation theorem, the joint pdf of U = g(X) is

fu(uy, up) = fx(uy, U — uy),

The marginal pdf of U> = X; + X5 is the same as that previously derived

Next, consider the transformation v = g(x1,x2) = (v4, Vo) = (X1 /X2, X2).

vy

8V1
av ( X o
X Ivp
a aX1 aXé

Iva

fu,(U2) = 1 fx(uq, Uz — uq)duy.

)

1 _x
X2 %
0 1

ﬂ
ox

1

%
ov

Xo

Using the transformation theorem, the joint pdf of V = g(X) is
fv(vi,v2) = |vo|fx(v1 V2, v2),
The marginal pdf of V4 = X;/Xz is
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In particular, if X; and X, are independent, then

)

fn(2) = | valf, (vrve)ig (ve)ve
Finally, consider the transformation w=g(xq,x2) = (wq, wo) = (X1 X2, X2).

8W1 (9W1
8W: o | _ [ X X aw
ox owp  Iw, 0o 1 ox
8x1 9x2

ox
% Gw

1

Wo

Using the transformation theorem, the joint pdf of W = g(X) is
fv(wy, wo) = |wa| e (wywy T wa),

The marginal pdf of Wy = X; Xz is
fW1(W1):/_ \wa| i (wywy ! wo)dwe.

In particular, if X; and X5 are independent, then

foy (W) = [ Iwal ™ B (W ) (w2)
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A number of results can be derived from these results.

Example 4.3.3 (product of two beta random variables)

Let X ~ beta(a, ) and Y ~ beta(o + BB, 7) be independent so that the
joint pdf is

T(@+B) atq g1 T(@FB+Y) aiptq yrt

or®” Y e prm? T (Y
O<x<1, O<y<1

Consider U= XY and V = X.

An application of the early result for product gives that

fU(u):/w v~ f(uv1, v)dv

But we need to be careful when the pdf is 0 in some intervals.
Note that the range of (U, V) is the region 0 < u < v < 1 (why?).
Thus,

_T@+B+7) [ a G U
fU(U)_F(a)F([S)F(y)/u 1 —v)h- 1(\/) (1—;) v
forO<u<1(fy(u)y=0whenu<0oru>1.)
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Making the change of variable s = (u/v —u)/(1 — u) so that
dy = —u/[v?(1—u)],s=0when v=1and s=1when v=u, we
obtain that

() = fEHPED oy et [1(U )" (18 L

F(e)r(B)r(y)
_ (a+B+7) o RS _
= Hayryriy V(=P P e s
= Mua—1(1 _ u)ﬁ+y—1 w
F(e)r(B)r(y) r(B+7y)
_ Ho+B+7Y) o _
S Hargept (7T 0<ust

Thus, the product XY ~ beta(a, B + 7).

Example
If Xi ~N(0,1),i=1,...,n, are independent, we want to show that, for
every i=1,...,n, the random variables U = X12 +.--+ X2 and

V= X,?/U are independent, and we want to find the pdf of V;.
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The joint pdf of Xj,..., Xn is

n
fx(x1,...,xn):(\%n)nexp <_;/;Xi2> Xi€e#,i=1,..n
For Y;= X2, i=1,...,n, an application of the transformation theorem
shows that the joint pdf of Yi,..., Y, is
1 1 :
W—MGXP (—2;%) yi>0,i=1,..,n.
LetU=Yi+---+Ypand V;=Y;/U,i=1,...n.

fy(Vi,..s¥n) =

Then Y;=UV;,i=1,...n—1,and Y,=UV,=U(1—- Vi —---— V,_4).
Vi v 0 --- 0
v 0O u --- O
a(y1,,yn) = 2 P VAT L
8(uv1...v 1)_ - "
Tl T Vi.y 0O O - wu
v, 0 O - 0
where vo=1—v4 —--- —V_4.

Since Y;>0,i=1,..nU>0and0< V;<1,i=1,...,n.
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The joint pdf for U and V4,...,V, ¢ is

— 1 _ _ 1—V — e —Vh
fy(uvy, ..., uvp)vpu'" Y21 g-u/2 1 1

~ on/2 ViV
Therefore, we know that U and (V4,..., V,,_1) are independent and,
hence, U and V; are independent forany i =1,...,n—1.
Since V,=1-V; —---—V,_4, U and V, are independent.
If W= U-X?, then
X ¢ xew
U WwW+x2 1+X2/W
Previously we showed that Z = X2/ W has pdf
r(n/2) Pl
r(1/2)r((n—1)/2) (1 +z)(r-1/2’
Then the transformation V; = Z /(1 + Z) gives the following pdf for V;:
(n/2
U e IS,
which is beta(1/2,(n—1)/2).
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