Lecture 16: Hierarchical models and miscellanea

It is often easier to model a practical situation by thinking of things in a
hierarchy.

Example 4.4.1 (binomial-Poisson hierarchy)

@ An insect lays many eggs, each surviving with probability p.

@ On the average, how many eggs will survive?

@ Let Y be the number of eggs and X be the number of survivors;
both are random variables.

@ We can model this situation by first modeling the distribution of Y;
given Y, we then model the distribution of X|Y.

@ We can then obtain the joint distribution of (X, Y) and marginal
distributions of X and Y.

@ We can model the number of eggs by a Poisson distribution, i.e.,
Y ~ Poisson(1), where A > 0 is the average of eggs.

@ Given Y, we can model the number of survivors as
X|Y ~ binomial(p,Y).
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@ What is the marginal distribution of X?
For x=0,1,2,...,
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The distribution of X is Poisson(pA)!
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@ Then, E(X) = pA, which can also be obtained using
E(X) = E[E(X|Y)] = E(pY) = pE(Y) = pA
without using the marginal distribution of X.

@ If we begin with our model by saying that X ~ Poisson(6), then
6 = pA with Y playing no role at all. Introducing Y in the hierarchy
was mainly aid our understanding of the model.

Example (binomial-binomial hierarchy)
A very similar hierarchical model can be described as follows.

@ A market survey is conducted to study whether a new product is

preferred over the product currently available in the market (old
product).

@ The survey is conducted by mail. Questionnaires are sent along
with the sample products (both new and old) to N customers
randomly selected from a population.

@ Each customer is asked to fill out the questionnaire and return it,

with response 1 (new is better than old) or 0 (otherwise).
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@ Let X be the number of ones in the returned questionnaires.
What is the distribution of X?

@ If every customer returns the questionnaire, then (from
elementary probability) X ~ binomial(p,N) (assuming that the
population is large enough so that customers respond
independently), where p € (0,1) is the overall rate of customers
who prefer the new product.

@ Some customers, however, do not return the questionnaires.
Let Y be the number of customers who respond.

@ If customers respond independently with the same probability
7 € (0,1), then Y ~ binomial(x,N).

@ Given Y =y (an integer between 0 and N), X|Y =y ~ (p,y) if
y > 1 and the point mass at 0 if y = 0.

@ Forx=0,1,...,N,

P(X:x):kﬁl“ P(X:X,Y:k):lﬁP(X:x\Y:k)P(Y:k)
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It turns out that the marginal distribution of X is the binomial(np, N)
distribution.

@ Hierarchical models can have more than two stages.

@ The advantage is that complicated processes may be modeled by
a sequence of relatively simple models placed in a hierarchy.

@ Conditional distributions play a central role.

@ The random variables in hierarchical models may be all discrete
(as in our previous examples), all continuous, or some discrete
and some continuous.
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More general joint pdf’s and conditional distributions

So far we have considered only the situation where all random
variables are continuous or all are discrete.

What if X is a continuous random variable and Y is a discrete random
variable on #'?

We can define the joint “pdf” to be a function f(x, y) satisfying

X
P(ng,Y:y):/ f(t,y)dt, XER, Yy

Then the marginal pdf of X and pmf of Y are respectively

k()= ¥ fxy) and fiy)= [ fxy)ox
ye¥w -
The conditional pdf of X|Y or pmf of Y|X can be defined as before.
Similarly we can deal with the situation where X is a continuous
random vector and Y is a discrete random vector.
If X or Y is neither discrete nor continuous, we can still define
conditional distributions. But it involves higher level mathematics.
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Suppose that X is a continuous random variable and Y is a discrete
random variable with " = {0, 1}, and the joint pdf is

_a_ a—X7/2 _
f(x,y) = Ve =% ez
’ 1—a o—|x] —
2 € y_ )
where 0 < a < 1. Then
o . (0 —X2/2 1—06 —|X|
fx(x) =f(x,0)+f(x,1) = —me t—5—¢ XeEX
00 o =0
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Mixture distributions

In the previous example, the pdf fy is referred to as a mixture
distribution (or pdf), since it is a convex combination of two
distributions (pdf’s).

Example 4.4.5 (three-stage hierarchy)

Consider a generalization of Example 4.4.1, where instead of one
mother insect there are a large number of mothers and one mother is
chosen at random from a (possibly continuous) distribution G.

The following three-stage hierarchy may be more appropriate:

number of survivors X from Y eggs  X|Y ~ binomial(p,Y)
number of eggs Y from a given mother Z  Y|Z ~ Poisson(Z)
a particular motherZ Z~G

v
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Suppose that Z ~ exponential(). Then

E(X) = E[E(X|Y)] = pE(Y) = pE[E(Y|Z)] = PE(Z) = pB
The three-stage model can be thought of as a two-stage model by
combining the last two stages; we just need to obtain the marginal
distribution of Y.
e “zr 1

P(Y=y) = /O°°f(y|z)fz(z)o/z:/O y! 5 e /B dz

1 oo 1 1
- Y a—2(1+871) -
ﬁy!/o zVe az = [3 | (y+1)(1+[3—1)}’+1

1 prt! (Y
B(+BY+T  1+pB ( 1 +ﬁ>
which is the geometric distribution with probability (14 8)", i.e

number of survivors X from Y eggs  X|Y ~ binomial(p,Y)
number of eggs Y Y ~ geometric((1+8) 1)

However, the three-stage model is easier to understand.
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Calculation of mean and variance

Aside from the advantage in understanding models, hierarchical
models can often make the calculation of mean and variance easier.
Let X be a random variable having a pdf that is the noncentral chi-
square pdf with noncentrality parameter A and degrees of freedom n:

o yn/2+k-1 e—x/2 A /2)ke=2/2
fx(x) = Z r n/2+k( d )k|
= T(n/2+k)2 !

Calculating E(X) is directly using this pdf not easy.

However, the pdf is the marginal pdf of X in the following two-stage
model:

x>0

X|K ~ chisquare with degrees of freedom n+2K
K ~ Poisson(1/2)
Then
E(X) = E[E(X|K)]=E(n+2K)=n+2E(K)=n+A
Var(X) = E[Var(X|K)] + Var(E(X|K)) = E(2n+ 4K) + Var(n+ 2K)
= 2n+4E(K)+4Var(K) =2n+4A
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Example 4.4.6.
Suppose that

X|P ~ binomial(n, P), P ~ beta(c, B)

How to calculate E(X) and Var(X)?

E(X) = EIE(X|P)) = E(nP) = nE(P) = "2
Using the variance formula derived previously,
Var(X) = Var(E(X|P))+ E[Var(X|P)]
= Var(nP)+ E[nP(1— P)]
= mPVar(P)+nE(P) — nE(P?)
B nPaf no no(a+1)
= @tPR@tp1) atp (arpB)atBrT)

nof(a-+p+n)
(a+B)2(a+B+1)
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Theorem 4.7.9 (Covariance inequality)

Let X be a random variable and g and h be nondecreasing functions
such that E[g(X)], E[h(X)], and E[g(X)h(X)] exist. Then

Cov(g(X), A(X)) > 0.

Proof.
Let Z = h(X), uz = E[A(X)], and h~1(£) = inf{x : h(x) > t}.
Then h(x) > u iff x > h~'(uz), and
Cov(g(X), h(X))
= E[{a(X) — E[9(X)1}(Z — uz)] = E[g(X)(Z — 1z)]
= E[g(X)(Z —u)I({Z < pz})] + E[9(X)(£ — u2)I({Z > uz})]
> E[g(h™" (u2))(Z — 1) ({Z < pi2})]
+E[g(h (12))(Z — 12)I({Z > p2})]
= E[g(h ' (u2))(Z — )] = g(h™" (1)) E(Z — 12)
=0

|
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Best prediction
Let X be a random variable on with E(X?) < o

We want to predict the future value of X by constructing a g(Y'), where

Y is another random variable currently observed.

We now show that E(X|Y) is the best predictor of X in the sense that

E[IX—EX|Y)P= min E[X—g(Y)Z
[ (XIY)] B [X—g(Y)]

EIX—g(Y)P = E[X—E(X|Y)+E(X|Y)—g(Y)]2
= E[X — E(X|Y)2+ E[E(X|Y) - g(Y)2
+2E{[X — E(X|Y)[E(X|Y)—g(V)]}
= E[X— E(X|Y)2+E[E(X|Y) - g(Y)]?

+2E{E{[X - E(XI)IE(X]Y)—g(IIY}}

— E[X—E(X|Y)2+E[E(X]Y)—g(V)]P

+2E{[E(X|Y) = 9(YV)IE[X - E(X]Y)[ Y]}

= E[X— E(X|Y)2+E[E(X|Y) - g(Y)]?
> E[X—E(X|Y)]?
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In some applications, the concept of independence of X and Y is not
enough.

There are situations in which X and Y are not independent, but if
some information regarding another random vector Z is given, then X
and Y are conditionally independent.

Definition (conditional Independence)

Let X, Y, and Z be random vectors. X and Y are conditionally
independent given Z iff

F(x,y|z) = F(x|2)F(y|z) forallx,y, z

where F(x,y|z) is the cdf of (X, Y)|Z =z, F(x|z) is the cdf of X|Z = z,
and F(y|z) is the cdf of Y|Z = z.

Example

Let Z, U, and V be independent random variables, X = Z+ U, and
Y=Z2+V.
Then X and Y are not independent because of the common term Z.
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For example, if E(XY) exists, then
Cov(X,Y) = Cov(Z+U,Z+V)

= Cov(Z,Z)+Cov(Z,U)+Cov(Z,V)+Cov(U, V)
= Var(Z)>0

But conditioned on Z =z, X and Y are independent because

X=z+Uand Y=2z+V and U and V are independent.

A rough proof is the following.

F(x—z,y—2z|z) = F(u,v|z)=F(u,v)=F(u)F(v)
F(ulz)F(v|z) = F(x = z|2)F(y — z|2)

This holds for all x, y, and z, and hence
F(x.y|z) = F(x|z)F(y|z)
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