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Lecture 16: Hierarchical models and miscellanea
It is often easier to model a practical situation by thinking of things in a
hierarchy.

Example 4.4.1 (binomial-Poisson hierarchy)
An insect lays many eggs, each surviving with probability p.
On the average, how many eggs will survive?
Let Y be the number of eggs and X be the number of survivors;
both are random variables.
We can model this situation by first modeling the distribution of Y ;
given Y , we then model the distribution of X |Y .
We can then obtain the joint distribution of (X ,Y ) and marginal
distributions of X and Y .
We can model the number of eggs by a Poisson distribution, i.e.,
Y ∼ Poisson(λ ), where λ > 0 is the average of eggs.
Given Y , we can model the number of survivors as
X |Y ∼ binomial(p,Y ).
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What is the marginal distribution of X?
For x = 0,1,2, ...,

P(X = x) =
∞

∑
y=x

P(X = x ,Y = y) x ≤ y

=
∞

∑
y=x

P(X = x |Y = y)P(Y = y)

=
∞

∑
y=x

(
y
x

)
px (1−p)y−x e−λ λ y

y !

=
(λp)xe−λ

x!

∞

∑
y=x

[(1−p)λ ]y−x

(y −x)!

=
(λp)xe−λ

x!

∞

∑
t=0

[(1−p)λ ]t

t!
t = y −x

=
(λp)xe−λ

x!
e(1−p)λ =

e−pλ (λp)x

x!

The distribution of X is Poisson(pλ )!
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Then, E(X ) = pλ , which can also be obtained using

E(X ) = E [E(X |Y )] = E(pY ) = pE(Y ) = pλ

without using the marginal distribution of X .
If we begin with our model by saying that X ∼ Poisson(θ), then
θ = pλ with Y playing no role at all. Introducing Y in the hierarchy
was mainly aid our understanding of the model.

Example (binomial-binomial hierarchy)
A very similar hierarchical model can be described as follows.

A market survey is conducted to study whether a new product is
preferred over the product currently available in the market (old
product).
The survey is conducted by mail. Questionnaires are sent along
with the sample products (both new and old) to N customers
randomly selected from a population.
Each customer is asked to fill out the questionnaire and return it,
with response 1 (new is better than old) or 0 (otherwise).
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Let X be the number of ones in the returned questionnaires.
What is the distribution of X?
If every customer returns the questionnaire, then (from
elementary probability) X ∼ binomial(p,N) (assuming that the
population is large enough so that customers respond
independently), where p ∈ (0,1) is the overall rate of customers
who prefer the new product.
Some customers, however, do not return the questionnaires.
Let Y be the number of customers who respond.
If customers respond independently with the same probability
π ∈ (0,1), then Y ∼ binomial(π,N).
Given Y = y (an integer between 0 and N), X |Y = y ∼ (p,y) if
y ≥ 1 and the point mass at 0 if y = 0.
For x = 0,1, ...,N,

P(X = x) =
N

∑
k=x

P(X = x ,Y = k) =
N

∑
k=x

P(X = x |Y = k)P(Y = k)
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=
N

∑
k=x

(
k
x

)
px (1−p)k−x

(
N
k

)
π

k (1−π)N−k

=

(
N
x

)
(πp)x (1−πp)N−x

N

∑
k=x

(
N−x
k −x

)(
π−πp
1−πp

)k−x( 1−π

1−πp

)N−k

=

(
N
x

)
(πp)x (1−πp)N−x

It turns out that the marginal distribution of X is the binomial(πp,N)
distribution.

Hierarchical models can have more than two stages.
The advantage is that complicated processes may be modeled by
a sequence of relatively simple models placed in a hierarchy.
Conditional distributions play a central role.
The random variables in hierarchical models may be all discrete
(as in our previous examples), all continuous, or some discrete
and some continuous.
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More general joint pdf’s and conditional distributions
So far we have considered only the situation where all random
variables are continuous or all are discrete.
What if X is a continuous random variable and Y is a discrete random
variable on Y ?
We can define the joint “pdf” to be a function f (x ,y) satisfying

P(X ≤ x ,Y = y) =
∫ x

−∞

f (t ,y)dt , x ∈R, y ∈ Y

Then the marginal pdf of X and pmf of Y are respectively

fX (x) = ∑
y∈Y

f (x ,y) and fY (y) =
∫

∞

−∞

f (x ,y)dx

The conditional pdf of X |Y or pmf of Y |X can be defined as before.
Similarly we can deal with the situation where X is a continuous
random vector and Y is a discrete random vector.
If X or Y is neither discrete nor continuous, we can still define
conditional distributions. But it involves higher level mathematics.
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Example.
Suppose that X is a continuous random variable and Y is a discrete
random variable with Y = {0,1}, and the joint pdf is

f (x ,y) =


α√
2π

e−x2/2 y = 0,

1−α

2 e−|x | y = 1,
x ∈R

where 0 < α < 1. Then

fX (x) = f (x ,0) + f (x ,1) =
α√
2π

e−x2/2 +
1−α

2
e−|x | x ∈R

fY (y) =
∫

∞

−∞

f (x ,y)dx =

{
α y = 0

1−α y = 1

f (y |x) =
f (x ,y)

fX (x)
=


α√
2π

e−x2/2
/(

α√
2π

e−x2/2 + 1−α

2 e−|x |
)

y = 0

1−α

2 e−|x |
/(

α√
2π

e−x2/2 + 1−α

2 e−|x |
)

y = 1
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f (x |y) =
f (x ,y)

fY (y)
=


1√
2π

e−x2/2 y = 0

1
2e−|x | y = 1

x ∈R

Mixture distributions
In the previous example, the pdf fX is referred to as a mixture
distribution (or pdf), since it is a convex combination of two
distributions (pdf’s).

Example 4.4.5 (three-stage hierarchy)
Consider a generalization of Example 4.4.1, where instead of one
mother insect there are a large number of mothers and one mother is
chosen at random from a (possibly continuous) distribution G.

The following three-stage hierarchy may be more appropriate:

number of survivors X from Y eggs X |Y ∼ binomial(p,Y )

number of eggs Y from a given mother Z Y |Z ∼ Poisson(Z )

a particular mother Z Z ∼G
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Suppose that Z ∼ exponential(β ). Then

E(X ) = E [E(X |Y )] = pE(Y ) = pE [E(Y |Z )] = pE(Z ) = pβ

The three-stage model can be thought of as a two-stage model by
combining the last two stages; we just need to obtain the marginal
distribution of Y .

P(Y = y) =
∫

∞

0
f (y |z)fZ (z)dz =

∫
∞

0

e−zzy

y !

1
β

e−z/β dz

=
1

βy !

∫
∞

0
zye−z(1+β−1)dz =

1
βy !

Γ(y + 1)
1

(1 + β−1)y+1

=
1
β

β y+1

(1 + β )y+1 =
1

1 + β

(
1− 1

1 + β

)y

which is the geometric distribution with probability (1 + β )−1, i.e.,

number of survivors X from Y eggs X |Y ∼ binomial(p,Y )

number of eggs Y Y ∼ geometric((1 + β )−1)

However, the three-stage model is easier to understand.
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Calculation of mean and variance
Aside from the advantage in understanding models, hierarchical
models can often make the calculation of mean and variance easier.
Let X be a random variable having a pdf that is the noncentral chi-
square pdf with noncentrality parameter λ and degrees of freedom n:

fX (x) =
∞

∑
k=1

xn/2+k−1e−x/2

Γ(n/2 + k)2n/2+k
(λ/2)ke−λ/2

k !
x > 0

Calculating E(X ) is directly using this pdf not easy.
However, the pdf is the marginal pdf of X in the following two-stage
model:

X |K ∼ chi square with degrees of freedom n + 2K
K ∼ Poisson(λ/2)

Then

E(X ) = E [E(X |K )] = E(n + 2K ) = n + 2E(K ) = n + λ

Var(X ) = E [Var(X |K )] + Var(E(X |K )) = E(2n + 4K ) + Var(n + 2K )

= 2n + 4E(K ) + 4Var(K ) = 2n + 4λ
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Example 4.4.6.
Suppose that

X |P ∼ binomial(n,P), P ∼ beta(α,β )

How to calculate E(X ) and Var(X )?

E(X ) = E [E(X |P)] = E(nP) = nE(P) =
nα

α + β

Using the variance formula derived previously,

Var(X ) = Var(E(X |P)) + E [Var(X |P)]

= Var(nP) + E [nP(1−P)]

= n2Var(P) + nE(P)−nE(P2)

=
n2αβ

(α + β )2(α + β + 1)
+

nα

α + β
− nα(α + 1)

(α + β )(α + β + 1)

=
nαβ (α + β + n)

(α + β )2(α + β + 1)
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Theorem 4.7.9 (Covariance inequality)
Let X be a random variable and g and h be nondecreasing functions
such that E [g(X )], E [h(X )], and E [g(X )h(X )] exist. Then

Cov(g(X ),h(X ))≥ 0.

Proof.
Let Z = h(X ), µz = E [h(X )], and h−1(t) = inf{x : h(x)≥ t}.
Then h(x)≥ µz iff x ≥ h−1(µz), and

Cov(g(X ),h(X ))

= E [{g(X )−E [g(X )]}(Z −µz)] = E [g(X )(Z −µz)]

= E [g(X )(Z −µz)I({Z < µz})] + E [g(X )(Z −µz)I({Z ≥ µz})]

≥ E [g(h−1(µz))(Z −µz)I({Z < µz})]

+E [g(h−1(µz))(Z −µz)I({Z ≥ µz})]

= E [g(h−1(µz))(Z −µz)] = g(h−1(µz))E(Z −µz)

= 0
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Best prediction

Let X be a random variable on with E(X 2) < ∞

We want to predict the future value of X by constructing a g(Y ), where
Y is another random variable currently observed.
We now show that E(X |Y ) is the best predictor of X in the sense that

E [X −E(X |Y )]2 = min
g:E [g(Y )]2<∞

E [X −g(Y )]2.

E [X −g(Y )]2 = E [X −E(X |Y ) + E(X |Y )−g(Y )]2

= E [X −E(X |Y )]2 + E [E(X |Y )−g(Y )]2

+2E{[X −E(X |Y )][E(X |Y )−g(Y )]}
= E [X −E(X |Y )]2 + E [E(X |Y )−g(Y )]2

+2E
{

E{[X −E(X |Y )][E(X |Y )−g(Y )]|Y}
}

= E [X −E(X |Y )]2 + E [E(X |Y )−g(Y )]2

+2E{[E(X |Y )−g(Y )]E [X −E(X |Y )|Y ]}
= E [X −E(X |Y )]2 + E [E(X |Y )−g(Y )]2

≥ E [X −E(X |Y )]2
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In some applications, the concept of independence of X and Y is not
enough.
There are situations in which X and Y are not independent, but if
some information regarding another random vector Z is given, then X
and Y are conditionally independent.

Definition (conditional Independence)
Let X , Y , and Z be random vectors. X and Y are conditionally
independent given Z iff

F (x ,y |z) = F (x |z)F (y |z) for all x , y , z

where F (x ,y |z) is the cdf of (X ,Y )|Z = z, F (x |z) is the cdf of X |Z = z,
and F (y |z) is the cdf of Y |Z = z.

Example
Let Z , U, and V be independent random variables, X = Z + U, and
Y = Z + V .
Then X and Y are not independent because of the common term Z .
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For example, if E(XY ) exists, then

Cov(X ,Y ) = Cov(Z + U,Z + V )

= Cov(Z ,Z ) + Cov(Z ,U) + Cov(Z ,V ) + Cov(U,V )

= Var(Z ) > 0

But conditioned on Z = z, X and Y are independent because
X = z + U and Y = z + V and U and V are independent.
A rough proof is the following.

F (x−z,y −z|z) = F (u,v |z) = F (u,v) = F (u)F (v)

= F (u|z)F (v |z) = F (x −z|z)F (y −z|z)

This holds for all x , y , and z, and hence

F (x ,y |z) = F (x |z)F (y |z)
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