Chapter 5: Properties of a Random Sample

Lecture 17: Population, random sample, and statistics

Populations, samples, and models

@ One or a series of random experiments is performed.
@ Some data from the experiment(s) are collected.

@ Planning experiments and collecting data are not discussed in the
textbook.

@ Data analysis and inference: extract information from the data,
interpret the results, and draw some conclusions.

@ The data set is a realization of a random vector defined on a
sample space.

@ The distribution of the random vector is called the population.
In some cases, a population may be a set of elements from which
we draw a sample.

@ The random vector that produces the data is called a sample from
the population.
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@ The size of the data set is called the sample size.
@ A population is known iff the distribution is completely known.

@ In a statistical problem, the population is at least partially
unknown.

@ We would like to deduce some properties of the population based
on the available sample.

@ A statistical model is a set of assumptions on the population and
is often postulated to make the analysis possible or easy.

@ Postulated models are often based on knowledge of the problem
under consideration.

@ A statistical model or population is parametric if it can be indexed
by a vector of fixed dimension. Otherwise it is nonparametric.

Statistics and their distributions

@ Our data set is a realization of a sample (random vector) X from
an unknown population
@ Statistic T(X): A function T of X; T(X) is a known value

whenever X is known.
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@ Statistical analysis and inference is based on various statistics, for
various purposes.

@ X itself is a statistic, but it is a trivial statistic.

@ The range of a nontrivial statistic T(X) is usually simpler than that
of X, i.e., T(X) provides a “reduction”.

@ For example, X may be a random n-vector and T(X) may be a
random m-vector with an m much smaller than n.

@ A statistic T(X) is a random vector (element).

@ If the distribution of X is unknown, then the distribution of T may
also be unknown, although T is a known function.

@ Finding the form of the distribution of T is one of the major
problems in statistical inference.

@ Since T is a transformation of X, tools we learn in Chapters 1-4
for transformations may be useful in finding the distribution or an
approximation to the distribution of T(X).

@ Approximations are often given in terms of limits, i.e., the sample
size nincreases to .
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Definition 5.1.1 (random sample)

We say that a set of random vectors Xj, ..., X, is a random sample (of
size n) from a population (a cdf F) iff

(a) Xi,...,Xn are independent and

(b) the cdf of X; is F for all i.

When (a) and (b) hold, we also say that Xi,..., X, are iid (independent
and identically distributed) or Xi,..., Xj is an iid sample.

@ The joint cdf of a random sample Xj,..., X, with cdf F is
n
F(X1)"'F(Xn):HF(Xi), X/E«%k,i:‘l,...,n,
i=1

where k is the dimension of X;.

@ If F in the previous expression has a pdf or pmf f, then the same
expression holds with F replaced by f.

@ A random sample is viewed as sampling from an infinite

population or from a finite population with replacement so that X;’s

are independently observed.
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Sampling without replacement from a finite population

Sometimes we consider sampling without replacement from a finite
population; e.g., a survey of n persons from a population of size N.

@ If each person in the population has characteristic x; (a
k-dimensional vector), then a sample Xj,..., X, is n random
vectors and the range of each X; is {x1,...,xn}.

@ If sampling is without replacement, then Xj, ..., X;; can not be a

random sample because, if X; = xk, then X5 can not be xx so that

Xi and X, are not independent.
@ Is there a similar concept to “random sample"?

@ Xj,...,Xnis called a simple random sample of size n without
replacement from population {x,..., xn } iff

-1
P(Xi = X,y Xn = X;,) = <Ir\7l> , forany {i,....in} C{1,...,N}

@ In a simple random sample, X;’s have the same distribution;
however, they are not independent.

@ The dependence becomes weak when N is much larger than n.
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Example.
The simplest finite population is the population with N characteristics
X1, ..., Xy whose values are either 0 or 1 (binary).

In such a case the number of ones, M, or the proportion M/N is the

only thing unknown in the population.

If Xi,...,X, is a simple random sample without replacement from this
population and Y = Xj +---+ X, then

GG

AR =0,1,...,n
PY=y)=¢ d
0 otherwise

assuming that n< Mand n< N— M.
But X; and X, are not independent, since

M-1 M

Suppose now that sampling is with replacement so that after X is
sampled, it does not affect sampling X, ..., Xj.
Then, Xj, ..., X, are nindependent Bernoulli random variables

In this case, Y follows the binomial(n,M/N) distribution.
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Some important statistics
As we have defined earlier, a statistic is a function (possibly

vector-valued) of a sample Xj, ..., X, (not necessary a random sample

or a simple random sample).
The following are some important statistics used in applications.

@ The sample mean is the (simple) average of Xj,..., Xj, and

denoted by n
g XXy 18,
n ni5
@ When n>2 and k = 1, the sample variance is defined as
1 ¢ .
2 o 2
S =0 ,.:1(X’ X)

The sample standard deviation is defined as S = v/ S2.
When n > 2 and k > 2, the sample covariance matrix is
1 = <
S =——=Y (Xi—X)(X;—X)
n—-1454
The diagonal elements of S? are sample variances and the

off-diagonal elements are called sample covariances.
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@ When k =1, the jth sample moment is defined as
n .
M=1Yx.  k=12..
ni=

and the jth sample central moment is defined as
n

.1 _
M ==Y (X;— XY, k=2.3,...
= 5 L (%= X)

@ When k = 1, the empirical cdf is defined as

1 n
Fa)=-Y IX<x) xez,
i=1

where I(X; < x) =1 if X; < x and =0 if X; > x, the indicator
function of the set {X; < x}.
The empirical cdf is a discrete cdf, i.e., a step function with a jump
of size n=' at each X.
It can be used to estimate the unknown cdf F.
For a fixed x € Z, since each /(X; < x) is a Bernoulli random
variable and /(X; < x), i =1,...,n, are independent and have the
sample probability P(/(X; < x) =1) = P(X; < x) = F(x), the
distribution of nFy(x) is binomial(n, F(x)).
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Sums formed from a random sample are useful statistics.
We now study their properties.

Lemma 5.2.5.

Let Xj,..., X, be a random sample from a population and let g(x) be a
function such that E[g(X7) and Var(g(X7)) exist. Then,

E [Z g(x,-)] —nElg(X)] and  Var (ig(x,-)) — nvar(g(X,))
i=1 i=

|

The proof is simple and omitted.
Theorem 5.2.6.

Let Xj,..., X, be a random sample from a population F on % with mean
u and variance ¢2. Then

a. E(X)=p;

b. Var(X) = o2/n;

e [E(E) ="
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Letting g(X;) = X;/n, we can apply Lemma 5.2.5 to obtain
X)= E Iig(x,) — nE[g(X,)] = nE(X/n) = E(X;) = p
Var(X) = Var | ¥ g(6) | = nVar(g()) = V(X m) = | ar(X) =
To show c, we use the formula (derived in the last lecture)
= L1060~ (=) = (=)~ (X
Applying Lemma 5.2.5 with g(X;) = (X; — ul) we obtain
(n—1)E(S?) = El(n—1)8%=E | Y (X~ )|~ Eln(X — )2
— nE[(X; —p)? - nEI[(1)_( 1)) = nVar(X;) — nVar(X)
= (n—1)o®

v
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The results in Theorem 5.2.6 are about the moments of X and S2.

Since the sample mean X is a sum of independent random
variable/vectors divided by a constant n, the res_ults about a sum in
Chapter 4 is useful to obtain the distribution of X.

Example 5.2.8.

@ As a direct consequence of Theorem 4.2.14 (additivity of normal
distributions), we know that, if X, ..., X is a random sample from
N(u,c?), then X ~ N(u,c2/n).

@ From the additivity of gamma distributions, we know that, if
Xi,..., Xn is @ random sample from gamma(a, f8), then
X ~ gamma(no, 3 /n).

o If Xi,...,Xp is a random sample from Poisson(4 ), then
nX ~ Poisson(nA).

o If Xi,..., Xy is a random sample from binomial(m, p), then
nX ~ binomial(nm, p).
e If Xi,...,X, is a random sample from Cauchy(u,o), then the

sample mean X ~ Cauchy(u,c)!
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The last result can be proved as follows.

Let Xi,...,X, be a random sample from a population with chf ¢(t).
Then the chf of the sample mean is

ox () =[o(t/n)]".
Cauchy(u, o) has chf ¢(t) = e#=°l!l and hence
ox(t) = [9(t/n)]" = (eMV/neolimyn = ght=ell = o(1),  tex

The additivity of Cauchy(u, o) and N(u,c?) distributions are in fact the
special case of the following result.

Theorem.

Let a € [1,2] be a fixed constant. The class of distributions
corresponding to the class of chf’s =211 't ¢ 72, which is indexed by
u €% and o > 0, is additive.

Note that the normal distribution family is the special case of @ =2 and
the Cauchy distribution family is the special case of o = 1.
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Location-scale families

Suppose that Xi,..., X, is a random sample from a population in a
location-scale family, i.e., the pdf of X; is of the form o= 'f((x — u)/0)
with a known pdf f and parameters u € # and ¢ > 0.

From the discussion in Chapter 3, there exist random variables
Zy,...,2Zn such that X; = 0Z;+ u and the pdf of each Z; is f(x).

Furthermore Zi,...,Z, are independent and, hence, Z;,....,Z, is a
random sample from the population with pdf f(x).

The sample mean X and Z are related by

x-1 ZX——Z{GZ—F,LL ZZ+u cZ+u
=

Therefore, if we find that g(x) is the pdf of Z,theno 'g((x —u)/o)is
the pdf of X.

This argument has been used in the discussion of a random sample
from the Cauchy distribution family.

The pdf g may or may not be of a familiar pdf.
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Exponential families

When the population of a random sample is in an exponential family,
the joint distribution of some sums of functions of the sample can be
derived.

Theorem 5.2.11.
Suppose that Xi,..., X, is a random sample from a pdf or pmf

fo(x) = h(x)c(6) exp @ vv,-(en;-(x))
in an exponential family with parameter 6 € ©. Define statistics
Tj= ii}'()ﬁ), j=1,..k
im
If the set {(w4(0),...,wk(0)) : 6 € ©} contains an open subset of Z*,

then the distribution of T = (T4, ..., T¢) is in an exponential family with
pdf

k
9o(tr, ... t) = H(ty, ... t)[c(0)]"exp | Y W/(e)tj)
L
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Proof for the discrete case

The joint pmf of Xj,..., X, is

lﬂ[fe(Xi) = ﬁ[( )(9)9X9</ZW/ OX/)>]
=1

=1
— ﬁh(x,-)[c )] exp ZW, é@(&'))

Then, the pmf of T = (Ty,..., Tx) is
n

9o(t,...ts) = P(Th=t,....Thk=1t)= Y [Te(x)
tj:Zit}(XiL j:1 7777 ki=1

n k n
_ ¥ nmx,-)[c(e)]"exp(;w,-w);t;-(x;))

=Y t(x), j=1,..k =1

n k
= [ ) Hh(x,-)] [c(@)]"expgzw,-(e)q)
=Ei4(x), j=1,...k i=1 =1
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Example 5.2.12

If Xi,..., Xy is a random sample from Bernoulli trials, the joint pmf is

H I(xj =1 or 0)p%(1—p)'~*

= In] [l(x,_1 or 0)(1 —p)exp (X"og 1 ppﬂ

ﬁlx,_1 or 0) ] (1—p)"exp <Iog1p§n" >

i=1

I
l—|

h(x1,...,Xn) =

::

I(xi=10r0), c(8)=(1—-p), w(6)= Iog%

i p

The sum T = Xj +---+ X, has pmf

P(T=t)= Z I_nll(x,-:1or0)(1p)”exp(tlog1fp)

X1+-+Xp=ti=1

We know that T ~ binomial(n,p).
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