Chapter 5: Properties of a Random Sample
Lecture 17: Population, random sample, and statistics

Populations, samples, and models

- One or a series of random experiments is performed.
- Some data from the experiment(s) are collected.
- Planning experiments and collecting data are not discussed in the textbook.
- Data analysis and inference: extract information from the data, interpret the results, and draw some conclusions.
- The data set is a realization of a random vector defined on a sample space.
- The distribution of the random vector is called the population. In some cases, a population may be a set of elements from which we draw a sample.
- The random vector that produces the data is called a sample from the population.
The size of the data set is called the **sample size**.

A population is **known** iff the distribution is completely known.

In a statistical problem, the population is at least partially unknown.

We would like to deduce some properties of the population based on the available sample.

A **statistical model** is a set of assumptions on the population and is often postulated to make the analysis possible or easy.

Postulated models are often based on knowledge of the problem under consideration.

A statistical model or population is parametric if it can be indexed by a vector of fixed dimension. Otherwise it is nonparametric.

Statistics and their distributions

- Our data set is a realization of a sample (random vector) X from an unknown population

- Statistic $T(X)$: A function T of X; $T(X)$ is a known value whenever X is known.
Statistical analysis and inference is based on various statistics, for various purposes.

X itself is a statistic, but it is a trivial statistic.

The range of a nontrivial statistic $T(X)$ is usually simpler than that of X, i.e., $T(X)$ provides a "reduction".

For example, X may be a random n-vector and $T(X)$ may be a random m-vector with an m much smaller than n.

A statistic $T(X)$ is a random vector (element).

If the distribution of X is unknown, then the distribution of T may also be unknown, although T is a known function.

Finding the form of the distribution of T is one of the major problems in statistical inference.

Since T is a transformation of X, tools we learn in Chapters 1-4 for transformations may be useful in finding the distribution or an approximation to the distribution of $T(X)$.

Approximations are often given in terms of limits, i.e., the sample size n increases to ∞.
Definition 5.1.1 (random sample)

We say that a set of random vectors X_1, \ldots, X_n is a random sample (of size n) from a population (a cdf F) iff

(a) X_1, \ldots, X_n are independent and

(b) the cdf of X_i is F for all i.

When (a) and (b) hold, we also say that X_1, \ldots, X_n are iid (independent and identically distributed) or X_1, \ldots, X_n is an iid sample.

- The joint cdf of a random sample X_1, \ldots, X_n with cdf F is

 $$F(x_1) \cdots F(x_n) = \prod_{i=1}^{n} F(x_i), \quad x_i \in \mathbb{R}^k, \ i = 1, \ldots, n,$$

 where k is the dimension of X_i.

- If F in the previous expression has a pdf or pmf f, then the same expression holds with F replaced by f.

- A random sample is viewed as sampling from an infinite population or from a finite population with replacement so that X_i’s are independently observed.
Sampling without replacement from a finite population

Sometimes we consider sampling without replacement from a finite population; e.g., a survey of \(n \) persons from a population of size \(N \).

- If each person in the population has characteristic \(x_j \) (a \(k \)-dimensional vector), then a sample \(X_1, \ldots, X_n \) is \(n \) random vectors and the range of each \(X_i \) is \(\{x_1, \ldots, x_N\} \).

- If sampling is without replacement, then \(X_1, \ldots, X_n \) can not be a random sample because, if \(X_1 = x_k \), then \(X_2 \) can not be \(x_k \) so that \(X_1 \) and \(X_2 \) are not independent.

- Is there a similar concept to “random sample”?

\(X_1, \ldots, X_n \) is called a simple random sample of size \(n \) without replacement from population \(\{x_1, \ldots, x_N\} \) iff

\[
P(X_1 = x_{i_1}, \ldots, X_n = x_{i_n}) = \left(\frac{N}{n}\right)^{-1}, \quad \text{for any } \{i_1, \ldots, i_n\} \subset \{1, \ldots, N\}
\]

- In a simple random sample, \(X_i \)’s have the same distribution; however, they are not independent.

- The dependence becomes weak when \(N \) is much larger than \(n \).
Example.

The simplest finite population is the population with \(N \) characteristics \(x_1, \ldots, x_N \) whose values are either 0 or 1 (binary).

In such a case the number of ones, \(M \), or the proportion \(M/N \) is the only thing unknown in the population.

If \(X_1, \ldots, X_n \) is a simple random sample without replacement from this population and \(Y = X_1 + \cdots + X_n \), then

\[
P(Y = y) = \begin{cases}
\frac{\binom{M}{y} \binom{N-M}{n-y}}{\binom{N}{n}} & \text{if } y = 0, 1, \ldots, n \\
0 & \text{otherwise}
\end{cases}
\]

assuming that \(n < M \) and \(n < N - M \).

But \(X_1 \) and \(X_2 \) are not independent, since

\[
P(X_2 = 1 | X_1 = 1) = \frac{M-1}{N-1} \neq \frac{M}{N} = P(X_2 = 1)
\]

Suppose now that sampling is with replacement so that after \(X_1 \) is sampled, it does not affect sampling \(X_2, \ldots, X_n \).

Then, \(X_1, \ldots, X_n \) are \(n \) independent Bernoulli random variables

In this case, \(Y \) follows the \emph{binomial}(\(n, M/N \)) distribution.
Some important statistics

As we have defined earlier, a statistic is a function (possibly vector-valued) of a sample \(X_1, \ldots, X_n \) (not necessary a random sample or a simple random sample).

The following are some important statistics used in applications.

- The **sample mean** is the (simple) average of \(X_1, \ldots, X_n \), and is denoted by
 \[
 \bar{X} = \frac{X_1 + \cdots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i
 \]

- When \(n \geq 2 \) and \(k = 1 \), the **sample variance** is defined as
 \[
 S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2
 \]

 The **sample standard deviation** is defined as \(S = \sqrt{S^2} \).

- When \(n \geq 2 \) and \(k \geq 2 \), the **sample covariance matrix** is
 \[
 S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})'
 \]

 The diagonal elements of \(S^2 \) are sample variances and the off-diagonal elements are called **sample covariances**.
• When $k = 1$, the jth **sample moment** is defined as
 \[M_j = \frac{1}{n} \sum_{i=1}^{n} X_i^j, \quad k = 1, 2, \ldots \]
 and the jth **sample central moment** is defined as
 \[\tilde{M}_j = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^j, \quad k = 2, 3, \ldots \]

• When $k = 1$, the **empirical cdf** is defined as
 \[F_n(x) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \leq x) \quad x \in \mathbb{R}, \]
 where $I(X_i \leq x) = 1$ if $X_i \leq x$ and $= 0$ if $X_i > x$, the indicator function of the set $\{X_i \leq x\}$.
 The empirical cdf is a discrete cdf, i.e., a step function with a jump of size n^{-1} at each X_i.
 It can be used to estimate the unknown cdf F.
 For a fixed $x \in \mathbb{R}$, since each $I(X_i \leq x)$ is a Bernoulli random variable and $I(X_i \leq x)$, $i = 1, \ldots, n$, are independent and have the sample probability $P(I(X_i \leq x) = 1) = P(X_i \leq x) = F(x)$, the distribution of $nF_n(x)$ is $\text{binomial}(n, F(x))$.
Sums formed from a random sample are useful statistics. We now study their properties.

Lemma 5.2.5.
Let X_1, \ldots, X_n be a random sample from a population and let $g(x)$ be a function such that $E[g(X_1)]$ and $\text{Var}(g(X_1))$ exist. Then,

$$E \left[\sum_{i=1}^{n} g(X_i) \right] = nE[g(X_1)] \quad \text{and} \quad \text{Var} \left(\sum_{i=1}^{n} g(X_i) \right) = n \text{Var}(g(X_1))$$

Proof.
The proof is simple and omitted.

Theorem 5.2.6.
Let X_1, \ldots, X_n be a random sample from a population F on \mathbb{R} with mean μ and variance σ^2. Then

a. $E(\bar{X}) = \mu$;
b. $\text{Var}(\bar{X}) = \sigma^2 / n$;
c. $E(S^2) = \sigma^2$.
Proof.

Letting \(g(X_i) = X_i/n \), we can apply Lemma 5.2.5 to obtain

\[
E(\bar{X}) = E\left[\sum_{i=1}^{n} g(X_i)\right] = nE[g(X_1)] = nE(X_1/n) = E(X_1) = \mu
\]

\[
\text{Var}(\bar{X}) = \text{Var}\left[\sum_{i=1}^{n} g(X_i)\right] = n\text{Var}(g(X_1)) = n\text{Var}(X_1/n) = \frac{1}{n} \text{Var}(X_1) = \frac{\sigma^2}{n}
\]

To show c, we use the formula (derived in the last lecture)

\[
(n - 1)S^2 = \sum_{i=1}^{n} [(X_i - \mu) - (\bar{X} - \mu)]^2 = \sum_{i=1}^{n} (X_i - \mu)^2 - n(\bar{X} - \mu)^2
\]

Applying Lemma 5.2.5 with \(g(X_i) = (X_i - \mu)^2 \), we obtain

\[
(n - 1)E(S^2) = E[(n - 1)S^2] = E\left[\sum_{i=1}^{n} (X_i - \mu)^2\right] - E[n(\bar{X} - \mu)^2]
\]

\[
= nE[(X_1 - \mu)^2] - nE[(\bar{X} - \mu)^2] = n\text{Var}(X_1) - n\text{Var}(\bar{X})
\]

\[= (n - 1)\sigma^2\]
The results in Theorem 5.2.6 are about the moments of \overline{X} and S^2. Since the sample mean \overline{X} is a sum of independent random variable/vectors divided by a constant n, the results about a sum in Chapter 4 is useful to obtain the distribution of \overline{X}.

Example 5.2.8.

- As a direct consequence of Theorem 4.2.14 (additivity of normal distributions), we know that, if $X_1, ..., X_n$ is a random sample from $N(\mu, \sigma^2)$, then $\overline{X} \sim N(\mu, \sigma^2/n)$.
- From the additivity of gamma distributions, we know that, if $X_1, ..., X_n$ is a random sample from $\text{gamma}(\alpha, \beta)$, then $\overline{X} \sim \text{gamma}(n\alpha, \beta/n)$.
- If $X_1, ..., X_n$ is a random sample from $\text{Poisson}(\lambda)$, then $n\overline{X} \sim \text{Poisson}(n\lambda)$.
- If $X_1, ..., X_n$ is a random sample from $\text{binomial}(m, p)$, then $n\overline{X} \sim \text{binomial}(nm, p)$.
- If $X_1, ..., X_n$ is a random sample from $\text{Cauchy}(\mu, \sigma)$, then the sample mean $\overline{X} \sim \text{Cauchy}(\mu, \sigma)$!
The last result can be proved as follows. Let X_1, \ldots, X_n be a random sample from a population with chf $\phi(t)$. Then the chf of the sample mean is

$$\phi_{\bar{X}}(t) = [\phi(t/n)]^n.$$

Cauchy (μ, σ) has chf $\phi(t) = e^{i\mu t - \sigma|t|}$ and hence

$$\phi_{\bar{X}}(t) = [\phi(t/n)]^n = (e^{i\mu t/n - \sigma|t/n|})^n = e^{i\mu t - \sigma|t|} = \phi(t), \quad t \in \mathbb{R}$$

The additivity of *Cauchy* (μ, σ) and $N(\mu, \sigma^2)$ distributions are in fact the special case of the following result.

Theorem.

Let $\alpha \in [1, 2]$ be a fixed constant. The class of distributions corresponding to the class of chf’s $e^{i\mu t - \sigma|t|^\alpha}$, $t \in \mathbb{R}$, which is indexed by $\mu \in \mathbb{R}$ and $\sigma > 0$, is additive.

Note that the normal distribution family is the special case of $\alpha = 2$ and the Cauchy distribution family is the special case of $\alpha = 1$.
Location-scale families

Suppose that X_1, \ldots, X_n is a random sample from a population in a location-scale family, i.e., the pdf of X_i is of the form $\sigma^{-1} f((x - \mu)/\sigma)$ with a known pdf f and parameters $\mu \in \mathbb{R}$ and $\sigma > 0$.

From the discussion in Chapter 3, there exist random variables Z_1, \ldots, Z_n such that $X_i = \sigma Z_i + \mu$ and the pdf of each Z_i is $f(x)$.

Furthermore Z_1, \ldots, Z_n are independent and, hence, Z_1, \ldots, Z_n is a random sample from the population with pdf $f(x)$.

The sample mean \bar{X} and \bar{Z} are related by

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} \sum_{i=1}^{n} (\sigma Z_i + \mu) = \frac{\sigma}{n} \sum_{i=1}^{n} Z_i + \mu = \sigma \bar{Z} + \mu$$

Therefore, if we find that $g(x)$ is the pdf of \bar{Z}, then $\sigma^{-1} g((x - \mu)/\sigma)$ is the pdf of \bar{X}.

This argument has been used in the discussion of a random sample from the Cauchy distribution family.

The pdf g may or may not be of a familiar pdf.
Exponential families

When the population of a random sample is in an exponential family, the joint distribution of some sums of functions of the sample can be derived.

Theorem 5.2.11.

Suppose that $X_1, ..., X_n$ is a random sample from a pdf or pmf

$$f_\theta(x) = h(x)c(\theta)\exp\left(\sum_{j=1}^{k} w_j(\theta)t_j(x)\right)$$

in an exponential family with parameter $\theta \in \Theta$. Define statistics

$$T_j = \sum_{i=1}^{n} t_j(X_i), \quad j = 1, ..., k$$

If the set $\{(w_1(\theta), ..., w_k(\theta)) : \theta \in \Theta\}$ contains an open subset of \mathbb{R}^k, then the distribution of $T = (T_1, ..., T_k)$ is in an exponential family with pdf

$$g_\theta(t_1, ..., t_k) = H(t_1, ..., t_k)[c(\theta)]^n \exp\left(\sum_{j=1}^{k} w_j(\theta)t_j\right)$$
Proof for the discrete case

The joint pmf of X_1, \ldots, X_n is

$$\prod_{i=1}^{n} f_{\theta}(x_i) = \prod_{i=1}^{n} \left[h(x_i)c(\theta) \exp \left(\sum_{j=1}^{k} w_j(\theta) t_j(x_i) \right) \right]$$

$$= \prod_{i=1}^{n} h(x_i)[c(\theta)]^{n} \exp \left(\sum_{j=1}^{k} w_j(\theta) \sum_{i=1}^{n} t_j(x_i) \right)$$

Then, the pmf of $T = (T_1, \ldots, T_k)$ is

$$g_{\theta}(t_1, \ldots, t_k) = P(T_1 = t_1, \ldots, T_k = t_k) = \sum_{t_j=\sum_i t_j(x_i), \ j=1,\ldots,k} \prod_{i=1}^{n} f_{\theta}(x_i)$$

$$= \sum_{t_j=\sum_i t_j(x_i), \ j=1,\ldots,k} \prod_{i=1}^{n} h(x_i)[c(\theta)]^{n} \exp \left(\sum_{j=1}^{k} w_j(\theta) \sum_{i=1}^{n} t_j(x_i) \right)$$

$$= \left[\sum_{t_j=\sum_i t_j(x_i), \ j=1,\ldots,k} \prod_{i=1}^{n} h(x_i) \right] [c(\theta)]^{n} \exp \left(\sum_{j=1}^{k} w_j(\theta) t_j \right)$$
Example 5.2.12

If X_1, \ldots, X_n is a random sample from Bernoulli trials, the joint pmf is

$$
\prod_{i=1}^{n} l(x_i = 1 \text{ or } 0)p^{x_i}(1 - p)^{1-x_i}
$$

$$
= \prod_{i=1}^{n} \left[l(x_i = 1 \text{ or } 0)(1 - p) \exp \left(x_i \log \frac{p}{1 - p} \right) \right]
$$

$$
= \left[\prod_{i=1}^{n} l(x_i = 1 \text{ or } 0) \right] (1 - p)^n \exp \left(\log \frac{p}{1 - p} \sum_{i=1}^{n} x_i \right)
$$

$h(x_1, \ldots, x_n) = \prod_{i=1}^{n} l(x_i = 1 \text{ or } 0), \quad c(\theta) = (1 - p), \quad w(\theta) = \log \frac{p}{1 - p}$

The sum $T = X_1 + \cdots + X_n$ has pmf

$$
P(T = t) = \sum_{x_1 + \cdots + x_n = t} \prod_{i=1}^{n} l(x_i = 1 \text{ or } 0)(1 - p)^n \exp \left(t \log \frac{p}{1 - p} \right)
$$

We know that $T \sim \text{binomial}(n,p)$.