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Chapter 5: Properties of a Random Sample
Lecture 17: Population, random sample, and statistics
Populations, samples, and models

One or a series of random experiments is performed.
Some data from the experiment(s) are collected.
Planning experiments and collecting data are not discussed in the
textbook.
Data analysis and inference: extract information from the data,
interpret the results, and draw some conclusions.
The data set is a realization of a random vector defined on a
sample space.
The distribution of the random vector is called the population.
In some cases, a population may be a set of elements from which
we draw a sample.
The random vector that produces the data is called a sample from
the population.
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The size of the data set is called the sample size.
A population is known iff the distribution is completely known.
In a statistical problem, the population is at least partially
unknown.
We would like to deduce some properties of the population based
on the available sample.
A statistical model is a set of assumptions on the population and
is often postulated to make the analysis possible or easy.
Postulated models are often based on knowledge of the problem
under consideration.
A statistical model or population is parametric if it can be indexed
by a vector of fixed dimension. Otherwise it is nonparametric.

Statistics and their distributions
Our data set is a realization of a sample (random vector) X from
an unknown population
Statistic T (X ): A function T of X ; T (X ) is a known value
whenever X is known.
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Statistical analysis and inference is based on various statistics, for
various purposes.
X itself is a statistic, but it is a trivial statistic.
The range of a nontrivial statistic T (X ) is usually simpler than that
of X , i.e., T (X ) provides a “reduction".
For example, X may be a random n-vector and T (X ) may be a
random m-vector with an m much smaller than n.
A statistic T (X ) is a random vector (element).
If the distribution of X is unknown, then the distribution of T may
also be unknown, although T is a known function.
Finding the form of the distribution of T is one of the major
problems in statistical inference.
Since T is a transformation of X , tools we learn in Chapters 1-4
for transformations may be useful in finding the distribution or an
approximation to the distribution of T (X ).
Approximations are often given in terms of limits, i.e., the sample
size n increases to ∞.
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Definition 5.1.1 (random sample)
We say that a set of random vectors X1, ...,Xn is a random sample (of
size n) from a population (a cdf F ) iff
(a) X1, ...,Xn are independent and
(b) the cdf of Xi is F for all i .
When (a) and (b) hold, we also say that X1, ...,Xn are iid (independent
and identically distributed) or X1, ...,Xn is an iid sample.

The joint cdf of a random sample X1, ...,Xn with cdf F is

F (x1) · · ·F (xn) =
n

∏
i=1

F (xi), xi ∈Rk , i = 1, ...,n,

where k is the dimension of Xi .
If F in the previous expression has a pdf or pmf f , then the same
expression holds with F replaced by f .
A random sample is viewed as sampling from an infinite
population or from a finite population with replacement so that Xi ’s
are independently observed.
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Sampling without replacement from a finite population
Sometimes we consider sampling without replacement from a finite
population; e.g., a survey of n persons from a population of size N.

If each person in the population has characteristic xj (a
k -dimensional vector), then a sample X1, ...,Xn is n random
vectors and the range of each Xi is {x1, ...,xN}.
If sampling is without replacement, then X1, ...,Xn can not be a
random sample because, if X1 = xk , then X2 can not be xk so that
X1 and X2 are not independent.
Is there a similar concept to “random sample"?
X1, ...,Xn is called a simple random sample of size n without
replacement from population {x1, ...,xN} iff

P(X1 = xi1 , ...,Xn = xin ) =

(
N
n

)−1

, for any {i1, ..., in} ⊂ {1, ...,N}

In a simple random sample, Xi ’s have the same distribution;
however, they are not independent.
The dependence becomes weak when N is much larger than n.
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Example.
The simplest finite population is the population with N characteristics
x1, ...,xN whose values are either 0 or 1 (binary).
In such a case the number of ones, M, or the proportion M/N is the
only thing unknown in the population.
If X1, ...,Xn is a simple random sample without replacement from this
population and Y = X1 + · · ·+ Xn, then

P(Y = y) =

 (M
y )(N−M

n−y )
(N

n)
y = 0,1, ...,n

0 otherwise

assuming that n < M and n < N−M.
But X1 and X2 are not independent, since

P(X2 = 1|X1 = 1) =
M−1
N−1

6= M
N

= P(X2 = 1)

Suppose now that sampling is with replacement so that after X1 is
sampled, it does not affect sampling X2, ...,Xn.
Then, X1, ...,Xn are n independent Bernoulli random variables
In this case, Y follows the binomial(n,M/N) distribution.
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Some important statistics
As we have defined earlier, a statistic is a function (possibly
vector-valued) of a sample X1, ...,Xn (not necessary a random sample
or a simple random sample).
The following are some important statistics used in applications.

The sample mean is the (simple) average of X1, ...,Xn, and is
denoted by

X̄ =
X1 + · · ·+ Xn

n
=

1
n

n

∑
i=1

Xi

When n ≥ 2 and k = 1, the sample variance is defined as

S2 =
1

n−1

n

∑
i=1

(Xi − X̄ )2

The sample standard deviation is defined as S =
√

S2.
When n ≥ 2 and k ≥ 2, the sample covariance matrix is

S2 =
1

n−1

n

∑
i=1

(Xi − X̄ )(Xi − X̄ )′

The diagonal elements of S2 are sample variances and the
off-diagonal elements are called sample covariances.
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When k = 1, the j th sample moment is defined as

Mj =
1
n

n

∑
i=1

X j
i , k = 1,2, ...

and the j th sample central moment is defined as

M̃j =
1
n

n

∑
i=1

(Xi − X̄ )j , k = 2,3, ...

When k = 1, the empirical cdf is defined as

Fn(x) =
1
n

n

∑
i=1

I(Xi ≤ x) x ∈R,

where I(Xi ≤ x) = 1 if Xi ≤ x and = 0 if Xi > x , the indicator
function of the set {Xi ≤ x}.
The empirical cdf is a discrete cdf, i.e., a step function with a jump
of size n−1 at each Xi .
It can be used to estimate the unknown cdf F .
For a fixed x ∈R, since each I(Xi ≤ x) is a Bernoulli random
variable and I(Xi ≤ x), i = 1, ...,n, are independent and have the
sample probability P(I(Xi ≤ x) = 1) = P(Xi ≤ x) = F (x), the
distribution of nFn(x) is binomial(n,F (x)).
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Sums formed from a random sample are useful statistics.
We now study their properties.

Lemma 5.2.5.
Let X1, ...,Xn be a random sample from a population and let g(x) be a
function such that E [g(X1) and Var(g(X1)) exist. Then,

E

[
n

∑
i=1

g(Xi)

]
= nE [g(X1)] and Var

(
n

∑
i=1

g(Xi)

)
= nVar(g(X1))

Proof.
The proof is simple and omitted.

Theorem 5.2.6.
Let X1, ...,Xn be a random sample from a population F on R with mean
µ and variance σ2. Then
a. E(X̄ ) = µ;
b. Var(X̄ ) = σ2/n;
c. E(S2) = σ2.
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Proof.
Letting g(Xi) = Xi/n, we can apply Lemma 5.2.5 to obtain

E(X̄ ) = E

[
n

∑
i=1

g(Xi)

]
= nE [g(X1)] = nE(X1/n) = E(X1) = µ

Var(X̄ ) = Var

[
n

∑
i=1

g(Xi)

]
= nVar(g(X1)) = nVar(X1/n) =

1
n

Var(X1) =
σ2

n
To show c, we use the formula (derived in the last lecture)

(n−1)S2 =
n

∑
i=1

[(Xi −µ)− (X̄ −µ)]2 =
n

∑
i=1

(Xi −µ)2−n(X̄ −µ)2

Applying Lemma 5.2.5 with g(Xi) = (Xi −µ)2, we obtain

(n−1)E(S2) = E [(n−1)S2] = E

[
n

∑
i=1

(Xi −µ)2

]
−E [n(X̄ −µ)2]

= nE [(X1−µ)2]−nE [(X̄ −µ)2] = nVar(X1)−nVar(X̄ )

= (n−1)σ
2
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The results in Theorem 5.2.6 are about the moments of X̄ and S2.
Since the sample mean X̄ is a sum of independent random
variable/vectors divided by a constant n, the results about a sum in
Chapter 4 is useful to obtain the distribution of X̄ .

Example 5.2.8.
As a direct consequence of Theorem 4.2.14 (additivity of normal
distributions), we know that, if X1, ...,Xn is a random sample from
N(µ,σ2), then X̄ ∼ N(µ,σ2/n).
From the additivity of gamma distributions, we know that, if
X1, ...,Xn is a random sample from gamma(α,β ), then
X̄ ∼ gamma(nα,β/n).
If X1, ...,Xn is a random sample from Poisson(λ ), then
nX̄ ∼ Poisson(nλ ).
If X1, ...,Xn is a random sample from binomial(m,p), then
nX̄ ∼ binomial(nm,p).
If X1, ...,Xn is a random sample from Cauchy(µ,σ), then the
sample mean X̄ ∼ Cauchy(µ,σ)!
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The last result can be proved as follows.
Let X1, ...,Xn be a random sample from a population with chf φ(t).
Then the chf of the sample mean is

φX̄ (t) = [φ(t/n)]n.

Cauchy(µ,σ) has chf φ(t) = eı̇µt−σ |t | and hence

φX̄ (t) = [φ(t/n)]n = (eı̇µt/n−σ |t/n|)n = eı̇µt−σ |t | = φ(t), t ∈R

The additivity of Cauchy(µ,σ) and N(µ,σ2) distributions are in fact the
special case of the following result.

Theorem.
Let α ∈ [1,2] be a fixed constant. The class of distributions
corresponding to the class of chf’s eı̇µt−σ |t |α , t ∈R, which is indexed by
µ ∈R and σ > 0, is additive.

Note that the normal distribution family is the special case of α = 2 and
the Cauchy distribution family is the special case of α = 1.
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Location-scale families
Suppose that X1, ...,Xn is a random sample from a population in a
location-scale family, i.e., the pdf of Xi is of the form σ−1f ((x−µ)/σ)
with a known pdf f and parameters µ ∈R and σ > 0.
From the discussion in Chapter 3, there exist random variables
Z1, ...,Zn such that Xi = σZi + µ and the pdf of each Zi is f (x).
Furthermore Z1, ...,Zn are independent and, hence, Z1, ...,Zn is a
random sample from the population with pdf f (x).
The sample mean X̄ and Z̄ are related by

X̄ =
1
n

n

∑
i=1

Xi =
1
n

n

∑
i=1

(σZi + µ) =
σ

n

n

∑
i=1

Zi + µ = σ Z̄ + µ

Therefore, if we find that g(x) is the pdf of Z̄ , then σ−1g((x −µ)/σ) is
the pdf of X̄ .
This argument has been used in the discussion of a random sample
from the Cauchy distribution family.
The pdf g may or may not be of a familiar pdf.
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Exponential families
When the population of a random sample is in an exponential family,
the joint distribution of some sums of functions of the sample can be
derived.

Theorem 5.2.11.
Suppose that X1, ...,Xn is a random sample from a pdf or pmf

fθ (x) = h(x)c(θ)exp

(
k

∑
j=1

wj(θ)tj(x)

)
in an exponential family with parameter θ ∈Θ. Define statistics

Tj =
n

∑
i=1

tj(Xi), j = 1, ...,k

If the set {(w1(θ), ...,wk (θ)) : θ ∈Θ} contains an open subset of Rk ,
then the distribution of T = (T1, ...,Tk ) is in an exponential family with
pdf

gθ (t1, ..., tk ) = H(t1, ..., tk )[c(θ)]n exp

(
k

∑
j=1

wj(θ)tj

)
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Proof for the discrete case
The joint pmf of X1, ...,Xn is

n

∏
i=1

fθ (xi) =
n

∏
i=1

[
h(xi)c(θ)exp

(
k

∑
j=1

wj(θ)tj(xi)

)]

=
n

∏
i=1

h(xi)[c(θ)]n exp

(
k

∑
j=1

wj(θ)
n

∑
i=1

tj(xi)

)

Then, the pmf of T = (T1, ...,Tk ) is

gθ (t1, ..., tk ) = P(T1 = t1, ...,Tk = tk ) = ∑
tj =∑i tj (xi ), j=1,...,k

n

∏
i=1

fθ (xi)

= ∑
tj =∑i tj (xi ), j=1,...,k

n

∏
i=1

h(xi)[c(θ)]n exp

(
k

∑
j=1

wj(θ)
n

∑
i=1

tj(xi)

)

=

 ∑
tj =∑i tj (xi ), j=1,...,k

n

∏
i=1

h(xi)

 [c(θ)]n exp

(
k

∑
j=1

wj(θ)tj

)
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Example 5.2.12
If X1, ...,Xn is a random sample from Bernoulli trials, the joint pmf is

n

∏
i=1

I(xi = 1 or 0)pxi (1−p)1−xi

=
n

∏
i=1

[
I(xi = 1 or 0)(1−p)exp

(
xi log

p
1−p

)]

=

[
n

∏
i=1

I(xi = 1 or 0)

]
(1−p)n exp

(
log

p
1−p

n

∑
i=1

xi

)

h(x1, ...,xn) =
n

∏
i=1

I(xi = 1 or 0), c(θ) = (1−p), w(θ) = log
p

1−p

The sum T = X1 + · · ·+ Xn has pmf

P(T = t) = ∑
x1+···+xn=t

n

∏
i=1

I(xi = 1 or 0)(1−p)n exp
(

t log
p

1−p

)
We know that T ∼ binomial(n,p).
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