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Lecture 18: Sampling distributions

In many applications, the population is one or several normal
distributions (or approximately).
We now study properties of some important statistics based on a
random sample from a normal distribution.
If X1, ...,Xn is a random sample from N(µ,σ2), then the joint pdf is

1
(2π)n/2σn exp

(
− 1

2σ2

n

∑
i=1

(xi −µ)2

)
, xi ∈R, i = 1, ...,n

Theorem 5.3.1.
Let X1, ...,Xn be a random sample from N(µ,σ2) and let X̄ and S2 be
the sample mean and sample variance. Then
a. X̄ and S2 are independent random variables;
b. X̄ ∼ N(µ,σ2/n);
c. (n−1)S2/σ2 has the chi-square distribution with n−1 degrees of
freedom.
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Proof.
We have already established property b (Chapter 4).
To prove property a, it is enough to show the independence of Z̄ and
S2

Z , the sample mean and variance based on Zi = (Xi−µ)/σ ∼N(0,1),
i = 1, ...,n, because we can apply Theorem 4.6.12 and

X̄ = σ Z̄ −µ and S2 =
σ2

n−1

n

∑
i=1

(Zi − Z̄ )2 = σ
2S2

Z

Consider the transformation

Y1 = Z̄ , Yi = Zi − Z̄ , i = 2, ...,n,
Then

Z1 = Y1− (Y2 + · · ·+ Yn), Zi = Yi + Y1, i = 2, ...,n,
and ∣∣∣∣ ∂ (Z1, ...,Zn)

∂ (Y1, ...,Yn)

∣∣∣∣=
1
n

Since the joint pdf of Z1, ...,Zn is

1
(2π)n/2 exp

(
−1

2

n

∑
i=1

z2
i

)
zi ∈R, i = 1, ...,n,
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the joint pdf of (Y1, ...,Yn) is

n
(2π)n/2 exp

−1
2

(
y1−

n

∑
i=2

yi

)2
exp

(
−1

2

n

∑
i=2

(yi + y1)2

)

=
n

(2π)n/2 exp
(
−n

2
y2

1

)
exp

−1
2

 n

∑
i=2

y2
i +

(
n

∑
i=2

yi

)2
 yi ∈R

i = 1, ...,n.

Since the first exp factor involves y1 only and the second exp factor
involves y2, ...,yn, we conclude (Theorem 4.6.11) that Y1 is
independent of (Y2, ...,Yn).
Since

Z1− Z̄ =−
n

∑
i=2

(Zi − Z̄ ) =−
n

∑
i=2

Yi and Zi − Z̄ = Yi , i = 2, ...,n,

we have

S2
Z =

1
n−1

n

∑
i=1

(Zi − Z̄ )2 =
1

n−1

(
n

∑
i=2

Yi

)2

+
1

n−1

n

∑
i=2

Y 2
i
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which is a function of (Y2, ...,Yn).
Hence, Z̄ and S2

Z are independent by Theorem 4.6.12.
This proves a.
Finally, we prove c (the proof in the textbook can be simplified).
Note that

(n−1)S2 =
n

∑
i=1

(Xi−X̄ )2 =
n

∑
i=1

(Xi−µ +µ−X̄ )2 =
n

∑
i=1

(Xi−µ)2 +n(µ−X̄ )2

Then
n
(

X̄ −µ

σ

)2

+
(n−1)S2

σ2 =
n

∑
i=1

(
Xi −µ

σ

)2

=
n

∑
i=1

Z 2
i

Since Zi ∼ N(0,1) and Z1, ...,Zn are independent, we have previously
shown that

each Z 2
i ∼ chi-square with degree of freedom 1,

the sum ∑
n
i=1 Z 2

i ∼ chi-square with degrees of freedom n, and its
mgf is (1−2t)−n/2, t < 1/2,
√

n(X̄ −µ)/σ ∼ N(0,1) and hence n[(X̄ −µ)/σ ]2 ∼ chi-square
with degree of freedom 1.
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The left hand side of the previous expression is a sum of two
independent random variables and, hence, if f (t) is the mgf of
(n−1)S2/σ2, then the mgf of the sum on the left hand side is

(1−2t)−1/2f (t)
Since the right hand side of the previous expression has mgf
(1−2t)−n/2, we must have

f (t) = (1−2t)−n/2/(1−2t)−1/2 = (1−2t)−(n−1)/2 t < 1/2
This is the mgf of the chi-square with degrees of freedom n−1, and
the result follows.

The independence of X̄ and S2 can be established in other ways.

t-distribution
Let X1, ...,Xn be a random sample from N(µ,σ2).
Using the result in Chapter 4 about a ratio of independent normal and
chi-square random variables, the ratio

X̄ −µ

S/
√

n
=

(X̄ −µ)/(σ/
√

n)√
[(n−1)S2/σ2]/(n−1)
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has the central t-distribution with n−1 degrees of freedom.

What is the distribution of T0 = X̄−µ0
S/
√

n for a fixed known constant µ0 ∈R

which is not necessarily equal to µ?
Note that T is not a statistic while T0 is a statistic.
Since X̄ −µ0 ∼ N(µ−µ0,σ

2/n), from the discussion in Chapter 4 we
know that the distribution of T0 is the noncentral t-distribution with
degrees of freedom n−1 and noncentrality parameter
δ =
√

n(µ−µ0)/σ .

F-distribution
Let X1, ...,Xn be a random sample from N(µx ,σ

2
x ), Y1, ...,Ym be a

random sample from N(µy ,σ
2
y ), Xi ’s and Yi ’s be independent, and S2

x
and S2

y be the sample variances based on Xi ’s and Yi ’s, respectively.

From the previous discussion, (n−1)S2
x/σ2

x and (m−1)S2
y/σ2

y are

both chi-square distributed, and the ratio S2
x /σ2

x
S2

y /σ2
y

has the F-distribution

with degrees of freedom n−1 and m−1 (denoted by Fn−1,m−1).
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Theorem 5.3.8.
Let Fp,q denote the F-distribution with degrees of freedom p and q.
a. If X ∼ Fp,q, then 1/X ∼ Fq,p.
b. If X has the t-distribution with degrees of freedom q, then X 2 ∼ F1,q.
c. If X ∼ Fp.q, then (p/q)X/[1 + (p/q)X ]∼ beta(p/2,q/2).

Proof.
We only need to prove c, since properties a and b follow directly from
the definitions of F- and t-distributions.
Note that Z = (p/q)X has pdf

Γ[(p + q)/2]

Γ(p/2)Γ(q/2)

zp/2−1

(1 + z)(p+q)/2 , z > 0

If u = z/(1 + z), then z = u/(1−u), dz = (1−u)−2du, and the pdf of
U = Z/(1 + Z ) is

Γ[(p + q)/2]

Γ(p/2)Γ(q/2)

(
u

1−u

)p/2−1 1
(1−u)−(p+q)/2

1
(1−u)2

=
Γ[(p + q)/2]

Γ(p/2)Γ(q/2)
up/2−1(1−u)q/2−1 u > 0
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Definition 5.4.1 (Order statistics).
The order statistics of a random sample of univariate X1, ...,Xn are the
sample values placed in a non-decreasing order, and they are denoted
by X(1), ...,X(n).

Once X(1), ...,X(n) are given, the information left in the sample is the
particular positions from which X(i) is observed, i = 1, ...,n.

Functions of order statistics
Many useful statistics are functions of order statistics.

Both sample mean and variance are functions of order statistics,
because

n

∑
i=1

Xi =
n

∑
i=1

X(i) and
n

∑
i=1

X 2
i =

n

∑
i=1

X 2
(i)

The sample range R = X(n)−X(1), the distance between the
smallest and largest observations, is a measure of the dispersion
in the sample and should reflect the dispersion in the population.
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For any fixed p ∈ (0,1), the (100p)th sample percentile is the
observation such that about np of the observations are less than
this observation and n(1−p) of the observations are greater:

X(1) if p ≤ (2n)−1

X({np}) if (2n)−1 < p < 0.5
X((n+1)/2) if p = 0.5 and n is odd
(X(n/2) + X(n/2+1))/2 if p = 0.5 and n is even
X(n+1−{n(1−p)}) if 0.5 < p < 1− (2n)−1

X(n) if p ≥ 1− (2n)−1

where {b} is the number b rounded to the nearest integer, i.e., if k
is an integer and k −0.5≤ b < k + 0.5, then {b}= k .
Other textbooks may define sample percentiles differently.
The sample median is the 50th sample percentile.
It is a measure of location, alternative to the sample mean.
The sample lower quartile is the 25th sample percentile and the
upper quartile is the 75th sample percentile.
The sample mid-range is defined as V = (X(1) + X(n))/2.
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If X1, ...,Xn is a random sample of discrete random variables, then the
calculation of probabilities for the order statistics is mainly a counting
task.

Theorem 5.4.3.
Let X1, ...,Xn be a random sample from a discrete distribution with pmf
f (xi) = pi , where x1 < x2 < · · · are the possible values of X1. Define

P0 = 0, P1 = p1, ..., Pi = p1 + · · ·+ pi , ...

Then, for the j th order statistic X(j),

P(X(j) ≤ xi) =
n

∑
k=j

(
n
k

)
Pk

i (1−Pi)
n−k

P(X(j) = xi) =
n

∑
k=j

(
n
k

)
[Pk

i (1−Pi)
n−k −Pk

i−1(1−Pi−1)n−k ]

Proof.
For any fixed i , let Y be the number of X1, ...,Xn that are less than or
equal to xi .

UW-Madison (Statistics) Stat 609 Lecture 18 2015 10 / 18



beamer-tu-logo

If the event {Xj ≤ xi} is a “success", then Y is the number of
successes in n trials and is distributed as binomial(n,Pi).
Then, the result follows from {X(j) ≤ xi}= {Y ≥ j},

P(X(j) ≤ xi) = P(Y ≥ j) =
n

∑
k=j

(
n
k

)
Pk

i (1−Pi)
n−k

and P(X(j) = xi) = P(X(j) ≤ xi)−P(X(j) ≤ xi−1).

If X1, ...,Xn is a random sample from a continuous population with pdf
f (x), then

P(X(1) < X(2) < · · ·< X(n)) = 1
i.e., we do not need to worry about ties, and the joint pdf of
(X(1), ...,X(n)) is

h(x1, ...,xn) =

{
n!f (x1) · · · f (xn) x1 < x2 < · · ·< xn

0 otherwise

The n! naturally comes into this formula because, for any set of values
x1, ...,xn, there are n! equally likely assignments for these values to
X1, ...,Xn that all yield the same values for the order statistics.
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Theorem 5.4.4.
Let X(1), ...,X(n) be the order statistics of a random sample X1, ...,Xn
from a continuous population with cdf F and pdf f .
Then the pdf of X(j) is

fX(j)(x) =
n!

(j−1)!(n− j)!
[F (x)]j−1[1−F (x)]n−j f (x) x ∈R

Proof.
Let Y be the number of X1, ...,Xn less than or equal to x .
Then, similar to the proof of Theorem 5.4.3, Y ∼ binomial(n,F (x)),
{X(j) ≤ x}= {Y ≥ j} and

FX(j)(x) = P(X(j) ≤ x) = P(Y ≥ j) =
n

∑
k=j

(
n
k

)
[F (x)]k [1−F (x)]n−k

We now obtain the pdf of X(j) by differentiating the cdf FX(j) :

fX(j)(x) =
d
dx

FX(j)(x) =
n

∑
k=j

(
n
k

)
d
dx

[F (x)]k [1−F (x)]n−k
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=
n

∑
k=j

(
n
k

){
k [F (x)]k−1[1−F (x)]n−k−(n−k)[F (x)]k [1−F (x)]n−k−1}f (x)

=

(
n
j

)
j[F (x)]j−1[1−F (x)]n−j f (x) +

n

∑
l=j+1

(
n
l

)
l[F (x)]l−1[1−F (x)]n−l f (x)

−
n−1

∑
k=j

(
n
k

)
(n−k)[F (x)]k [1−F (x)]n−k−1f (x)

=
n!

(j−1)!(n− j)!
[F (x)]j−1[1−F (x)]n−j f (x)

+
n−1

∑
k=j

(
n

k + 1

)
(k + 1)[F (x)]k [1−F (x)]n−k−1f (x)

−
n−1

∑
k=j

(
n
k

)
(n−k)[F (x)]k [1−F (x)]n−k−1f (x)

The result follows from the fact that the last two terms cancel, because(
n

k + 1

)
(k + 1) =

n!

k !(n−k −1)!
=

(
n
k

)
(n−k)
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Example 5.4.5.
Let X1, ...,Xn be a random sample from uniform(0,1) so that f (x) = 1
and F (x) = x for x ∈ [0,1].
By Theorem 5.4.4, the pdf of X(j) is

n!

(j−1)!(n− j)!
x j−1(1−x)n−j =

Γ(n + 1)

Γ(j)Γ(n− j + 1)
x j−1(1−x)n−j+1−1 0< x < 1

which is the pdf of beta(j ,n− j + 1).

Theorem 5.4.6.
Let X(1), ...,X(n) be the order statistics of a random sample X1, ...,Xn
from a continuous population with cdf F and pdf f .
Then the joint pdf of X(i) and X(j), 1≤ i < j ≤ n, is

fX(i),X(j)(x ,y) =
n!

(i−1)!(j− i−1)!(n− j)!
[F (x)]i−1[F (y)−F (x)]j−i−1

×[1−F (y)]n−j f (x)f (y) x < y , (x ,y) ∈R2

The proof is left to Exercise 5.26.
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Example 5.4.7.
Let X1, ...,Xn be a random sample from uniform(0,a), R = X(n)−X(1)

be the range, and V = (X(1) + X(n))/2 be the midrange.
We want to obtain the joint pdf of R and V as well as the marginal
distributions of R and V .
By Theorem 5.4.6, the joint pdf of Z = X(1) and Y = X(n) is

fZ ,Y (z,y) =
n(n−1)

a2

(y
a
− z

a

)n−2
=

n(n−1)(y −z)n−2

an , 0 < z < y < a

Since R = Y −Z and V = (Y + Z )/2, we obtain Z = V −R/2 and
Y = V + R/2, ∣∣∣∣∂ (Z ,Y )

∂ (R,V )

∣∣∣∣=

∣∣∣∣ −1
2 1
1
2 1

∣∣∣∣=−1

The transformation from (Z ,Y ) to (R,V ) maps the sets

{(z,y) : 0 < z < y < a}→ {(r ,v) : 0 < r < a, r/2 < v < a− r/2}

Obviously 0 < r < a, and for a fixed r , the smallest value of v is r/2
(when z = 0 and y = r ) and the largest value of v is a− r/2 (when
z = a− r and y = a).
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Thus, the joint pdf of R and V is

fR,V (r ,v) =
n(n−1)rn−2

an , 0 < r < a, r/2 < v < a− r/2

The marginal pdf of R is

fR(r) =
∫ a−r/2

r/2

n(n−1)rn−2

an dv =
n(n−1)rn−2(a− r)

an , 0 < r < a

The marginal pdf of V is

fV (v) =
∫ 2v

0

n(n−1)rn−2

an dr =
n(2v)n−1

an 0 < v < a/2

=
∫ 2(a−v)

0

n(n−1)rn−2

an dr =
n(2(a−v)n−1

an a/2 < v < a

because the set where fR,V (r ,v) > 0 is

{(r ,v) : 0 < r < a, r/2 < v < a− r/2}
= {(r ,v) : 0 < v ≤ a/2,0 < r < 2v}⋃

{(r ,v) : a/2 < v ≤ a,0 < r < 2(a−v)}
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Example.
Let X1, ...,Xn be a random sample from uniform(0,1).
We want to find the distribution of X1/X(1).
For s > 1,

P
(

X1

X(1)
> s
)

=
n

∑
i=1

P
(

X1

X(1)
> s,X(1) = Xi

)
=

n

∑
i=2

P
(

X1

X(1)
> s,X(1) = Xi

)
= (n−1)P

(
X1

X(1)
> s,X(1) = Xn

)
= (n−1)P (X1 > sXn,X2 > Xn, ...,Xn−1 > Xn)

= (n−1)P (sXn < 1,X1 > sXn,X2 > Xn, ...,Xn−1 > Xn)

= (n−1)
∫ 1/s

0

[∫ 1

sxn

(
n−1

∏
i=2

∫ 1

xn

dxi

)
dx1

]
dxn

= (n−1)
∫ 1/s

0
(1−xn)n−2(1−sxn)dxn
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Thus, for s > 1,

d
ds

P
(

X1

X(1)
≤ s
)

=
d
ds

[
1− (n−1)

∫ 1/s

0
(1− t)n−2(1−st)dt

]
= (n−1)

∫ 1/s

0
(1− t)n−2tdt

= (n−1)
∫ 1/s

0
(1− t)n−2tdt− (n−1)

∫ 1/s

0
(1− t)n−1dt

= (n−1)
∫ 1/s

0
(1− t)n−2tdt− (n−1)

∫ 1/s

0
(1− t)n−1dt

= 1−
(

1− 1
s

)n−1

− n−1
n

[
1−

(
1− 1

s

)n−1
]

For s ≤ 1, obviously

P
(

X1

X(1)
≤ s
)

= 0
d
ds

P
(

X1

X(1)
≤ s
)

= 0
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