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Lecture 21: Convergence of transformations and
generating a random variable
If Zn converges to Z in some sense, we often need to check whether
h(Zn) converges to h(Z ) in the same sense.

Continuous mapping theorem.
If a sequence of random vectors Zn converges in distribution to Z and
h is a function continuous on A with PZ (A) = 1, then h(Zn) converges
in distribution to h(Z ).

If random variables Zn, n = 1,2, ...,, converges in distribution to
Z ∼ N(0,1), then Z 2

n converges in distribution to Z 2 ∼ the
chi-square distribution with degree of freedom 1.
If (Zn,Yn) converges in distribution to (Z ,Y ) as random vectors,
then Yn + Zn converges in distribution to Y + Z , YnZn converges in
distribution to YZ , and Yn/Zn converges in distribution to Y/Z .
In the previous situation if Z and Y are iid ∼ N(0,1), then Zn/Yn
converges in distribution to the Cauchy(0,1) distribution.
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In the previous situation if Z and Y are iid ∼ N(0,1), then
max{Zn,Yn} converges in distribution to max{Z ,Y}, which has
the cdf [Φ(x)]2 (Φ(x) is the cdf of N(0,1)).
The condition that (Zn,Yn) converges in distribution to (Z ,Y )
cannot be relaxed to Zn converges in distribution to Z and Yn
converges in distribution to Y , i.e., we need the convergence of
the joint cdf of (Zn,Yn); e.g., Zn + Yn may not converge in
distribution to Z + Y if we only have the marginal convergence.
The next result, which plays an important role in statistics,
establishes the convergence in distribution of Zn + Yn, ZnYn, or
Zn/Yn with no information regarding the joint cdf of (Zn,Yn).

Theorem 5.5.17 (Slutsky’s theorem)
Let Xn converges in distribution to X and Yn converges in distribution
(probability) to c (a constant), then

(i) Xn + Yn converges in distribution to X + c;
(ii) YnXn converges in distribution to cX ;
(iii) Xn/Yn converges in distribution to X/c if c 6= 0.
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Proof.
We prove (i) only. (The proofs of (ii) and (iii) are left as exercises.)
For t ∈R and ε > 0 being fixed constants,

FXn+Yn (t) = P(Xn + Yn ≤ t)
≤ P({Xn + Yn ≤ t}∩{|Yn−c|< ε}) + P(|Yn−c| ≥ ε)

≤ P(Xn ≤ t−c + ε) + P(|Yn−c| ≥ ε)

Similarly,

FXn+Yn (t)≥ P(Xn ≤ t−c− ε)−P(|Yn−c| ≥ ε).

If t−c, t−c + ε, and t−c− ε are continuity points of FX , then it follows
from the previous two inequalities and the convergence of Xn + Yn that

FX (t−c− ε)≤ liminf
n

FXn+Yn (t)≤ limsup
n

FXn+Yn (t)≤ FX (t−c + ε).

Since ε can be arbitrary (why?),

lim
n→∞

FXn+Yn (t) = FX (t−c).

The result follows from FX+c(t) = FX (t−c).
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Example 5.5.18.
A typical application of Slutsky’s theorem is in establishing the normal
approximation with estimated variance.
For a random sample X1, ...,Xn with finite µ = E(X1) and variance
σ2 = Var(X1), the CLT shows that

√
n(X̄ −µ)

σ
converges in distribution to N(0,1)

If σ2 is “estimated" by the sample variance S2, then by Example 5.5.3,
S2 converges in probability (distribution) to σ2, and thus S converges
in probability to σ .
Then Slutsky’s theorem shows that

√
n(X̄ −µ)

S
converges in distribution to N(0,1)

Another typical application of Slutsky’s theorem is given in the proof of
the following important result.
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Theorems 5.5.28 (the delta method)
Let X1,X2, ... and Y be random k -vectors satisfying

an(Xn−c) converges in distribution to Y ,

where c ∈Rk is a constant vector and an’s are positive constants with
limn→∞ an = ∞. (In many cases, c = E(Xn) and an =

√
n.)

If g is a function from Rk to R and is differentiable at c, then

an[g(Xn)−g(c)] converges in distribution to ∇g(c)′Y ,

where ∇g(x)′ is the transpose of the k -dimensional vector of partial
derivatives of g at x . In particular, if Y ∼ N(0,Σ), then

an[g(Xn)−g(c)] converges in distribution to N
(
0,∇g(c)′Σ∇g(c)

)
.

We only give a proof for the univariate case (k = 1), in which

an[g(Xn)−g(c)] converges in distribution to g′(c)Y ,

and if Y ∼ N(0,σ2),

an[g(Xn)−g(c)] converges in distribution to N(0, [g′(c)]2σ
2)
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Proof of Theorem 5.5.28 with k = 1.
Let

Zn = an[g(Xn)−g(c)]−ang′(c)(Xn−c).

If we can show that Zn converges to in probability to 0, then the result
follows from

an[g(Xn)−g(c)] = ang′(c)(Xn−c) + Zn,

the condition that an(Xn−c) converges in distribution to Y , and
Slutsky’s theorem.
The differentiability of g at c means that

lim
x→c

∣∣∣∣g(x)−g(c)−g′(c)(x−c)

x−c

∣∣∣∣= lim
x→c

∣∣∣∣g(x)−g(c)

x−c
−g′(c)

∣∣∣∣= 0

i.e., for any ε > 0, there is a δε > 0 such that

|g(x)−g(c)−g′(c)(x −c)| ≤ ε|x−c| when |x−c|< δε .

Then, for a fixed η > 0,

P(|Zn| ≥ η) = P(|Zn| ≥ η , |Xn−c| ≥ δε ) + P(|Zn| ≥ η , |Xn−c|< δε )

≤ P(|Xn−c| ≥ δε ) + P(an|Xn−c| ≥ η/ε, |Xn−c|< δε )
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Since an→ ∞, an(Xn−c) converges in distribution to Y and Slutsky’s
theorem imply that Xn−c converges in probability to 0.

By the continuity mapping theorem, an(Xn−c) converges in
distribution to Y implies an|Xn−c| converges in distribution to |Y | (the
function |x | is continuous).

Without loss of generality, we assume that F|Y | is continuous at η/ε.

Then

limsup
n

P(|Zn| ≥ η)≤ lim
n→∞

P(|Xn−c| ≥ δε ) + lim
n→∞

P(an|Xn−c| ≥ η/ε)

= P(|Y | ≥ η/ε).

and Zn converges in probability to 0 since ε can be arbitrary.

In statistics, we often need a nondegenerated limiting distribution of
an[g(Xn)−g(c)] so that probabilities involving an[g(Xn)−g(c)] can be
approximated by the cdf of ∇g(c)′Y , using the delta method.
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In some situations, however, ∇g(c) so that the limiting distribution of
an[g(Xn)−g(c)] becomes degenerated, in which cases we need to
consider a high order delta method.

Theorem 5.5.26 (mth order delta method)
Let Xn and Y be random k -vectors and c and an be constants
satisfying the conditions in Theorem 5.5.28.
Suppose that g has continuous partial derivatives of order m > 1 in a
neighborhood of c, with all the partial derivatives of order j ,
1≤ j ≤m−1, vanishing at c, but with the mth-order partial derivatives
not all vanishing at c. Then

am
n [g(Xn)−g(c)] converges in distribution to

1
m!

k

∑
i1=1
· · ·

k

∑
im=1

∂ mg
∂xi1 · · ·∂xim

∣∣∣∣
x=c

Yi1 · · ·Yim

where Yj is the j th component of Y . When k = 1,

am
n [g(Xn)−g(c)] converges in distribution to

g(m)(c)

m!
Y m
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Example.
Let {Xn} be a sequence of random variables satisfying

√
n(Xn−c) converges in distribution to Z ∼ N(0,1).

Consider the function g(x) = x2, g′(x) = 2x .
If c 6= 0, then an application of the delta method gives that

√
n(X 2

n −c2) converges in distribution to ∼ N(0,4c2).

If c = 0, g′(c) = 0 but g′′(c) = 2.
Hence, an application of the 2nd order delta method gives that

nX 2
n converges in distribution to Z 2,

which has the chi-square distribution with degree of freedom 1.
This result can also be obtained by applying the continuity mapping
theorem.

The next example involves 2-dimensional random vectors.
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Example 5.5.27 (ratio estimator)
Let Zn = (Xn,Yn), n = 1,2, ..., be iid bivariate random vectors with finite
2nd order moments.

Let X̄n = n−1
∑

n
i=1 Xi , Ȳn = n−1

∑
n
i=1 Yi , µx = E(X1), µy = E(Y1) 6= 0,

µ = (µx ,µy ), σ2
x =Var(X1), σ2

y =Var(Y1), σxy =Cov(X1,Y1).

By the CLT,
√

n(Zn−µ) converges in distribution to N
(

0,
(

σ2
x σxy

σxy σ2
y

))
By the delta method, g(x ,y) = x/y , ∂g/∂x = y−1, ∂g/∂y =−xy−2

√
n
(

X̄n

Ȳn
− µx

µy

)
converges in distribution to N(0,σ2)

σ
2 = (µ

−1
y −µx µ

−2
y )

(
σ2

x σxy
σxy σ2

y

)(
µ
−1
y

−µx µ
−2
y

)
=

σ2
x

µ2
y
−

2µx σxy

µ3
y

+
µ2

x σ2
y

µ4
y
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Example 5.5.27 (more discussions)
What if µy = 0 in the previous discussion?
Since the function g(x ,y) = x/y is not differentiable at y = 0, the delta
method does not apply.
However, the early discussion says that X̄n/Ȳn converges in
distribution to Cauchy(0,1) if µx = µy = 0.
By the delta method, we can similarly show that, if at least one of µx
and µy is not 0, then

√
n(X̄nȲn−µx µy ) converges in distribution to N(0,σ2)

with

σ
2 = (µy µx )

(
σ2

x σxy
σxy σ2

y

)(
µy
µx

)
= µ

2
y σ

2
x + 2µx µy σxy + µ

2
x σ

2
y

If µx = µy = 0, then an application of the 2nd order delta method or
continuous map theorem shows that

nX̄nȲn converges in distribution to Z1Z2

where Z1 and Z2 are independent, Z1 ∼ N(0,1), and Z2 ∼ N(0,1).
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Generating a random variable
We study how to generate random variables from a given distribution.
This may be useful in applications, or in statistical research when we
carry out simulation studies, or to approximate integrals that do not
have explicit forms.

Theorem 2.1.10
Let X have continuous cdf FX and Y = FX (X ). Then Y is uniformly
distributed on (0,1), that is, P(Y ≤ y) = y , 0 < y < 1.

Direct method
If we want to generate a random value X from a cdf FX whose inverse
F−1

X exists, then we need only to generate a Y from the uniform
distribution on (0,1) and let X = F−1

X (Y ).
Some cdf’s may not have an inverse.

The inverse of a cdf
If FX is strictly increasing, then its inverse F−1

X is well defined by

F−1
X (y) = x iff FX (x) = y
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If FX is flat on an interval (x1,x2] (see the figure), then we define

F−1
X (y) = inf{x : FX (x)≥ y}, 0≤ y ≤ 1

F−1
X is increasing in y .

FX (F−1
X (y)) = y when FX is continuous at F−1

X (y).
F−1

X (y)≤ x iff y ≤ FX (x).

In part b of the figure, F−1
X (y) = x1.
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Proof of Theorem 2.1.10
For 0 < y < 1,

P(Y ≤ y) = P(FX (X )≤ y)

= P(F−1
X (FX (X ))≤ F−1

X (y)) (F−1
X is increasing)

= P(X ≤ F−1
X (y)) (P(F−1

X (FX (X )) < X ) = 0)
= FX (F−1

X (y))
= y (continuity of FX )

Probability integral transform
If U is uniformly distributed on (0,1) and F is a cdf on R, then the
random variable X = F−1(U) has cdf F .
We use the property F−1(y)≤ x iff y ≤ F (x).

If y ≤ F (x), then x ≥ inf{t : F (t)≥ y}= F−1(y).
If F−1(y) = inf{t : F (t)≥ y} ≤ x , then F (F−1(y))≤ F (x). But

F (F−1(y))
= y if F is continuous at y
> y if F has a jump at y

Thus, we must have y ≤ F (F−1(y))≤ F (x).
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Then, for any x ∈R,

P(X ≤ x) = P(F−1(U)≤ x) = P(U ≤ F (x)) = F (x)

Thus, if we can generate U ∼ uniform(0,1) (there are many algorithms
for this), then Y = F−1(U) is a random variable from the desired cdf.
This method requires F−1(u) = inf{x : F (x)≥ u} has an explicit form.

Applying the direct method
Suppose that we want to generate random variables from
exponential(0,2), which has cdf F (x) = 1−e−x/2, x ≥ 0.
Then F−1(u) =−2log(1−u), 0 < u < 1.
Using Y =−2log(1−U) for the 10,000 generated U values, the
authors obtained that the average of Y values is 2.0004 and the
sample variance of Y values is 4.0908, close to E(Y ) = 2 and
Var(Y ) = 4.

Indirect methods
When no simple transformation is available to apply a direct method,
the following indirect method can often provide a solution.
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Theorem 5.6.8 (Accept/Reject Algorithm).

Let f and g be pdf’s with M = supt∈R
f (t)
g(t) < ∞.

The following algorithm generates a random variable Y ∼ f :
(a) generate independent U ∼ uniform(0,1) and W ∼ g;
(b) if U ≤M−1f (W )/g(W ), set Y = W ; otherwise, return to step (a).

Proof.
The generated Y satisfies

P(Y ≤ y) = P
(

W ≤ y
∣∣∣∣U ≤M−1f (W )/g(W )

)
=

P
(
W ≤ y ,U ≤M−1f (W )/g(W )

)
P
(
U ≤M−1f (W )/g(W )

)
=

∫ y
−∞

∫M−1f (w)/g(w)
0 dug(w)dw∫

∞

−∞

∫M−1f (w)/g(w)
0 dug(w)dw

=

∫ y
−∞

f (w)dw∫
∞

−∞
f (w)dw

=
∫ y

−∞

f (w)dw

UW-Madison (Statistics) Stat 609 Lecture 21 2015 16 / 17



beamer-tu-logo

There are cases, however, where the target pdf f is unbounded and it
is difficult to find a pdf g such that M = supt∈R

f (t)
g(t) < ∞.

In such cases we can consider the following algorithm, which is a
special case of the so-called Markov Chain Monte Carlo methods.

Metropolis Algorithm
Let f and g be pdf’s. Consider the following algorithm:
(0) Generate V ∼ g and set Z0 = V .

For i = 1,2, ...,
(1) Generate independent Ui ∼ uniform(0,1) and Vi ∼ g and compute

ρi = min
{

f (Vi)g(Zi−1)

g(Vi)f (Zi−1)
,1
}

(2) Set
Zi =

{
Vi Ui ≤ ρi
Zi−1 Ui > ρi

Then, as i → ∞, Zi converges in distribution to Y .
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