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Chapter 6. Principles of Data Reduction
Lecture 22: Sufficiency
Data reduction
We consider a sample X = (X1, ...,Xn), n > 1, from a population of
interest (each Xi may be a vector and X may not be a random sample,
although most of the time we consider a random sample).

Assume the population is indexed by θ , an unknown parameter vector.

Let X be the range of X

Let x be an observed data set, a realization of X .
We want to use the information about θ contained in x .
The whole x may be hard to interpret, and hence we summarize
the information by using a few key features (statistics).
For example, the sample mean, sample variance, the largest and
smallest order statistics.
Let T (X ) be a statistic. For T , if x 6= y but T (x) = T (y), then x and
y provides the same information and can be treated as the same.
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T partitions X into sets

At = {x : T (x) = t}, t ∈T (the range of T )

All points in At are treated the same if we are interested in T only.
Thus, T provides a data reduction.
We wish to reduce data as much as we can, but not lose any
information about θ (or at least important information).

Sufficiency
A sufficient statistic for θ is a statistic that captures all the information
about θ contained in the sample.
Formally we have the following definition.

Definition 6.2.1 (sufficiency)
A statistic T (X ) is sufficient for θ if the conditional distribution of X
given T (X ) = T (x) does not depend on θ .

The sufficiency depends on the parameter of interest.
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If X is discrete, then so is T (X ) and sufficiency means that
P(X = x |T (X ) = T (x)) is known, i.e., it does not depend on any
unknown quantity.
Once we observe x and compute a sufficient statistic T (x), the
original data x do not contain any further information concerning θ

and can be discarded, i.e., T (x) is all we need regarding θ .
If we do need x , we can simulate a sample y from
P(X = y |T (X ) = T (x)) since it is known; the observed y may not
be the same as x , but T (x) = T (y).

Example 6.2.3 (binomial sufficient statistic)
Suppose that X1, ...,Xn are iid Bernoullie variables with probability θ .
The joint pmf is

fθ (x1, ...,xn) =


n

∏
i=1

θ xi (1−θ)1−xi xi = 0,1, i = 1, ...,n

0 otherwise

Consider the statistic T (X ) = ∑
n
i=1 Xi , which is the number of ones in X .
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To show T is sufficient for θ , we compute the conditional probability
P(X = x |T = t).
For t = 0,1, ...,n, let

Bt =

{
x = (x1, ...,xn) : xi = 0,1,

n

∑
i=1

xi = t

}
.

If x 6∈ Bt , then P(X = x |T = t) = 0.
If x ∈ Bt , then

P(X = x ,T = t) = P(X = x) = fθ (x) = θ
t (1−θ)n−t .

Also, since T ∼ binomial(n,p),

P(T = t) =

(
n
t

)
θ

t (1−θ)n−t

Then, for t = 0,1, ...,n,

P(X = x |T = t) =
P(X = x ,T = t)

P(T = t)
=

1(n
t

) x ∈ Bt

is a known pmf (does not depend on θ ).
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Hence T (X ) is sufficient for θ .
For any realization x of X , x is a sequence of n ones and zeros.
Since θ is the probability of a one and T is the frequency of ones in x ,
it has all the information about θ .
Given T = t , what is left in the data set x is the redundant information
about the positions of t ones, and we can reproduce the data set x if
we want by using T = t .

How to find sufficient statistics?
To verify that a statistic T is a sufficient statistic for θ by definition, we
must verify that for any fixed values of x , the conditional distribution
X |T (X ) = T (x) does not depend on θ .

This may not be easy but at least we can try.

But how do we find the form of T ? By guessing a statistic T that might
be sufficient and computing the conditional distribution of X |T = t?

For families of populations having pdfs or pmfs, a simple way of finding
sufficient statistics is to use the following factorization theorem.
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Theorem 6.2.6 (the Factorization Theorem)
Let fθ (x) be the joint pdf or pmf of the sample X . A statistic T (X ) is
sufficient for θ iff there are functions h (which does not depend on θ )
and gθ (which depends on θ ) on the range of T such that

fθ (x) = gθ

(
T (x)

)
h(x).

In the binomial example, fθ (x) = gθ

(
T (x)

)
h(x) if we set

gθ (t) = θ
t (1−θ)n−t and h(x) =

{
1 xi = 0,1, i = 1, ...,n
0 otherwise

Proof of Theorem 6.2.6 for the discrete case.
Suppose that T (X ) is sufficient.
Let gθ (t) = Pθ (T (X ) = t) and h(x) = P(X = x |T (X ) = T (x)).
Then

fθ (x) = Pθ (X = x) = Pθ (X = x ,T (X ) = T (x))

= Pθ (T (X ) = T (x))P(X = x |T (X ) = T (x))

= gθ (T (x))h(x)
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Suppose now that fθ (x) = gθ

(
T (x)

)
h(x) for x ∈X .

Let qθ (t) be the pmf of T (X ) and Ax = {y : T (y) = T (x)}.
Then, for any x ∈X ,

fθ (x)

qθ (T (x))
=

gθ (T (x))h(x)

qθ (T (x))
=

gθ (T (x))h(x)

Pθ (T (X ) = T (x))

=
gθ (T (x))h(x)

∑y∈Ax fθ (y)
=

gθ (T (x))h(x)

∑y∈Ax gθ (T (y))h(y)

=
gθ (T (x))h(x)

gθ (T (x))∑y∈Ax h(y)
=

h(x)

∑y∈Ax h(y)

which does not depend on θ , i.e., T is sufficient for θ .

Example 6.2.4 (normal sufficient statistic)

Let X1, ...,Xn be iid N(µ,σ2), θ = (µ,σ2); the joint pdf is

fθ (x) =
n

∏
i=1

1√
2πσ

e−(xi−µ)2/2σ2
=

1
(2π)n/2σn exp

(
−

n

∑
i=1

(xi −µ)2

2σ2

)

=
1

(2π)n/2σn exp

(
−

n

∑
i=1

(xi − x̄)2

2σ2 − n(x̄ −µ)2

2σ2

)
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=
1

(2π)n/2σn exp
(
−(n−1)s2

2σ2 − n(x̄ −µ)2

2σ2

)
where s2 = (n−1)−1

∑
n
i=1(xi − x̄)2, the realization of the sample

variance S2 = (n−1)−1
∑

n
i=1(Xi − X̄ )2.

Hence, by Theorem 6.2.6, (X̄ ,S2) is a two-dimensional sufficient
statistic for θ = (µ,σ2).

If σ2 is known, then X̄ is sufficient for µ.
If µ is known, then S2 is sufficient for σ2.
If both µ and σ2 are unknown, we cannot say that X̄ is sufficient
for µ (or S2 is sufficient for σ2); the correct statement is that X̄ and
S2 together is sufficient for µ and σ2.
We can also say that (X̄ ,S2) is sufficient for µ (or σ2).

Sufficiency for a sub-family
Let θ be a parameter and η be a subset of components of θ .
If T is sufficient for θ , then it is also sufficient for η .
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Example 6.2.5 (sufficient order statistics)
Let X1, ...,Xn be iid with a pdf fθ and X(1), ...,X(n) be the order statistics.
The joint pdf of X = (X1, ...,Xn) is

n

∏
i=1

fθ (xi) =
n

∏
i=1

fθ (x(i))

where x(1), ...,x(n) are the ordered values of x1, ...,xn.
Then, by the factorization theorem, (X(1), ...,X(n)) is sufficient for θ .
Intuitively, given the order statistics, what is left in the original data set
is the information regarding the positions of x1, ...,xn and, hence, the
set of order statistics is sufficient whenever positions of xi ’s are not of
interest.

One-to-one transformations of a sufficient statistic
It follows from the factorization theorem that, if T is sufficient and U is
a one-to-one function of T , then U is also sufficient.

But this is also true in general by the definition of sufficiency.

UW-Madison (Statistics) Stat 609 Lecture 22 2015 9 / 15



beamer-tu-logo

In the order statistics problem, U = (U1, ...,Un) is a one-to-one function
of (X(1), ...,X(n)), where Uk = ∑

n
i=1 X k

i , k = 1, ...,n.
Hence, U is also sufficient for θ .

Example 6.2.8 (uniform sufficient statistic)
Let X1, ...,Xn be iid from uniform(0,θ), where θ > 0 is the unknown
parameter.
The joint pdf of X1, ...,Xn is

n

∏
i=1

fθ (xi) =
n

∏
i=1

[
1
θ

I({0 < xi < θ})
]

=
1

θ n I({0 < x(n) < θ})

with x(n) being the largest value of x1, ...,xn.
Thus, the largest order statistic X(n) is sufficient for θ .
Intuitively, because Xi ≤ θ for all i , if we observe X(n), then we know
that θ ≥ X(n) and the values of other Xi ’s do not provide any additional
information about θ .
The same result holds when X1, ...,Xn are iid from the discrete uniform
distribution on 1,2, ...,θ .
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Theorem 6.2.10 (exponential families)
Let X1, ...,Xn be iid from a pdf or pmf fθ (x) that belongs to an
exponential family:

fθ (x) = h(x)c(θ)exp

(
k

∑
j=1

wj(θ)tj(x)

)
The joint pdf or pmf of X = (X1, ...,Xn) is

n

∏
i=1

fθ (xi) =

[
n

∏
i=1

h(xi)

]
[c(θ)]n exp

(
k

∑
j=1

wj(θ)
n

∑
i=1

tj(xi)

)
It follows from the factorization theorem that the k -dimensional statistic

T (x) =

(
n

∑
i=1

t1(Xi), ...,
n

∑
i=1

tk (Xi)

)
is sufficient for θ .
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Sufficiency Principle
Let X be a sample from a population indexed by θ ∈Θ.
If T (X ) is sufficient for θ , then any inference about θ should depend on
the sample only through the value T (X ).

Another way to state the sufficiency principle is that, if x and y are
two data points (realizations of X ), then our decision or inference
about θ should be the same when T (x) = T (y).
The sufficiency principle says that in any inference procedure we
should consider functions of a sufficient statistic only.
In what sense we can be assured that using functions of a
sufficient statistic is enough?
First we should have a criterion to evaluate the performance of
inference procedures.
As an example, we consider here the problem of estimating a
function ϑ = ψ(θ), where ψ is a known function on the parameter
space Θ, but ϑ is unknown.
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Let U(X ) be a statistic used to estimate the unknown ϑ .
A common criterion for the performance of U(X ) is the so-called
mean squared error (mse) defined as

Eθ [U(X )−ϑ ]2 = Eθ [U(X )−ψ(θ)]2, θ ∈Θ

where Eθ is the expectation with respect to the population indexed
by θ .
We view U(X )−ϑ to be the estimation error, which is random
since X is random. The mse is simply the average of squared
estimation error under the population indexed by θ , and we want
to choose a statistic such that the mse is as small as possible.

Rao-Blackwell theorem
Let X be a sample from a population indexed by θ ∈Θ and T (X ) be a
sufficient statistic for θ . If U(X ) is a statistic used to estimate ϑ = ψ(θ)
and Eθ [U(X )−ϑ ]2 < ∞, then the statistic h(T ) = E [U(X )|T ] satisfies

Eθ [h(T )−ϑ ]2 < Eθ [U(X )−ϑ ]2 θ ∈Θ

unless Pθ (U(X ) = h(T (X ))) = 1, θ ∈Θ.
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The Rao-Blackwell theorem says that if U(X ) is not a function of
the sufficient statistic T , then the new statistic h(T ) = E [U(X )|T ]
is better than U(X ) in terms of the mean squared error criterion.
The theorem is meaningful if a T other than the original data X
can be found (such as the minimal sufficient statistic).
Because Eθ [U(X )−ϑ ]2 < ∞, E [U(X )|T ] is well defined; in fact, we
only need Eθ |U(X )|< ∞ for every θ ∈Θ.
Because T is sufficient, E [U(X )|T ] does not depend on θ and is a
statistic.
The Rao-Blackwell theorem actually has a more general form
considering a criterion other than the mean squared error.

Proof.
For every θ ∈Θ,

Eθ [U(X )−ϑ ]2 = Eθ{[U(X )−h(T )] + [h(T )−ϑ ]}2

= Eθ [U(X )−h(T )]2 + Eθ [h(T )−ϑ ]2

+ 2Eθ [U(X )−h(T )][h(T )−ϑ ]
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Using the properties of conditional expectations, we obtain that

Eθ [U(X )−h(T )][h(T )−ϑ ] = Eθ

(
Eθ

{
[U(X )−h(T )][h(T )−ϑ ]|T

})
= Eθ

(
[h(T )−ϑ ]Eθ

{
[U(X )−h(T )]|T

})
= Eθ

(
[h(T )−ϑ ]Eθ [U(X )|T ]−h(T )

)
= 0

Hence,

Eθ [U(X )−ϑ ]2 = Eθ [U(X )−h(T )]2 + Eθ [h(T )−ϑ ]2 > Eθ [h(T )−ϑ ]2

unless Eθ [U(X )−h(T )]2 = 0, which implies Pθ (U(X ) = h(T )) = 1 from
our previous discussion.

The Rao-Blackwell theorem tells us that we should consider functions
of a sufficient statistic (if one simpler than X is available).
However, we still need to choose a function such that it provides the
best procedure among all functions of the given sufficient statistic.
This will be treated in later chapters.
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