Lecture 23: Minimal sufficiency

Maximal reduction without loss of information

@ There are many sufficient statistics for a given problem.

@ In fact, X (the whole data set) is sufficient.

@ If T is a sufficient statistic and T = y(S), where y is a function
and S is another statistic, then S is sufficient.

For instance, if Xi,..., X, are iid with P(X;=1) = 6 and
P(X;=0)=1-6, then (Y X;, YL ,.1 Xi) is sufficient for 6,
where mis any fixed integer between 1 and n.

@ If T is sufficient and T = y(S) with a measurable function y that is
not one-to-one, then T is more useful than S, since T provides a
further reduction of the data without loss of information.

@ Is there a sulfficient statistics that provides “maximal" reduction of
the data?

Definition 6.2.11 (minimal sufficiency)

A sufficient statistic T(X) is a minimal sufficient statistic if, for any other
sufficient statistic U(X), T(x) is a function of U(x).
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@ T(x)is a function of U(x) iff U(x) = U(y) implies that T(x) = T(y)
for any pair (x, y).

@ In terms of the partitions of the range of the data set, if T(x) is a
function of U(x), then

{x:Ux)=t}C{x: T(x)=t}
Thus, a minimal sufficient statistic achieves the greatest possible
data reduction as a sufficient statistic.

@ If both T and S are minimal sufficient statistics, then by definition
there is a one-to-one function y such that T = y(S); hence, the
minimal sufficient statistic is unique in the sense that two statistics
that are functions of each other can be treated as one statistic.

@ For example, if T is minimal sufficient, then so is (T, e”), but no
one is going to use (T,e’).

o If the range of X is Z*, then there exists a minimal sufficient
statistic.

Example 6.2.15.

Let Xi,..., X, be iid form the uniform(6,6 + 1) distribution, where 6 € #Z

is an unknown parameter.
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The joint pdf of (Xj,...,Xp) is

::

({9 < X < 9—|—1}) = I({X(n —1<0< X )}), (X1,...,Xn) Ee@n,
1

where Xx(;) denotes the ith ordered value of xy,..., Xp.
By the factorization theorem, T = (X(1, X)) is sufficient for 6.
Note that
X1y =sup{8: fo(x) >0} and X, =1+inf{6: fo(x) > 0}.
If S(X) is a statistic sufficient for 6, then by the factorization theorem,
there are functions h and gy such that fo(x) = go (S(x))h(x).
For x with h(x) > 0,

X1y =sup{6: go(S(x)) >0} and x(, =1+inf{6: go(S(x)) > 0}.
Hence, there is a function y such that T(x) = y(S(x)) when h(x) > 0.

Since P(h(X) > 0) =1, we conclude that T is minimal sufficient.

In this example, the dimension of a minimal sufficient statistic is larger
than the dimension of 6.
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Finding a minimal sufficient statistic by definition is not convenient.
The next theorem is a useful tool.

Theorem 6.2.13
Let fy(x) be the pmf or pdf of X. Suppose that T(x) is sufficient for 6
and that, for every pair x and y with at least one of fy(x) and fy(y) is
not 0, fy(x)/fe(y) does not depend on 6 implies T(x) = T(y). (Here,
we define a/0 = for any a > 0.) Then T(X) is minimal sufficient for 6.

Proof

Let U(X) be another sufficient statistic.

By the factorization theorem, there are functions h and gy such that

fo(x) = go(U(x))h(x) for all x and 6.

For x and y such that at least one of fy(x) and fy(y

least one of h(x) and h(y) is not 0, if U(x) = ( ),
)
)

)|snot0 i.e., at
the

fo(x) _ ge(U(x))h(x) _ h(x
fo(y)  ge(U(y))h(y) h(y
which does not depend on 6.
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By the assumption of the theorem, T(x) = T(y).
This shows that there is a function y such that T(x) = y(S(x))
Hence, T is minimal sufficient for 6

Example 6.2.15.

We re-visit this example and show how to apply Theorem 6.2.13.
If Xi,..., X, are iid form the uniform(6, 6 + 1) distribution, then the joint
pdf is

fg(X) = /({X(n) —-1<06< X(1)}), X = (X1,...,Xn) S %n,
Let x and y be two data points.
Each of fy(x) and fy(y) only takes two possible values, 0 and 1.
Let A, = (X(n) —1 ,X(1)) and Ay = (y(n) —1 ,_y(1))
Then Wy [O OEABEA,
fe— =q 1 0cAx,0cA
o(y) { o OCcALOEA,
This depends on 6 unless Ay = A, .
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Thus, if the ratio does not depend on 6, we must have x1) = y(4) and
X(n) = Y(n)-
Therefore, by Theorem 6.2.13, (X(1), X(»)) is minimal sufficient for 6.

Example 6.2.14.

Let X, ..., X, be iid from N(u,5?) with unknown u € Z and ¢ > 0.
Earlier, we showed that T = (X, S?) is sufficient for 6 = (u,6?).

Is T minimal sufficient?

Let fy(x) be the joint pdf of the sample, x and y be two sample points.
Then

fo(x) _ (2mo®) "exp(~[(n(X —p)? +(n—1)sf]/(20%))
foy) — (2mo2)="2exp(~[(n(y —p)?+(n—1)sj]/(202))

= exp([-n(X* —7?)+2nu(X —y) — (n—1)(s§ — s7)]/(26?))

where x and s2 are the sample mean and variance based on the
sample point x, and y and sf; are the sample mean and variance
based on the sample point y.
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This ratio does not depend on 6 = (i, 6?) iff X = y and sZ = 7.
By Theorem 6.2.13, T = (X, S?) is minimal sufficient for 6 = (u, 52).

Like the concept of sufficiency, minimal sufficiency also depends on
the parameters we are interested in.

In Example 6.2.14, let us consider two sub-families.

@ Suppose that it is known that ¢ = 1.

Then T = (X, S?) is still sufficient but not minimal sufficient for .
In fact, using Theorem 6.2.13 we can show that X is minimal
sufficient for u when ¢ = 1 and, T = (X, S?) is not a function of X
(why?).

@ Suppose that it is know that u? = 62 so that we only have one
unknown parameter u € #Z, u # 0. (This is called a curved
exponential family.)

Is T = (X, S?) minimal sufficient for = u?
Note that T is certainly sufficient for 6.
The answer can be found as a special case of the following result.
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Minimal sufficient statistics in exponential families

Let Xj,..., X, be iid from an exponential family with pdf
fo(x) = h(x)c(8)exp (n(0)' T(x)), 0O

where n(0) = (wy(0),...,w(0)) and T(x)' = (t;(x), ..., t(x)).
Suppose that there exists {6y, 61,...,0x} C © such that the vectors
ni=n(6;))—n(6), i=1,....k, are linearly independent in 2.
(This is true if the family is of full rank).
We have shown that T(X) is sufficient for 6.
We now show that T is in fact minimal sufficient for 6.
Note that we can focus on the pints x at which h(x) > 0.
For any 0,

Y 0(X) h(x)

fe(;) =exp (1(0)[T0) - TW) 705

If this ratio equals ¢(x, y) not depending on 6, then
n(6)[T(x)— T(y)] = log(¢(x.y)) +log(h(y)/h(x))
which implies
[n(6:) —n(6)'[T(x)-T(y)]|=0 i=1,..k
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Since n(6;) —n(6p), i =1,...,k, are linearly independent, we must have
T(x)=T(y).
By Theorem 6.2.13, T is minimal sufficient for 6.

|

Application to curved normal family

We can now show that T = (X, S?) minimal sufficient for & = u when
the sample is a random sample from N(u,u?), u € #, u # 0.
It can be shown that

_(np n—1\"_/n n-1Y
n(e)_<62, 262>_<u’ 2u2>

Points 6y = (1,1), 61 = (—1,1), and 6, = (1/2,1/2) are in the
parameter space, and

n(61) —n(6o) = ( _(n__r;)/g )_< —(n—n1)/2 > B < _gn )

1n(62) —n(6o) = ( _2842_1) )_( —(nf1)/2 > - ( _3(_,]"’_/?)/2 >
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Are these two vectors linearly independent?
If there are ¢ and d such that

c[n(61) —n(6o)] + d[n(62) —n(6o)] =0

. o( ") +o( otz ) =0

Then, we must have d =0 and then ¢ =0.

That means vectors n(61) —n(6y) and n(62) —n(6y) are linearly
independent and the condition for the result of exponential family is
satisfied.

Therefore, T = (X, S?) is minimal sufficient for 6 = p.

Example.

Let (Xi,...,X,) be a random sample from Cauchy(u, o), where u € #
and o > 0 are unknown parameters.
The joint pdf of (Xj,...,Xp) is
o™ 2 1
f =— I\l

j—=1
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Forany x = (xq,...,Xp) @and y = (y1,..., ¥n), if

fu,c(x) = W(Xay)flLG(y)
holds for any u and o, where y does not depend on (i, o), then

n n

[+ 0w = v [1+-p?]  nez

i=1 i=1
Both sides of the above identity are polynomials of degree 2nin pu.
Comparison of the coefficients to the highest terms gives y(x,y) =1

and hence
n n

[1[1+0i-w?] =TI[1+0i-nf] nez

i=1 i=1
As a polynomial of i, the left-hand side of the above identity has 2n
complex roots x;+i, i =1, ..., n, while the right-hand side of the above
identity has 2n complex roots y;+i, i=1,....n.
Since the two sets of roots must agree, the ordered values of x;’s are
the same as the ordered values of y;’s.
By Theorem 6.2.13, the order statistics of Xi,..., X, is minimal sufficient

for (u,o).
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The following result may be useful in establishing minimal sufficiency
outside of the exponential family.
Theorem 6.6.5.

Let fy,f1, fo, ... be a sequence of pdf’s or pmf’s on the range of X, all
have the same support.

a. The statistic

fo(X) fo(X)"
is minimal sufficient for the family {fy, fi, >, ...} of populations for X.

b. If & is a family of pdf’s or pmf’s for X with common support, and
(i e Z2,i=0,1,2,..
(i) T(X) is sufficient for &7,
then T is minimal sufficient for 2.
Proof of part a.
Let gi(T) = T;, the ith component of T, i=0,1,2,..., and let go(T) = 1.
Then fI(X) = gi(T(X))fO(X)a i= 0> 1 727

By the factorization theorem, T is sufficient for 22y = {fy, f;, ,...}.
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Suppose that S(X) is another sufficient statistic.
By the factorization theorem, there are Borel functions h and g; such

that
fi(x) = 8i(S(x))h(x), =0,1,2,..

filx) _ 9i(S(x) .
Ti(x)= == =2 , i=0,1,2,..
=100 ~ @l(Sk0)

Thus, T is a function of S.

By definition, T is minimal sufficient for .

Then

Proof of part b

The two additional conditions are &2y, ¢ & and T is sufficient for 2.
Let S be any sufficient statistic for &2.

Then S is also sufficient for £;.

From part a, T is minimal sufficient for 22, so there is a function y
such that T = y(S).

By definition, T is minimal sufficient for &2 since T is sufficient for 2.
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@ In fact, the result in Theorem 6.6.5 still holds if the common
support condition is replaced by that the support of fy contains the
support of any pdf or pmfin £2.

@ In most applications, we can choose &, containing finitely many
elements.

Example

Let Xj,..., X, be a random sample from double-exponential(u,1),
U € %, i.e., the joint pdf of X is

fu(x) = eXlO( ZIXI ul)

Consider Zy = {f,f1,...,fa}, Wwhere each f; is the pdf with u = j,
j=0,1,....,n
By Theorem 6.6.5a, a minimal sufficient statistic for & is

n n
= (exp (Z Xl - ), |Xi_j|> , J= 1,---,n>
i=1 i=1

which is equivalent to
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n n
U= (Z |)(I| - Z |)(Iij|7 = 15 o0en
i=1 i=1
We can further show that U is equivalent to S, the set of order
statistics.
Since S is sufficient, by Theorem 6.6.5b, S, U, and T are all minimal
sufficient.

Definition 6.6.3 (Necessity).

A statistic is said to be necessary if it can be written as a function of
every sufficient statistic.

\

T is necessary if, for every sufficient S, there is a function y such that
T=y(S).

From the definitions of the necessity and minimal sufficiency, we can
reach the following conclusion.

Theorem 6.6.4.

A statistic is minimal sufficient if and only if it is necessary and
sufficient. )
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