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Lecture 23: Minimal sufficiency
Maximal reduction without loss of information

There are many sufficient statistics for a given problem.
In fact, X (the whole data set) is sufficient.
If T is a sufficient statistic and T = ψ(S), where ψ is a function
and S is another statistic, then S is sufficient.
For instance, if X1, . . . ,Xn are iid with P(Xi = 1) = θ and
P(Xi = 0) = 1−θ , then (∑

m
i=1 Xi , ∑

n
i=m+1 Xi) is sufficient for θ ,

where m is any fixed integer between 1 and n.
If T is sufficient and T = ψ(S) with a measurable function ψ that is
not one-to-one, then T is more useful than S, since T provides a
further reduction of the data without loss of information.
Is there a sufficient statistics that provides “maximal" reduction of
the data?

Definition 6.2.11 (minimal sufficiency)
A sufficient statistic T (X ) is a minimal sufficient statistic if, for any other
sufficient statistic U(X ), T (x) is a function of U(x).

UW-Madison (Statistics) Stat 609 Lecture 23 2015 1 / 15



beamer-tu-logo

T (x) is a function of U(x) iff U(x) = U(y) implies that T (x) = T (y)
for any pair (x ,y).
In terms of the partitions of the range of the data set, if T (x) is a
function of U(x), then

{x : U(x) = t} ⊂ {x : T (x) = t}
Thus, a minimal sufficient statistic achieves the greatest possible
data reduction as a sufficient statistic.
If both T and S are minimal sufficient statistics, then by definition
there is a one-to-one function ψ such that T = ψ(S); hence, the
minimal sufficient statistic is unique in the sense that two statistics
that are functions of each other can be treated as one statistic.
For example, if T is minimal sufficient, then so is (T ,eT ), but no
one is going to use (T ,eT ).
If the range of X is Rk , then there exists a minimal sufficient
statistic.

Example 6.2.15.
Let X1, ...,Xn be iid form the uniform(θ ,θ + 1) distribution, where θ ∈R
is an unknown parameter.
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The joint pdf of (X1, ...,Xn) is
n

∏
i=1

I({θ < xi < θ + 1}) = I({x(n)−1 < θ < x(1)}), (x1, ...,xn) ∈Rn,

where x(i) denotes the i th ordered value of x1, ...,xn.
By the factorization theorem, T = (X(1),X(n)) is sufficient for θ .
Note that

x(1) = sup{θ : fθ (x) > 0} and x(n) = 1 + inf{θ : fθ (x) > 0}.

If S(X ) is a statistic sufficient for θ , then by the factorization theorem,
there are functions h and gθ such that fθ (x) = gθ (S(x))h(x).
For x with h(x) > 0,

x(1) = sup{θ : gθ (S(x)) > 0} and x(n) = 1 + inf{θ : gθ (S(x)) > 0}.

Hence, there is a function ψ such that T (x) = ψ(S(x)) when h(x) > 0.
Since P(h(X ) > 0) = 1, we conclude that T is minimal sufficient.
In this example, the dimension of a minimal sufficient statistic is larger
than the dimension of θ .
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Finding a minimal sufficient statistic by definition is not convenient.
The next theorem is a useful tool.

Theorem 6.2.13.
Let fθ (x) be the pmf or pdf of X . Suppose that T (x) is sufficient for θ

and that, for every pair x and y with at least one of fθ (x) and fθ (y) is
not 0, fθ (x)/fθ (y) does not depend on θ implies T (x) = T (y). (Here,
we define a/0 = ∞ for any a > 0.) Then T (X ) is minimal sufficient for θ .

Proof.
Let U(X ) be another sufficient statistic.
By the factorization theorem, there are functions h and gθ such that
fθ (x) = gθ (U(x))h(x) for all x and θ .
For x and y such that at least one of fθ (x) and fθ (y) is not 0, i.e., at
least one of h(x) and h(y) is not 0, if U(x) = U(y), then

fθ (x)

fθ (y)
=

gθ (U(x))h(x)

gθ (U(y))h(y)
=

h(x)

h(y)

which does not depend on θ .
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By the assumption of the theorem, T (x) = T (y).
This shows that there is a function ψ such that T (x) = ψ(S(x))

Hence, T is minimal sufficient for θ

Example 6.2.15.
We re-visit this example and show how to apply Theorem 6.2.13.
If X1, ...,Xn are iid form the uniform(θ ,θ + 1) distribution, then the joint
pdf is

fθ (x) = I({x(n)−1 < θ < x(1)}), x = (x1, ...,xn) ∈Rn,

Let x and y be two data points.
Each of fθ (x) and fθ (y) only takes two possible values, 0 and 1.
Let Ax = (x(n)−1,x(1)) and Ay = (y(n)−1,y(1)).
Then

fθ (x)

fθ (y)
=


0 θ 6∈ Ax ,θ ∈ Ay
1 θ ∈ Ax ,θ ∈ Ay
∞ θ ∈ Ax ,θ 6∈ Ay

This depends on θ unless Ax = Ay .
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Thus, if the ratio does not depend on θ , we must have x(1) = y(1) and
x(n) = y(n).
Therefore, by Theorem 6.2.13, (X(1),X(n)) is minimal sufficient for θ .

Example 6.2.14.

Let X1, ...,Xn be iid from N(µ,σ2) with unknown µ ∈R and σ > 0.
Earlier, we showed that T = (X̄ ,S2) is sufficient for θ = (µ,σ2).
Is T minimal sufficient?
Let fθ (x) be the joint pdf of the sample, x and y be two sample points.
Then

fθ (x)

fθ (y)
=

(2πσ2)−n/2 exp(−[(n(x̄−µ)2 + (n−1)s2
x ]/(2σ2))

(2πσ2)−n/2 exp(−[(n(ȳ −µ)2 + (n−1)s2
y ]/(2σ2))

= exp([−n(x̄2− ȳ2) + 2nµ(x̄ − ȳ)− (n−1)(s2
x −s2

y )]/(2σ
2))

where x̄ and s2
x are the sample mean and variance based on the

sample point x , and ȳ and s2
y are the sample mean and variance

based on the sample point y .
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This ratio does not depend on θ = (µ,σ2) iff x̄ = ȳ and s2
x = s2

y .

By Theorem 6.2.13, T = (X̄ ,S2) is minimal sufficient for θ = (µ,σ2).

Like the concept of sufficiency, minimal sufficiency also depends on
the parameters we are interested in.
In Example 6.2.14, let us consider two sub-families.

Suppose that it is known that σ = 1.
Then T = (X̄ ,S2) is still sufficient but not minimal sufficient for µ.
In fact, using Theorem 6.2.13 we can show that X̄ is minimal
sufficient for µ when σ = 1 and, T = (X̄ ,S2) is not a function of X̄
(why?).
Suppose that it is know that µ2 = σ2 so that we only have one
unknown parameter µ ∈R, µ 6= 0. (This is called a curved
exponential family.)
Is T = (X̄ ,S2) minimal sufficient for θ = µ?
Note that T is certainly sufficient for θ .
The answer can be found as a special case of the following result.
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Minimal sufficient statistics in exponential families
Let X1, ...,Xn be iid from an exponential family with pdf

fθ (x) = h(x)c(θ)exp
(
η(θ)′T (x)

)
, θ ∈Θ

where η(θ)′ = (w1(θ), ...,wk (θ)) and T (x)′ = (t1(x), ..., tk (x)).
Suppose that there exists {θ0,θ1, . . . ,θk} ⊂Θ such that the vectors
ηi = η(θi)−η(θ0), i = 1, ...,k , are linearly independent in Rk .
(This is true if the family is of full rank).
We have shown that T (X ) is sufficient for θ .
We now show that T is in fact minimal sufficient for θ .
Note that we can focus on the pints x at which h(x) > 0.
For any θ , fθ (x)

fθ (y)
= exp

(
η(θ)′[T (x)−T (y)]

) h(x)

h(y)
If this ratio equals φ(x ,y) not depending on θ , then

η(θ)′[T (x)−T (y)] = log(φ(x ,y)) + log(h(y)/h(x))

which implies

[η(θi)−η(θ0)]′[T (x)−T (y)] = 0 i = 1, ...,k .
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Since η(θi)−η(θ0), i = 1, ...,k , are linearly independent, we must have
T (x) = T (y).
By Theorem 6.2.13, T is minimal sufficient for θ .

Application to curved normal family

We can now show that T = (X̄ ,S2) minimal sufficient for θ = µ when
the sample is a random sample from N(µ,µ2), µ ∈R, µ 6= 0.
It can be shown that

η(θ) =

(
nµ

σ2 ,−
n−1
2σ2

)′
=

(
n
µ
,−n−1

2µ2

)′
Points θ0 = (1,1), θ1 = (−1,1), and θ2 = (1/2,1/2) are in the
parameter space, and

η(θ1)−η(θ0) =

(
−n

−(n−1)/2

)
−
(

n
−(n−1)/2

)
=

(
−2n

0

)

η(θ2)−η(θ0) =

(
n/2

−2(n−1)

)
−
(

n
−(n−1)/2

)
=

(
−n/2

−3(n−1)/2

)
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Are these two vectors linearly independent?
If there are c and d such that

c[η(θ1)−η(θ0)] + d [η(θ2)−η(θ0)] = 0

i.e.,
c
(
−2n

0

)
+ d

(
−n/2

−3(n−1)/2

)
= 0

Then, we must have d = 0 and then c = 0.
That means vectors η(θ1)−η(θ0) and η(θ2)−η(θ0) are linearly
independent and the condition for the result of exponential family is
satisfied.
Therefore, T = (X̄ ,S2) is minimal sufficient for θ = µ.

Example.
Let (X1, ...,Xn) be a random sample from Cauchy(µ,σ), where µ ∈R
and σ > 0 are unknown parameters.
The joint pdf of (X1, ...,Xn) is

fµ,σ (x) =
σn

πn

n

∏
i=1

1
σ2 + (xi −µ)2 , x = (x1, ...,xn) ∈Rn.
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For any x = (x1, ...,xn) and y = (y1, ...,yn), if

fµ,σ (x) = ψ(x ,y)fµ,σ (y)

holds for any µ and σ , where ψ does not depend on (µ,σ), then
n

∏
i=1

[
1 + (yi −µ)2

]
= ψ(x ,y)

n

∏
i=1

[
1 + (xi −µ)2

]
µ ∈R

Both sides of the above identity are polynomials of degree 2n in µ.
Comparison of the coefficients to the highest terms gives ψ(x ,y) = 1
and hence

n

∏
i=1

[
1 + (yi −µ)2

]
=

n

∏
i=1

[
1 + (xi −µ)2

]
µ ∈R

As a polynomial of µ, the left-hand side of the above identity has 2n
complex roots xi ± ı̇, i = 1, ...,n, while the right-hand side of the above
identity has 2n complex roots yi ± ı̇, i = 1, ...,n.
Since the two sets of roots must agree, the ordered values of xi ’s are
the same as the ordered values of yi ’s.
By Theorem 6.2.13, the order statistics of X1, ...,Xn is minimal sufficient
for (µ,σ).
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The following result may be useful in establishing minimal sufficiency
outside of the exponential family.

Theorem 6.6.5.
Let f0, f1, f2, ... be a sequence of pdf’s or pmf’s on the range of X , all
have the same support.

a. The statistic

T (X ) =

(
f1(X )

f0(X )
,
f2(X )

f0(X )
, ...

)
is minimal sufficient for the family {f0, f1, f2, ...} of populations for X .

b. If P is a family of pdf’s or pmf’s for X with common support, and
(i) fi ∈P, i = 0,1,2, ...
(ii) T (X ) is sufficient for P,
then T is minimal sufficient for P.

Proof of part a.
Let gi(T ) = Ti , the i th component of T , i = 0,1,2, ..., and let g0(T ) = 1.
Then fi(x) = gi(T (x))f0(x), i = 0,1,2, ...
By the factorization theorem, T is sufficient for P0 = {f0, f1, f2, ...}.
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Suppose that S(X ) is another sufficient statistic.
By the factorization theorem, there are Borel functions h and g̃i such
that

fi(x) = g̃i(S(x))h(x), i = 0,1,2, ...
Then

Ti(x) =
fi(x)

f0(x)
=

g̃i(S(x))

g̃0(S(x))
, i = 0,1,2, ...

Thus, T is a function of S.
By definition, T is minimal sufficient for P0.

Proof of part b.
The two additional conditions are P0 ⊂P and T is sufficient for P.
Let S be any sufficient statistic for P.
Then S is also sufficient for P0.
From part a, T is minimal sufficient for P0 so there is a function ψ

such that T = ψ(S).
By definition, T is minimal sufficient for P since T is sufficient for P.
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In fact, the result in Theorem 6.6.5 still holds if the common
support condition is replaced by that the support of f0 contains the
support of any pdf or pmf in P.
In most applications, we can choose P0 containing finitely many
elements.

Example
Let X1, ...,Xn be a random sample from double-exponential(µ,1),
µ ∈R, i.e., the joint pdf of X is

fµ (x) =
1
2n exp

(
−

n

∑
i=1
|xi −µ|

)
Consider P0 = {f0, f1, ..., fn}, where each fj is the pdf with µ = j ,
j = 0,1, ...,n.
By Theorem 6.6.5a, a minimal sufficient statistic for P0 is

T =

(
exp

(
n

∑
i=1
|Xi |−

n

∑
i=1
|Xi − j |

)
, j = 1, ...,n

)
which is equivalent to
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U =

(
n

∑
i=1
|Xi |−

n

∑
i=1
|Xi − j |, j = 1, ...,n

)
We can further show that U is equivalent to S, the set of order
statistics.
Since S is sufficient, by Theorem 6.6.5b, S, U, and T are all minimal
sufficient.

Definition 6.6.3 (Necessity).
A statistic is said to be necessary if it can be written as a function of
every sufficient statistic.

T is necessary if, for every sufficient S, there is a function ψ such that
T = ψ(S).
From the definitions of the necessity and minimal sufficiency, we can
reach the following conclusion.

Theorem 6.6.4.
A statistic is minimal sufficient if and only if it is necessary and
sufficient.
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