Lecture 23: Minimal sufficiency

Maximal reduction without loss of information

- There are many sufficient statistics for a given problem.
- In fact, X (the whole data set) is sufficient.
- If T is a sufficient statistic and $T = \psi(S)$, where ψ is a function and S is another statistic, then S is sufficient.
 For instance, if X_1, \ldots, X_n are iid with $P(X_i = 1) = \theta$ and $P(X_i = 0) = 1 - \theta$, then $(\sum_{i=1}^m X_i, \sum_{i=m+1}^n X_i)$ is sufficient for θ, where m is any fixed integer between 1 and n.
- If T is sufficient and $T = \psi(S)$ with a measurable function ψ that is not one-to-one, then T is more useful than S, since T provides a further reduction of the data without loss of information.
- Is there a sufficient statistics that provides “maximal" reduction of the data?

Definition 6.2.11 (minimal sufficiency)

A sufficient statistic $T(X)$ is a minimal sufficient statistic if, for any other sufficient statistic $U(X)$, $T(x)$ is a function of $U(x)$.
\(T(x) \) is a function of \(U(x) \) iff \(U(x) = U(y) \) implies that \(T(x) = T(y) \) for any pair \((x, y)\).

In terms of the partitions of the range of the data set, if \(T(x) \) is a function of \(U(x) \), then

\[
\{ x : U(x) = t \} \subset \{ x : T(x) = t \}
\]

Thus, a minimal sufficient statistic achieves the greatest possible data reduction as a sufficient statistic.

If both \(T \) and \(S \) are minimal sufficient statistics, then by definition there is a one-to-one function \(\psi \) such that \(T = \psi(S) \); hence, the minimal sufficient statistic is unique in the sense that two statistics that are functions of each other can be treated as one statistic.

For example, if \(T \) is minimal sufficient, then so is \((T, e^T)\), but no one is going to use \((T, e^T)\).

If the range of \(X \) is \(\mathbb{R}^k \), then there exists a minimal sufficient statistic.

Example 6.2.15.

Let \(X_1, \ldots, X_n \) be iid from the \textit{uniform}(\(\theta, \theta + 1 \)) distribution, where \(\theta \in \mathbb{R} \) is an unknown parameter.
The joint pdf of \((X_1, \ldots, X_n)\) is
\[
\prod_{i=1}^{n} l(\{\theta < x_i < \theta + 1\}) = l(\{x_{(n)} - 1 < \theta < x_{(1)}\}), \quad (x_1, \ldots, x_n) \in \mathbb{R}^n,
\]
where \(x_{(i)}\) denotes the \(i\)th ordered value of \(x_1, \ldots, x_n\).

By the factorization theorem, \(T = (X_{(1)}, X_{(n)})\) is sufficient for \(\theta\).

Note that
\[
x_{(1)} = \sup\{\theta : f_\theta(x) > 0\} \quad \text{and} \quad x_{(n)} = 1 + \inf\{\theta : f_\theta(x) > 0\}.
\]

If \(S(X)\) is a statistic sufficient for \(\theta\), then by the factorization theorem, there are functions \(h\) and \(g_\theta\) such that \(f_\theta(x) = g_\theta(S(x))h(x)\).

For \(x\) with \(h(x) > 0\),
\[
x_{(1)} = \sup\{\theta : g_\theta(S(x)) > 0\} \quad \text{and} \quad x_{(n)} = 1 + \inf\{\theta : g_\theta(S(x)) > 0\}.
\]

Hence, there is a function \(\psi\) such that \(T(x) = \psi(S(x))\) when \(h(x) > 0\).

Since \(P(h(X) > 0) = 1\), we conclude that \(T\) is minimal sufficient.

In this example, the dimension of a minimal sufficient statistic is larger than the dimension of \(\theta\).
Finding a minimal sufficient statistic by definition is not convenient. The next theorem is a useful tool.

Theorem 6.2.13.

Let $f_\theta(x)$ be the pmf or pdf of X. Suppose that $T(x)$ is sufficient for θ and that, for every pair x and y with at least one of $f_\theta(x)$ and $f_\theta(y)$ is not 0, $f_\theta(x)/f_\theta(y)$ does not depend on θ implies $T(x) = T(y)$. (Here, we define $a/0 = \infty$ for any $a > 0$.) Then $T(X)$ is minimal sufficient for θ.

Proof.

Let $U(X)$ be another sufficient statistic. By the factorization theorem, there are functions h and g_θ such that $f_\theta(x) = g_\theta(U(x))h(x)$ for all x and θ.

For x and y such that at least one of $f_\theta(x)$ and $f_\theta(y)$ is not 0, i.e., at least one of $h(x)$ and $h(y)$ is not 0, if $U(x) = U(y)$, then

$$
\frac{f_\theta(x)}{f_\theta(y)} = \frac{g_\theta(U(x))h(x)}{g_\theta(U(y))h(y)} = \frac{h(x)}{h(y)}
$$

which does not depend on θ.

By the assumption of the theorem, $T(x) = T(y)$.
This shows that there is a function ψ such that $T(x) = \psi(S(x))$
Hence, T is minimal sufficient for θ

Example 6.2.15.

We re-visit this example and show how to apply Theorem 6.2.13.
If $X_1, ..., X_n$ are iid form the $\text{uniform}(\theta, \theta + 1)$ distribution, then the joint pdf is

$$f_\theta(x) = I(\{x_{(n)} - 1 < \theta < x_{(1)}\}), \quad x = (x_1, ..., x_n) \in \mathbb{R}^n,$$

Let x and y be two data points. Each of $f_\theta(x)$ and $f_\theta(y)$ only takes two possible values, 0 and 1.

Let $A_x = (x_{(n)} - 1, x_{(1)})$ and $A_y = (y_{(n)} - 1, y_{(1)})$.
Then

$$\frac{f_\theta(x)}{f_\theta(y)} = \begin{cases}
0 & \theta \notin A_x, \theta \in A_y \\
1 & \theta \in A_x, \theta \in A_y \\
\infty & \theta \in A_x, \theta \notin A_y
\end{cases}$$

This depends on θ unless $A_x = A_y$.
Thus, if the ratio does not depend on θ, we must have $x(1) = y(1)$ and $x(n) = y(n)$.

Therefore, by Theorem 6.2.13, $(X(1), X(n))$ is minimal sufficient for θ.

Example 6.2.14.

Let X_1, \ldots, X_n be iid from $N(\mu, \sigma^2)$ with unknown $\mu \in \mathbb{R}$ and $\sigma > 0$.

Earlier, we showed that $T = (\bar{X}, S^2)$ is sufficient for $\theta = (\mu, \sigma^2)$.

Is T minimal sufficient?

Let $f_\theta(x)$ be the joint pdf of the sample, x and y be two sample points.

Then

$$
\frac{f_\theta(x)}{f_\theta(y)} = \frac{(2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2}\frac{(n(\bar{x} - \mu)^2 + (n-1)s_x^2)}{\sigma^2}\right)}{(2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2}\frac{(n(\bar{y} - \mu)^2 + (n-1)s_y^2)}{\sigma^2}\right)}
$$

$$
= \exp\left[-\frac{n(\bar{x}^2 - \bar{y}^2)}{2\sigma^2} + \frac{2n\mu(\bar{x} - \bar{y}) - (n-1)(s_x^2 - s_y^2)}{2\sigma^2}\right]
$$

where \bar{x} and s_x^2 are the sample mean and variance based on the sample point x, and \bar{y} and s_y^2 are the sample mean and variance based on the sample point y.
This ratio does not depend on $\theta = (\mu, \sigma^2)$ iff $\bar{x} = \bar{y}$ and $s_x^2 = s_y^2$.

By Theorem 6.2.13, $T = (\bar{X}, S^2)$ is minimal sufficient for $\theta = (\mu, \sigma^2)$.

Like the concept of sufficiency, minimal sufficiency also depends on the parameters we are interested in.

In Example 6.2.14, let us consider two sub-families.

- Suppose that it is known that $\sigma = 1$.
 Then $T = (\bar{X}, S^2)$ is still sufficient but not minimal sufficient for μ.
 In fact, using Theorem 6.2.13 we can show that \bar{X} is minimal sufficient for μ when $\sigma = 1$ and, $T = (\bar{X}, S^2)$ is not a function of \bar{X} (why?).

- Suppose that it is known that $\mu^2 = \sigma^2$ so that we only have one unknown parameter $\mu \in \mathbb{R}, \mu \neq 0$. (This is called a curved exponential family.)
 Is $T = (\bar{X}, S^2)$ minimal sufficient for $\theta = \mu$?
 Note that T is certainly sufficient for θ.
 The answer can be found as a special case of the following result.
Minimal sufficient statistics in exponential families

Let X_1, \ldots, X_n be iid from an exponential family with pdf

$$f_\theta(x) = h(x)c(\theta)\exp(\eta(\theta)'T(x)), \quad \theta \in \Theta$$

where $\eta(\theta)' = (w_1(\theta), \ldots, w_k(\theta))$ and $T(x)' = (t_1(x), \ldots, t_k(x))$.

Suppose that there exists $\{\theta_0, \theta_1, \ldots, \theta_k\} \subset \Theta$ such that the vectors $\eta_i = \eta(\theta_i) - \eta(\theta_0), \ i = 1, \ldots, k$, are linearly independent in \mathbb{R}^k.

(This is true if the family is of full rank).

We have shown that $T(X)$ is sufficient for θ.

We now show that T is in fact minimal sufficient for θ.

Note that we can focus on the points x at which $h(x) > 0$.

For any θ,

$$\frac{f_\theta(x)}{f_\theta(y)} = \exp(\eta(\theta)'[T(x) - T(y)]) \frac{h(x)}{h(y)}$$

If this ratio equals $\phi(x, y)$ not depending on θ, then

$$\eta(\theta)'[T(x) - T(y)] = \log(\phi(x, y)) + \log(h(y)/h(x))$$

which implies

$$[\eta(\theta_i) - \eta(\theta_0)]'[T(x) - T(y)] = 0 \quad i = 1, \ldots, k.$$
Since $\eta(\theta_i) - \eta(\theta_0)$, $i = 1, \ldots, k$, are linearly independent, we must have $T(x) = T(y)$.

By Theorem 6.2.13, T is minimal sufficient for θ.

Application to curved normal family

We can now show that $T = (\bar{X}, S^2)$ minimal sufficient for $\theta = \mu$ when the sample is a random sample from $N(\mu, \mu^2)$, $\mu \in \mathbb{R}$, $\mu \neq 0$.

It can be shown that

$$\eta(\theta) = \left(\frac{n\mu}{\sigma^2}, -\frac{n-1}{2\sigma^2} \right)' = \left(\frac{n}{\mu}, -\frac{n-1}{2\mu^2} \right)'$$

Points $\theta_0 = (1, 1)$, $\theta_1 = (-1, 1)$, and $\theta_2 = (1/2, 1/2)$ are in the parameter space, and

$$\eta(\theta_1) - \eta(\theta_0) = \left(\begin{array}{c} -n \\ -(n-1)/2 \end{array} \right) - \left(\begin{array}{c} n \\ -(n-1)/2 \end{array} \right) = \left(\begin{array}{c} -2n \\ 0 \end{array} \right)$$

$$\eta(\theta_2) - \eta(\theta_0) = \left(\begin{array}{c} n/2 \\ -2(n-1) \end{array} \right) - \left(\begin{array}{c} n \\ -(n-1)/2 \end{array} \right) = \left(\begin{array}{c} -n/2 \\ -3(n-1)/2 \end{array} \right)$$
Are these two vectors linearly independent? If there are c and d such that
\[c[\eta(\theta_1) - \eta(\theta_0)] + d[\eta(\theta_2) - \eta(\theta_0)] = 0 \]
i.e.,
\[c \begin{pmatrix} -2n \\ 0 \end{pmatrix} + d \begin{pmatrix} -n/2 \\ -3(n-1)/2 \end{pmatrix} = 0 \]
Then, we must have $d = 0$ and then $c = 0$. That means vectors $\eta(\theta_1) - \eta(\theta_0)$ and $\eta(\theta_2) - \eta(\theta_0)$ are linearly independent and the condition for the result of exponential family is satisfied. Therefore, $T = (\bar{X}, S^2)$ is minimal sufficient for $\theta = \mu$.

Example.

Let $(X_1, ..., X_n)$ be a random sample from $Cauchy(\mu, \sigma)$, where $\mu \in \mathbb{R}$ and $\sigma > 0$ are unknown parameters. The joint pdf of $(X_1, ..., X_n)$ is
\[
 f_{\mu, \sigma}(x) = \frac{\sigma^n}{\pi^n} \prod_{i=1}^{n} \frac{1}{\sigma^2 + (x_i - \mu)^2}, \quad x = (x_1, ..., x_n) \in \mathbb{R}^n.
\]
For any \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_n) \), if
\[
f_{\mu, \sigma}(x) = \psi(x, y)f_{\mu, \sigma}(y)
\]
holds for any \(\mu \) and \(\sigma \), where \(\psi \) does not depend on \((\mu, \sigma)\), then
\[
\prod_{i=1}^{n} \left[1 + (y_i - \mu)^2 \right] = \psi(x, y) \prod_{i=1}^{n} \left[1 + (x_i - \mu)^2 \right] \quad \mu \in \mathbb{R}
\]
Both sides of the above identity are polynomials of degree \(2n \) in \(\mu \). Comparison of the coefficients to the highest terms gives \(\psi(x, y) = 1 \) and hence
\[
\prod_{i=1}^{n} \left[1 + (y_i - \mu)^2 \right] = \prod_{i=1}^{n} \left[1 + (x_i - \mu)^2 \right] \quad \mu \in \mathbb{R}
\]
As a polynomial of \(\mu \), the left-hand side of the above identity has \(2n \) complex roots \(x_i \pm i, \ i = 1, \ldots, n \), while the right-hand side of the above identity has \(2n \) complex roots \(y_i \pm i, \ i = 1, \ldots, n \).
Since the two sets of roots must agree, the ordered values of \(x_i \)’s are the same as the ordered values of \(y_i \)’s.
By Theorem 6.2.13, the order statistics of \(X_1, \ldots, X_n \) is minimal sufficient for \((\mu, \sigma)\).
The following result may be useful in establishing minimal sufficiency outside of the exponential family.

Theorem 6.6.5.

Let \(f_0, f_1, f_2, \ldots \) be a sequence of pdf’s or pmf’s on the range of \(X \), all have the same support.

a. The statistic

\[
T(X) = \left(\frac{f_1(X)}{f_0(X)}, \frac{f_2(X)}{f_0(X)}, \ldots \right)
\]

is minimal sufficient for the family \(\{f_0, f_1, f_2, \ldots\} \) of populations for \(X \).

b. If \(\mathcal{P} \) is a family of pdf’s or pmf’s for \(X \) with common support, and

(i) \(f_i \in \mathcal{P}, \ i = 0, 1, 2, \ldots \)

(ii) \(T(X) \) is sufficient for \(\mathcal{P} \),

then \(T \) is minimal sufficient for \(\mathcal{P} \).

Proof of part a.

Let \(g_i(T) = T_i \), the \(i \)th component of \(T \), \(i = 0, 1, 2, \ldots \), and let \(g_0(T) = 1 \).

Then \(f_i(x) = g_i(T(x))f_0(x), \ i = 0, 1, 2, \ldots \)

By the factorization theorem, \(T \) is sufficient for \(\mathcal{P}_0 = \{f_0, f_1, f_2, \ldots\} \).
Suppose that $S(X)$ is another sufficient statistic.

By the factorization theorem, there are Borel functions h and \tilde{g}_i such that

$$f_i(x) = \tilde{g}_i(S(x))h(x), \quad i = 0, 1, 2, ...$$

Then

$$T_i(x) = \frac{f_i(x)}{f_0(x)} = \frac{\tilde{g}_i(S(x))}{\tilde{g}_0(S(x))}, \quad i = 0, 1, 2, ...$$

Thus, T is a function of S.

By definition, T is minimal sufficient for \mathcal{P}_0.

Proof of part b.

The two additional conditions are $\mathcal{P}_0 \subset \mathcal{P}$ and T is sufficient for \mathcal{P}.

Let S be any sufficient statistic for \mathcal{P}.

Then S is also sufficient for \mathcal{P}_0.

From part a, T is minimal sufficient for \mathcal{P}_0 so there is a function ψ such that $T = \psi(S)$.

By definition, T is minimal sufficient for \mathcal{P} since T is sufficient for \mathcal{P}.
In fact, the result in Theorem 6.6.5 still holds if the common support condition is replaced by that the support of \(f_0 \) contains the support of any pdf or pmf in \(\mathcal{P} \).

In most applications, we can choose \(\mathcal{P}_0 \) containing finitely many elements.

Example

Let \(X_1, \ldots, X_n \) be a random sample from double-exponential(\(\mu, 1 \)), \(\mu \in \mathbb{R} \), i.e., the joint pdf of \(X \) is

\[
f_\mu(x) = \frac{1}{2^n} \exp \left(- \sum_{i=1}^{n} |x_i - \mu| \right)
\]

Consider \(\mathcal{P}_0 = \{ f_0, f_1, \ldots, f_n \} \), where each \(f_j \) is the pdf with \(\mu = j \), \(j = 0, 1, \ldots, n \).

By Theorem 6.6.5a, a minimal sufficient statistic for \(\mathcal{P}_0 \) is

\[
T = \left(\exp \left(\sum_{i=1}^{n} |X_i| - \sum_{i=1}^{n} |X_i - j| \right), \ j = 1, \ldots, n \right)
\]

which is equivalent to
\[U = \left(\sum_{i=1}^{n} |X_i| - \sum_{i=1}^{n} |X_i - j|, \ j = 1, \ldots, n \right) \]

We can further show that \(U \) is equivalent to \(S \), the set of order statistics.
Since \(S \) is sufficient, by Theorem 6.6.5b, \(S, U, \) and \(T \) are all minimal sufficient.

Definition 6.6.3 (Necessity).
A statistic is said to be necessary if it can be written as a function of every sufficient statistic.

\(T \) is necessary if, for every sufficient \(S \), there is a function \(\psi \) such that \(T = \psi(S) \).

From the definitions of the necessity and minimal sufficiency, we can reach the following conclusion.

Theorem 6.6.4.
A statistic is minimal sufficient if and only if it is necessary and sufficient.