Lecture 23: Minimal sufficiency

Maximal reduction without loss of information

- There are many sufficient statistics for a given problem.
- In fact, X (the whole data set) is sufficient.
- If *T* is a sufficient statistic and *T* = ψ(*S*), where ψ is a function and *S* is another statistic, then *S* is sufficient.
 For instance, if *X*₁,..., *X_n* are iid with *P*(*X_i* = 1) = θ and *P*(*X_i* = 0) = 1 − θ, then (∑_{i=1}^m X_i, ∑_{i=m+1}ⁿ X_i) is sufficient for θ, where *m* is any fixed integer between 1 and *n*.
- If *T* is sufficient and $T = \psi(S)$ with a measurable function ψ that is not one-to-one, then *T* is more useful than *S*, since *T* provides a further reduction of the data without loss of information.
- Is there a sufficient statistics that provides "maximal" reduction of the data?

Definition 6.2.11 (minimal sufficiency)

A sufficient statistic T(X) is a minimal sufficient statistic if, for any other sufficient statistic U(X), T(x) is a function of U(x).

UW-Madison (Statistics)

Stat 609 Lecture 23

- T(x) is a function of U(x) iff U(x) = U(y) implies that T(x) = T(y) for any pair (x, y).
- In terms of the partitions of the range of the data set, if T(x) is a function of U(x), then

$$\{x: U(x)=t\} \subset \{x: T(x)=t\}$$

Thus, a minimal sufficient statistic achieves the greatest possible data reduction as a sufficient statistic.

- If both *T* and *S* are minimal sufficient statistics, then by definition there is a one-to-one function ψ such that $T = \psi(S)$; hence, the minimal sufficient statistic is unique in the sense that two statistics that are functions of each other can be treated as one statistic.
- For example, if T is minimal sufficient, then so is (T, e^T), but no one is going to use (T, e^T).
- If the range of X is 𝔐^k, then there exists a minimal sufficient statistic.

Example 6.2.15.

Let $X_1, ..., X_n$ be iid form the *uniform*($\theta, \theta + 1$) distribution, where $\theta \in \mathscr{R}$ is an unknown parameter.

The joint pdf of $(X_1, ..., X_n)$ is

 $\prod_{i=1}^{n} I(\{\theta < x_i < \theta + 1\}) = I(\{x_{(n)} - 1 < \theta < x_{(1)}\}), \quad (x_1, ..., x_n) \in \mathscr{R}^n,$

where $x_{(i)}$ denotes the *i*th ordered value of $x_1, ..., x_n$. By the factorization theorem, $T = (X_{(1)}, X_{(n)})$ is sufficient for θ . Note that

 $x_{(1)} = \sup\{\theta: f_{\theta}(x) > 0\}$ and $x_{(n)} = 1 + \inf\{\theta: f_{\theta}(x) > 0\}.$

If S(X) is a statistic sufficient for θ , then by the factorization theorem, there are functions *h* and g_{θ} such that $f_{\theta}(x) = g_{\theta}(S(x))h(x)$. For *x* with h(x) > 0,

 $x_{(1)} = \sup\{\theta : g_{\theta}(S(x)) > 0\}$ and $x_{(n)} = 1 + \inf\{\theta : g_{\theta}(S(x)) > 0\}$. Hence, there is a function ψ such that $T(x) = \psi(S(x))$ when h(x) > 0. Since P(h(X) > 0) = 1, we conclude that *T* is minimal sufficient. In this example, the dimension of a minimal sufficient statistic is larger than the dimension of θ .

Finding a minimal sufficient statistic by definition is not convenient. The next theorem is a useful tool.

Theorem 6.2.13.

Let $f_{\theta}(x)$ be the pmf or pdf of *X*. Suppose that T(x) is sufficient for θ and that, for every pair *x* and *y* with at least one of $f_{\theta}(x)$ and $f_{\theta}(y)$ is not 0, $f_{\theta}(x)/f_{\theta}(y)$ does not depend on θ implies T(x) = T(y). (Here, we define $a/0 = \infty$ for any a > 0.) Then T(X) is minimal sufficient for θ .

Proof.

Let U(X) be another sufficient statistic.

By the factorization theorem, there are functions *h* and g_{θ} such that $f_{\theta}(x) = g_{\theta}(U(x))h(x)$ for all *x* and θ .

For x and y such that at least one of $f_{\theta}(x)$ and $f_{\theta}(y)$ is not 0, i.e., at least one of h(x) and h(y) is not 0, if U(x) = U(y), then

$$\frac{f_{\theta}(x)}{f_{\theta}(y)} = \frac{g_{\theta}(U(x))h(x)}{g_{\theta}(U(y))h(y)} = \frac{h(x)}{h(y)}$$

which does not depend on θ .

By the assumption of the theorem, T(x) = T(y). This shows that there is a function ψ such that $T(x) = \psi(S(x))$ Hence, *T* is minimal sufficient for θ

Example 6.2.15.

We re-visit this example and show how to apply Theorem 6.2.13. If $X_1, ..., X_n$ are iid form the *uniform*($\theta, \theta + 1$) distribution, then the joint pdf is

$$f_{\theta}(x) = I(\{x_{(n)} - 1 < \theta < x_{(1)}\}), \quad x = (x_1, ..., x_n) \in \mathscr{R}^n,$$

Let x and y be two data points.

Each of $f_{\theta}(x)$ and $f_{\theta}(y)$ only takes two possible values, 0 and 1. Let $A_x = (x_{(n)} - 1, x_{(1)})$ and $A_y = (y_{(n)} - 1, y_{(1)})$. Then $f_{\theta}(x) = \begin{pmatrix} 0 & \theta \notin A_x, \theta \in A_y \end{pmatrix}$

$$\frac{f_{\theta}(x)}{f_{\theta}(y)} = \begin{cases} 1 & \theta \in A_{x}, \theta \in A_{y} \\ \infty & \theta \in A_{x}, \theta \notin A_{y} \end{cases}$$

This depends on θ unless $A_x = A_y$.

Thus, if the ratio does not depend on θ , we must have $x_{(1)} = y_{(1)}$ and $x_{(n)} = y_{(n)}$.

Therefore, by Theorem 6.2.13, $(X_{(1)}, X_{(n)})$ is minimal sufficient for θ .

Example 6.2.14.

Let $X_1, ..., X_n$ be iid from $N(\mu, \sigma^2)$ with unknown $\mu \in \mathscr{R}$ and $\sigma > 0$. Earlier, we showed that $T = (\overline{X}, S^2)$ is sufficient for $\theta = (\mu, \sigma^2)$. Is *T* minimal sufficient?

Let $f_{\theta}(x)$ be the joint pdf of the sample, x and y be two sample points. Then

$$\begin{array}{ll} \frac{f_{\theta}(x)}{f_{\theta}(y)} &=& \frac{(2\pi\sigma^2)^{-n/2}\exp(-[(n(\bar{x}-\mu)^2+(n-1)s_x^2]/(2\sigma^2))}{(2\pi\sigma^2)^{-n/2}\exp(-[(n(\bar{y}-\mu)^2+(n-1)s_y^2]/(2\sigma^2))} \\ &=& \exp([-n(\bar{x}^2-\bar{y}^2)+2n\mu(\bar{x}-\bar{y})-(n-1)(s_x^2-s_y^2)]/(2\sigma^2)) \end{array}$$

where \bar{x} and s_x^2 are the sample mean and variance based on the sample point x, and \bar{y} and s_y^2 are the sample mean and variance based on the sample point y.

This ratio does not depend on $\theta = (\mu, \sigma^2)$ iff $\bar{x} = \bar{y}$ and $s_x^2 = s_y^2$.

By Theorem 6.2.13, $T = (\bar{X}, S^2)$ is minimal sufficient for $\theta = (\mu, \sigma^2)$.

Like the concept of sufficiency, minimal sufficiency also depends on the parameters we are interested in.

In Example 6.2.14, let us consider two sub-families.

- Suppose that it is known that $\sigma = 1$. Then $T = (\bar{X}, S^2)$ is still sufficient but not minimal sufficient for μ . In fact, using Theorem 6.2.13 we can show that \bar{X} is minimal sufficient for μ when $\sigma = 1$ and, $T = (\bar{X}, S^2)$ is not a function of \bar{X} (why?).
- Suppose that it is know that μ² = σ² so that we only have one unknown parameter μ ∈ ℛ, μ ≠ 0. (This is called a curved exponential family.)
 Is T = (X̄, S²) minimal sufficient for θ = μ?

Note that T is certainly sufficient for θ .

The answer can be found as a special case of the following result.

Minimal sufficient statistics in exponential families

Let $X_1, ..., X_n$ be iid from an exponential family with pdf

$$f_{ heta}(x) = h(x)c(heta)\exp\left(\eta(heta)'\mathcal{T}(x)
ight), \qquad heta\in\Theta$$

where $\eta(\theta)' = (w_1(\theta), ..., w_k(\theta))$ and $T(x)' = (t_1(x), ..., t_k(x))$. Suppose that there exists $\{\theta_0, \theta_1, ..., \theta_k\} \subset \Theta$ such that the vectors $\eta_i = \eta(\theta_i) - \eta(\theta_0), i = 1, ..., k$, are linearly independent in \mathscr{R}^k . (This is true if the family is of full rank). We have shown that T(X) is sufficient for θ . We now show that T is in fact minimal sufficient for θ . Note that we can focus on the pints x at which h(x) > 0. For any θ , $f_{\theta}(x)$

$$\frac{f_{\theta}(x)}{f_{\theta}(y)} = \exp\left(\eta(\theta)'[T(x) - T(y)]\right) \frac{h(x)}{h(y)}$$

If this ratio equals $\phi(x, y)$ not depending on θ , then

$$\eta(\theta)'[T(x) - T(y)] = \log(\phi(x, y)) + \log(h(y)/h(x))$$

which implies

$$[\eta(\theta_i) - \eta(\theta_0)]'[T(x) - T(y)] = 0 \qquad i = 1, ..., k.$$

Since $\eta(\theta_i) - \eta(\theta_0)$, i = 1, ..., k, are linearly independent, we must have T(x) = T(y).

By Theorem 6.2.13, *T* is minimal sufficient for θ .

Application to curved normal family

We can now show that $T = (\bar{X}, S^2)$ minimal sufficient for $\theta = \mu$ when the sample is a random sample from $N(\mu, \mu^2), \mu \in \mathcal{R}, \mu \neq 0$. It can be shown that

$$\eta(\theta) = \left(\frac{n\mu}{\sigma^2}, -\frac{n-1}{2\sigma^2}\right)' = \left(\frac{n}{\mu}, -\frac{n-1}{2\mu^2}\right)'$$

Points $\theta_0 = (1,1)$, $\theta_1 = (-1,1)$, and $\theta_2 = (1/2, 1/2)$ are in the parameter space, and

$$\eta(\theta_1) - \eta(\theta_0) = \begin{pmatrix} -n \\ -(n-1)/2 \end{pmatrix} - \begin{pmatrix} n \\ -(n-1)/2 \end{pmatrix} = \begin{pmatrix} -2n \\ 0 \end{pmatrix}$$

$$\eta(\theta_2) - \eta(\theta_0) = \begin{pmatrix} n/2 \\ -2(n-1) \end{pmatrix} - \begin{pmatrix} n \\ -(n-1)/2 \end{pmatrix} = \begin{pmatrix} -n/2 \\ -3(n-1)/2 \end{pmatrix}$$

Are these two vectors linearly independent? If there are c and d such that

$$c[\eta(\theta_1) - \eta(\theta_0)] + d[\eta(\theta_2) - \eta(\theta_0)] = 0$$

i.e.,

$$c\left(\begin{array}{c} -2n\\ 0\end{array}\right)+d\left(\begin{array}{c} -n/2\\ -3(n-1)/2\end{array}\right)=0$$

Then, we must have d = 0 and then c = 0.

That means vectors $\eta(\theta_1) - \eta(\theta_0)$ and $\eta(\theta_2) - \eta(\theta_0)$ are linearly independent and the condition for the result of exponential family is satisfied.

Therefore, $T = (\bar{X}, S^2)$ is minimal sufficient for $\theta = \mu$.

Example.

Let $(X_1, ..., X_n)$ be a random sample from *Cauchy* (μ, σ) , where $\mu \in \mathscr{R}$ and $\sigma > 0$ are unknown parameters. The joint pdf of $(X_1, ..., X_n)$ is

$$f_{\mu,\sigma}(x) = \frac{\sigma^n}{\pi^n} \prod_{i=1}^n \frac{1}{\sigma^2 + (x_i - \mu)^2}, \qquad x = (x_1, ..., x_n) \in \mathscr{R}^n.$$

For any
$$x = (x_1, ..., x_n)$$
 and $y = (y_1, ..., y_n)$, if
 $f_{\mu,\sigma}(x) = \psi(x, y) f_{\mu,\sigma}(y)$

holds for any μ and σ , where ψ does not depend on (μ, σ) , then

$$\prod_{i=1}^n \left[1+(y_i-\mu)^2\right] = \psi(x,y)\prod_{i=1}^n \left[1+(x_i-\mu)^2\right] \qquad \mu \in \mathscr{R}$$

Both sides of the above identity are polynomials of degree 2n in μ . Comparison of the coefficients to the highest terms gives $\psi(x, y) = 1$ and hence

$$\prod_{i=1}^n \left[1+(y_i-\mu)^2\right] = \prod_{i=1}^n \left[1+(x_i-\mu)^2\right] \qquad \mu \in \mathscr{R}$$

As a polynomial of μ , the left-hand side of the above identity has 2n complex roots $x_i \pm i$, i = 1, ..., n, while the right-hand side of the above identity has 2n complex roots $y_i \pm i$, i = 1, ..., n.

Since the two sets of roots must agree, the ordered values of x_i 's are the same as the ordered values of y_i 's.

By Theorem 6.2.13, the order statistics of $X_1, ..., X_n$ is minimal sufficient for (μ, σ) .

The following result may be useful in establishing minimal sufficiency outside of the exponential family.

Theorem 6.6.5.

Let $f_0, f_1, f_2, ...$ be a sequence of pdf's or pmf's on the range of X, all have the same support.

a. The statistic

$$T(X) = \left(\frac{f_1(X)}{f_0(X)}, \frac{f_2(X)}{f_0(X)}, ...\right)$$

is minimal sufficient for the family $\{f_0, f_1, f_2, ...\}$ of populations for X.

b. If 𝒫 is a family of pdf's or pmf's for X with common support, and
(i) f_i ∈ 𝒫, i = 0, 1, 2, ...
(ii) T(X) is sufficient for 𝒫,

then T is minimal sufficient for \mathcal{P} .

Proof of part a.

Let $g_i(T) = T_i$, the *i*th component of *T*, i = 0, 1, 2, ..., and let $g_0(T) = 1$. Then $f_i(x) = g_i(T(x))f_0(x)$, i = 0, 1, 2, ...

By the factorization theorem, T is sufficient for $\mathscr{P}_0 = \{f_0, f_1, f_2, ...\}$.

Suppose that S(X) is another sufficient statistic.

By the factorization theorem, there are Borel functions h and \tilde{g}_i such that

$$f_i(x) = \tilde{g}_i(S(x))h(x), \quad i = 0, 1, 2, ...$$

Then

$$T_i(x) = rac{f_i(x)}{f_0(x)} = rac{ ilde{g}_i(S(x))}{ ilde{g}_0(S(x))}, \quad i = 0, 1, 2, ...$$

Thus, T is a function of S.

By definition, T is minimal sufficient for \mathcal{P}_0 .

Proof of part b.

The two additional conditions are $\mathscr{P}_0 \subset \mathscr{P}$ and T is sufficient for \mathscr{P} .

Let *S* be any sufficient statistic for \mathcal{P} .

Then *S* is also sufficient for \mathcal{P}_0 .

From part a, *T* is minimal sufficient for \mathscr{P}_0 so there is a function ψ such that $T = \psi(S)$.

By definition, T is minimal sufficient for \mathcal{P} since T is sufficient for \mathcal{P} .

- In fact, the result in Theorem 6.6.5 still holds if the common support condition is replaced by that the support of f₀ contains the support of any pdf or pmf in *P*.
- In most applications, we can choose *P*₀ containing finitely many elements.

Example

Let $X_1, ..., X_n$ be a random sample from *double-exponential*(μ , 1), $\mu \in \mathcal{R}$, i.e., the joint pdf of X is

$$f_{\mu}(x) = \frac{1}{2^n} \exp\left(-\sum_{i=1}^n |x_i - \mu|\right)$$

Consider $\mathscr{P}_0 = \{f_0, f_1, ..., f_n\}$, where each f_j is the pdf with $\mu = j$, j = 0, 1, ..., n.

By Theorem 6.6.5a, a minimal sufficient statistic for \mathscr{P}_0 is

$$T = \left(\exp\left(\sum_{i=1}^{n} |X_i| - \sum_{i=1}^{n} |X_i - j|\right), \ j = 1, ..., n\right)$$

which is equivalent to

$$U = \left(\sum_{i=1}^{n} |X_i| - \sum_{i=1}^{n} |X_i - j|, \ j = 1, ..., n\right)$$

We can further show that U is equivalent to S, the set of order statistics.

Since S is sufficient, by Theorem 6.6.5b, S, U, and T are all minimal sufficient.

Definition 6.6.3 (Necessity).

A statistic is said to be necessary if it can be written as a function of every sufficient statistic.

T is necessary if, for every sufficient *S*, there is a function ψ such that $T = \psi(S)$.

From the definitions of the necessity and minimal sufficiency, we can reach the following conclusion.

Theorem 6.6.4.

A statistic is minimal sufficient if and only if it is necessary and sufficient.