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Chapter 1: Probability Theory
Lecture 1: Measure space, measurable function, and
integration
Random experiment: uncertainty in outcomes
Ω: sample space: a set containing all possible outcomes

Definition 1.1
A collection of subsets of Ω, F , is a σ -field (or σ -algebra) if
(i) The empty set /0 ∈F ;
(ii) If A ∈F , then the complement Ac ∈F ;
(iii) If Ai ∈F , i = 1,2, ..., then their union ∪Ai ∈F .
(Ω,F ) is a measurable space if F is a σ -field on Ω

Two trivial examples: F = { /0,Ω} and F = all subsets of Ω (power set)
A nontrivial example: F = { /0,A,Ac ,Ω}, where A⊂ Ω
C = a collection of subsets of interest (may not be a σ -field)
σ(C ): the smallest σ -field containing C (the σ -field generated by C )
σ(C ) = C if C itself is a σ -field
σ({A}) = σ({A,Ac}) = σ({A,Ω}) = σ({A, /0}) = { /0,A,Ac ,Ω}
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Borel σ -field
Rk : the k -dimensional Euclidean space (R1 = R is the real line)
O = all open sets, C = all closed sets
Bk = σ(O) = σ(C ): the Borel σ -field on Rk

C ∈Bk , BC = {C∩B : B ∈Bk} is the Borel σ -field on C

Definition 1.2.
Let (Ω,F ) be a measurable space.
A set function ν defined on F is a measure if
(i) 0≤ ν(A)≤ ∞ for any A ∈F ;
(ii) ν( /0) = 0;
(iii) If Ai ∈F , i = 1,2, ..., and Ai ’s are disjoint, i.e., Ai ∩Aj = /0 for any
i 6= j , then

ν

(
∞⋃

i=1

Ai

)
=

∞

∑
i=1

ν(Ai).

(Ω,F ,ν) is a measure space if ν is a measure on F in (Ω,F ).

If ν(Ω) = 1, then ν is a probability measure.
We usually use P instead of ν ; i.e., (Ω,F ,P) is a probability space.
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Conventions
For any x ∈R, ∞ + x = ∞, x ∞ = ∞ if x > 0, x ∞ =−∞ if x < 0
0∞ = 0, ∞ + ∞ = ∞, ∞a = ∞ for any a > 0;
∞−∞ or ∞/∞ is not defined

Important examples of measures
Let x ∈ Ω be a fixed point and

δx (A) =

{
c x ∈ A
0 x 6∈ A.

This is called a point mass at x
Let F = all subsets of Ω and ν(A) = the number of elements in
A ∈F (ν(A) = ∞ if A contains infinitely many elements).
Then ν is a measure on F and is called the counting measure.
There is a unique measure m on (R,B) that satisfies
m([a,b]) = b−a for every finite interval [a,b], −∞ < a≤ b < ∞.
This is called the Lebesgue measure.
If we restrict m to the measurable space ([0,1],B[0,1]), then m is a
probability measure (uniform distribution).
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Proposition 1.1 (Properties of measures)
Let (Ω,F ,ν) be a measure space.

1 (Monotonicity). If A⊂ B, then ν(A)≤ ν(B).
2 (Subadditivity). For any sequence A1,A2, ...,

ν

(
∞⋃

i=1

Ai

)
≤

∞

∑
i=1

ν(Ai).

3 (Continuity). If A1 ⊂ A2 ⊂ A3 ⊂ ·· · (or A1 ⊃ A2 ⊃ A3 ⊃ ·· · and
ν(A1) < ∞), then

ν

(
lim
n→∞

An

)
= lim

n→∞
ν (An) ,

where
lim
n→∞

An =
∞⋃

i=1

Ai

(
or =

∞⋂
i=1

Ai

)
.

Let P be a probability measure on (R,B).
The cumulative distribution function (c.d.f.) of P is defined to be

F (x) = P ((−∞,x ]) , x ∈R
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Proposition 1.2 (Properties of c.d.f.’s)
(i) Let F be a c.d.f. on R.

(a) F (−∞) = limx→−∞ F (x) = 0;
(b) F (∞) = limx→∞ F (x) = 1;
(c) F is nondecreasing, i.e., F (x)≤ F (y) if x ≤ y ;
(d) F is right continuous, i.e., limy→x ,y>x F (y) = F (x).

(ii) Suppose a real-valued function F on R satisfies (a)-(d) in part (i).
Then F is the c.d.f. of a unique probability measure on (R,B).

Product space
I = {1, ...,k}, k is finite or ∞

Γi , i ∈I , are some sets
∏i∈I Γi = Γ1×·· ·×Γk = {(a1, ...,ak ) : ai ∈ Γi , i ∈I }
R×R = R2, R×R×R = R3

Let (Ωi ,Fi), i ∈I , be measurable spaces
∏i∈I Fi is not necessarily a σ -field
σ (∏i∈I Fi) is called the product σ -field on the product space ∏i∈I Ωi
(∏i∈I Ωi ,σ (∏i∈I Fi)) is denoted by ∏i∈I (Ωi ,Fi)
Example: ∏i=1,...,k (R,B) = (Rk ,Bk )
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Product measure
Consider a rectangle [a1,b1]× [a2,b2]⊂R2.
The usual area of [a1,b1]× [a2,b2] is

(b1−a1)(b2−a2) = m([a1,b1])m([a2,b2])

Is m([a1,b1])m([a2,b2]) the same as the value of a measure defined on
the product σ -field?

σ -finite
A measure ν on (Ω,F ) is said to be σ -finite iff there exists a sequence
{A1,A2, ...} such that ∪Ai = Ω and ν(Ai) < ∞ for all i
Any finite measure (such as a probability measure) is clearly σ -finite
The Lebesgue measure on R is σ -finite, since R = ∪An with
An = (−n,n), n = 1,2, ...
The counting measure in is σ -finite if and only if Ω is countable
The measure ν(A) = ∞ unless A = /0 is not σ -finite
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Proposition 1.3 (Product measure theorem)
Let (Ωi ,Fi ,νi), i = 1, ...,k , be measure spaces with σ -finite measures.
There exists a unique σ -finite measure on σ -field σ(F1×·· ·×Fk ),
called the product measure and denoted by ν1×·· ·×νk , such that

ν1×·· ·×νk (A1×·· ·×Ak ) = ν1(A1) · · ·νk (Ak )

for all Ai ∈Fi , i = 1, ...,k .

Jiont and marginal c.d.f.’s

The joint c.d.f. of a probability measure on (Rk ,Bk ) is defined by

F (x1, ...,xk ) = P((−∞,x1]×·· ·× (−∞,xk ]), xi ∈R

and the i th marginal c.d.f. is defined by

Fi(x) = lim
xj→∞,j=1,...,i−1,i+1,...,k

F (x1, ...,xi−1,x ,xi+1, ...,xk )

There is a 1-1 correspondence between probability and c.d.f. on Rk .
The product measure corresponds to

F (x1, ...,xk ) = F1(x1) · · ·Fk (xk ), (x1, ...,xk ) ∈Rk ,

where Fi is the c.d.f. of the i th probability measure.
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Measurable function
f : a function from Ω to Λ (often Λ = Rk )
Inverse image of B ⊂ Λ under f :

f−1(B) = {f ∈ B}= {ω ∈ Ω : f (ω) ∈ B}.

The inverse function f−1 need not exist for f−1(B) to be defined.

f−1(Bc) = (f−1(B))c for any B ⊂ Λ

f−1(∪Bi) = ∪f−1(Bi) for any Bi ⊂ Λ, i = 1,2, ...

Let C be a collection of subsets of Λ.
Define f−1(C ) = {f−1(C) : C ∈ C }

Definition 1.3
Let (Ω,F ) and (Λ,G ) be measurable spaces.
Let f be a function from Ω to Λ.
f is called a measurable function from (Ω,F ) to (Λ,G ) iff f−1(G )⊂F .
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Remarks
f is measurable from (Ω,F ) to (Λ,G ) iff for any B ∈ G ,
f−1(B) = {ω : f (ω) ∈ B} ∈F ; we don’t care about whether
{f (ω) : ω ∈ A} is in G or not, A ∈F .
If F = all subsets of Ω, then any function f is measurable.
If f is measurable from (Ω,F ) to (Λ,G ), then f−1(G ) is a
sub-σ -field of F and is called the σ -field generated by f and
denoted by σ(f ).
σ(f ) may be much simpler than F

A measurable f from (Ω,F ) to (R,B) is called a Borel function.
f is Borel if and only if f−1(a,∞) ∈F for all a ∈R.
There are a lots of Borel functions (Proposition 1.4)
In probability and statistics, a Borel function is also called a
random variable. (A random variable = a variable that is random?)
A random vector (X1, ...,Xn) is a function measurable from (Ω,F )
to (Rn,Bn).
(X1, ...,Xn) is a random vector iff each Xi is a random variable.
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Indicator and simple functions
The indicator function for A⊂ Ω is:

IA(ω) =

{
1 ω ∈ A
0 ω 6∈ A.

For any B ⊂R,

I−1
A (B) =


/0 0 6∈ B,1 6∈ B
A 0 6∈ B,1 ∈ B
Ac 0 ∈ B,1 6∈ B
Ω 0 ∈ B,1 ∈ B.

Then, σ(IA) = { /0,A,Ac ,Ω} and IA is Borel iff A ∈F
Note that σ(IA) is much simpler than F .
Let A1, ...,Ak be measurable sets on Ω and a1, ...,ak be real numbers.
A simple function is

ϕ(ω) =
k

∑
i=1

ai IAi (ω)

A simple function is nonnegative iff ai ≥ 0 for all i .
Any nonnegative Borel function can be the limit of a sequence of
nonnegative simple functions.
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Let A1, ...,Ak be a partition of Ω, i.e., Ai ’s are disjoint and
A1∪·· ·∪Ak = Ω.
Then the simple function ϕ with distinct ai ’s exactly characterizes this
partition and σ(ϕ) = σ({A1, ...,Ak}).

Distribution (law)
Let (Ω,F ,ν) be a measure space and f be a measurable function from
(Ω,F ) to (Λ,G ).
The induced measure by f , denoted by ν ◦ f−1, is a measure on G
defined as

ν ◦ f−1(B) = ν(f ∈ B) = ν

(
f−1(B)

)
, B ∈ G

If ν = P is a probability measure and X is a random variable or a
random vector, then P ◦X−1 is called the law or the distribution of X
and is denoted by PX .
The c.d.f. of PX is also called the c.d.f. or joint c.d.f. of X and is
denoted by FX .
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Integration
Integration is a type of “average".

Definition 1.4
(a) The integral of a nonnegative simple function ϕ w.r.t. ν is defined

as ∫
ϕdν =

k

∑
i=1

aiν(Ai).

(b) Let f be a nonnegative Borel function and let Sf be the collection
of all nonnegative simple functions satisfying ϕ(ω)≤ f (ω) for any
ω ∈ Ω. The integral of f w.r.t. ν is defined as∫

fdν = sup

{∫
ϕdν : ϕ ∈Sf

}
.

(Hence, for any Borel function f ≥ 0, there exists a sequence of
simple functions ϕ1,ϕ2, ... such that 0≤ ϕi ≤ f for all i and
limn→∞

∫
ϕndν =

∫
fdν .)
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(c) Let f be a Borel function,

f+(ω) = max{f (ω),0}

be the positive part of f , and

f−(ω) = max{−f (ω),0}

be the negative part of f . (Note that f+ and f− are nonnegative
Borel functions, f (ω) = f+(ω)− f−(ω), and |f (ω)|= f+(ω) + f−(ω).)
We say that

∫
fdν exists if and only if at least one of

∫
f+dν and∫

f−dν is finite, in which case∫
fdν =

∫
f+dν−

∫
f−dν .

(d) When both
∫

f+dν and
∫

f−dν are finite, we say that f is integrable.
Let A be a measurable set and IA be its indicator function.
The integral of f over A is defined as∫

A
fdν =

∫
IAfdν .

Note: A Borel function f is integrable if and only if |f | is integrable.
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Notation for integrals∫
fdν =

∫
Ω fdν =

∫
f (ω)dν =

∫
f (ω)dν(ω) =

∫
f (ω)ν(dω).

In probability and statistics,
∫

XdP = EX = E(X ) and is called the
expectation or expected value of X .
If F is the c.d.f. of P on (Rk ,Bk ),

∫
f (x)dP =

∫
f (x)dF (x) =

∫
fdF .

Extended set
For convenience, we define the integral of a measurable f from
(Ω,F ,ν) to (R̄,B̄), where R̄ = R∪{−∞,∞}, B̄ = σ(B∪{{∞},{−∞}}).
Let A+ = {f = ∞} and A− = {f =−∞}.
If ν(A+) = 0, we define

∫
f+dν to be

∫
IAc

+
f+dν ; otherwise

∫
f+dν = ∞.∫

f−dν is similarly defined.
If at least one of

∫
f+dν and

∫
f−dν is finite, then∫

fdν =
∫

f+dν−
∫

f−dν is well defined.

Example 1.5
For a countable Ω, F = all subsets of Ω, ν = the counting measure,
and a Borel f , ∫

fdν = ∑
ω∈Ω

f (ω).
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Example 1.6.
If Ω = R and ν is the Lebesgue measure, then the Lebesgue integral
of f over an interval [a,b] is written as∫

[a,b]
f (x)dx =

∫ b

a
f (x)dx ,

which agrees with the Riemann integral in calculus when the latter is
well defined.
However, there are functions for which the Lebesgue integrals are
defined but not the Riemann integrals.

Proposition 1.5
Let (Ω,F ,ν) be a measure space and f and g be Borel functions.

(i) If
∫

fdν exists and a ∈R, then
∫

(af )dν exists and is equal to
a
∫

fdν .
(ii) If both

∫
fdν and

∫
gdν exist and

∫
fdν +

∫
gdν is well defined,

then
∫

(f + g)dν exists and is equal to
∫

fdν +
∫

gdν .

It is often a good idea to break the proof into several steps: simple
functions, nonnegative functions, and then general functions.
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Proof of Proposition 1.5(i) (the proof of (ii) is an exercise)
If a = 0, then

∫
(af )dν =

∫
0dν = 0 = a

∫
fdν .

Suppose that a > 0.
If f is simple and ≥ 0, then af is also simple and ≥ 0 and
a
∫

fdν =
∫

(af )dν follows from the definition of integration.
For a > 0 and a general f ≥ 0,∫

(af )dν = sup

{∫
ϕdν : ϕ ∈Saf

}
= sup

{∫
aφdν : φ = ϕ/a ∈Sf

}
= sup

{
a
∫

φdν : φ ∈Sf

}
= asup

{∫
φdν : φ ∈Sf

}
= a

∫
fdν

For a > 0 and general f , since
∫

fdν exists,

a
∫

fdν = a
(∫

f+dν−
∫

f−dν

)
= a

∫
f+dν−a

∫
f−dν

=
∫

af+dν−
∫

af−dν =
∫

(af )+dν−
∫

(af )−dν =
∫

(af )dν

For a < 0, af = |a|(−f )

UW-Madison (Statistics) Stat 709 Lecture 1 2018 16 / 16


