Chapter 1: Probability Theory

Lecture 1: Measure space, measurable function, and
integration

Random experiment: uncertainty in outcomes
Q: sample space: a set containing all possible outcomes

Definition 1.1

A collection of subsets of Q, .#, is a o-field (or c-algebra) if
(i) The empty set 0 € .7;

(i) If Ae #, then the complement A° € .#;

(i) If A; e #,i=1,2, ..., then their union UA; € Z.

(Q,.#) is a measurable space if .7 is a o-field on Q

Two trivial examples: % = {0,Q} and .7 = all subsets of Q (power set)
A nontrivial example: .7 = {0,A, A°,Q}, where AC Q

% = a collection of subsets of interest (may not be a o-field)

o(%): the smallest o-field containing ¢ (the o-field generated by %)
o(%¢) =< if ¢ itself is a o-field

o({A}D) = s({A,A°)) = c({A.Q}) = 0({A.0}) = {0.A, A°. O}
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Borel o-field

Z*: the k-dimensional Euclidean space (#' = Z is the real line)
¢ = all open sets, € = all closed sets

B = 6(0) = o(%): the Borel c-field on Z*

C e #%, Bc={CnB:Bec %"} is the Borel c-field on C

Definition 1.2.

Let (Q2,.%) be a measurable space.

A set function v defined on .# is a measure if

(i) 0<Vv(A) <ooforany Ac .Z;

(i) v(0) = 0;

(i) If Aje #,i=1,2,..., and A/’s are disjoint, i.e., A;nNA; = 0 for any
i # j, then

v(O&):iwmy
i=1 i=

(Q,#,v) is a measure space if v is a measure on .% in (Q,.%).

If v(©2) =1, then v is a probability measure.

We usually use P instead of v; i.e., (Q,.#, P) is a probability space.
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Conventions

@ Forany x € Z, 0+ X = o0, Xoo = o0 if X >0, Xoo = —o0if x <0
() 000:0,oo+oo:oo,ooa:°0f0ranya>0;
@ oo — o0 OF o0 /e0 jS NOt defined

Important examples of measures

@ Let x € Q be a fixed point and

c xecA
5X(A):{ 0 x¢A

This is called a point mass at x

@ Let .# = all subsets of Q and v(A) = the number of elements in
Ae 7 (v(A) = if Acontains infinitely many elements).
Then v is a measure on .# and is called the counting measure.

@ There is a unique measure mon (%, %) that satisfies
m([a, b]) = b— a for every finite interval [a,b], —cc < @< b < oo.
This is called the Lebesgue measure.
If we restrict m to the measurable space ([0, 1], %o 11), then mis a
probability measure (uniform distribution).

v
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Proposition 1.1 (Properties of measures)
Let (©2,.#,v) be a measure space.
@ (Monotonicity). If Ac B, then v(A) < v(B).
© (Subadditivity). For any sequence Aq, Ao, ...,

\% (D A,) < i V(A,‘).
i=1

i=1

Q (Continuity). If Ay CAoCc A3 C--- (or Ay DA DA3D--- and
V(A1) <o), then

v(lim An> = lim v(Ap),

N—soo N—soo

where oo &=
,!i_rQoAn:UA,' (OFZIQA,'>.

i=1

Let P be a probability measure on (%, %).
The cumulative distribution function (c.d.f.) of P is defined to be

F(x)=P((—o,x]), x€Z
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Proposition 1.2 (Properties of c.d.fs)

(i) Let F beac.d.f.onZ.
(@) F(—=)=Ilimy__wF(x)=0;
(b) F(e0) =limyx_e F(X) =1;
(c) Fis nondecreasing, i.e., F(x) < F(y)if x <y;
(d) F isright continuous, i.e., limy_,x y~x F(¥) = F(x).
(i) Suppose a real-valued function F on Z satisfies (a)-(d) in part (i).
Then F is the c.d.f. of a unique probability measure on (%, ).

Product space

S ={1,...,k}, k is finite or oo

i, i € .7, are some sets

H,-ejr,': M4 x---xTg= {(a1,...,ak) 1 aj F,-,ie f}
RAXR =R, R R R =R

Let (Q;,.%), | € ., be measurable spaces

[Tic.r -Zi is not necessarily a o-field

o ([Tic.r %) is called the product o-field on the product space [1c.» Q;
(ITic.s Qi 0 (ITje.r #i)) is denoted by [Tic » (€2, -7))

Example: Hi:1,....k(%a%) = (‘%kﬁ%k)

v,
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Product measure

Consider a rectangle [ay, b;] x [az, ba] C %#°.
The usual area of [ay,bq] X [az, bp] IS

(b1 — a1)(b2 — az) = m([ar, b1])m([az, ba])

Is m([aq, b1])m([a2, b2]) the same as the value of a measure defined on
the product o-field?

| \

o-finite
A measure v on (£,.7) is said to be o-finite iff there exists a sequence
{A1,Ao,...} such that UA; = Q and v(A;) < for all i

Any finite measure (such as a probability measure) is clearly o-finite
The Lebesgue measure on #Z is o-finite, since # = UA, with
Ap=(—n,n),n=1,2 ...

The counting measure in is o-finite if and only if Q2 is countable

The measure v(A) =« unless A= 0 is not o-finite
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Proposition 1.3 (Product measure theorem)

Let (Q;,.%,vj), i =1,...,k, be measure spaces with o-finite measures.
There exists a unique o-finite measure on o-field o(.71 x - -+ x F),
called the product measure and denoted by v¢ x --- x v, such that

Vi X o X VR(Ag X - X Ag) = vi(Aq) - vie(Ak)
forall Aje %, i=1,... k.
Jiont and marginal c.d.f’s
The joint c.d.f. of a probability measure on (#*, %) is defined by

F(X1,...;Xk) = P((—o0, X1] X -+ X (=00, Xk]), X, €Z
and the ith marginal c.d.f. is defined by

I:I(X): . Ilm . F(X17"'7Xi—1>X7Xi+17"'7Xk)
Xj—oo,j=1,..,i—1,i+1,.. .k

There is a 1-1 correspondence between probability and c.d.f. on ZX.
The product measure corresponds to

F(Xt,oXk) = F1(X1) - Fi(Xk),  (X1,--, Xk) € %,
where F; is the c.d.f. of the ith probability measure.
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Measurable function

f: a function from  to A (often A = %)
Inverse image of B C A under f:

f1(B)y={feB}={weQ:f(w)cB).
The inverse function f~! need not exist for ~1(B) to be defined.
f~1(B®) = (f"1(B))° forany Bc A

1 (UB)=Uf"(B;) forany BicA,i=1,2,...

Let € be a collection of subsets of A.
Define 1 (%)= {f—1 (C):Ce%}

Definition 1.3

Let (Q2,.#) and (A,%) be measurable spaces.
Let f be a function from Q to A.
f is called a measurable function from (Q,.%) to (A, %) iff f~1(4) c 7.
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@ fis measurable from (Q,.%) to (A,¥9) iff forany B€ ¥,
~1(B) = {o: f(w) € B} € .7; we don’t care about whether
{f(w): @€ A} isin% ornot, Ac .Z.

o If # = all subsets of Q, then any function f is measurable.

o If f is measurable from (Q,.%) to (A, %), then (%) is a
sub-o-field of .7 and is called the o-field generated by f and
denoted by o (f).

@ o(f) may be much simpler than .#

@ A measurable f from (Q,.%) to (%, %) is called a Borel function.
@ fis Borel if and only if f~'(a,) € .7 for all a € %.

@ There are a lots of Borel functions (Proposition 1.4)

@ In probability and statistics, a Borel function is also called a
random variable. (A random variable = a variable that is random?)

@ A random vector (Xi,...,Xp) is a function measurable from (,.%)
to (%", A").

@ (Xi,...,Xpn) is a random vector iff each X; is a random variable.
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Indicator and simple functions
The indicator function for A C Q is:

A
““”:{8 ZEA

For any B C %,

0 0¢£B,1¢B
A 0¢£B,1¢B
A° 0eB1¢B
Q 0eB,1eB.

Then, o(l4) = {0,A,A°,Q} and I4 is Borel iff Ac .7

Note that o(/4) is much simpler than ..

Let Ay, ..., A be measurable sets on Q and ay, ..., ax be real numbers.
A simple function is

k
(@) =) aila(e)
i=1

A simple function is nonnegative iffia,- >0 for all /.
Any nonnegative Borel function can be the limit of a sequence of

nonnegative simple functions.
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Let Aq,..., A be a partition of Q, i.e., A/’s are disjoint and
AjU---UAL = Q.

Then the simple function ¢ with distinct a;’s exactly characterizes this
partition and o (@) = o({A1, ..., Ak}).

Distribution (law)
Let (Q,.%#,v) be a measure space and f be a measurable function from
(Q,%#)1to (A9).

The induced measure by f, denoted by vof~1, is a measure on ¢
defined as

vof—1(B):v(feB):v<f—‘(5)), Bey

If v= P is a probability measure and X is a random variable or a
random vector, then Po X~ is called the law or the distribution of X
and is denoted by Px.

The c.d.f. of Py is also called the c.d.f. or joint c.d.f. of X and is
denoted by Fy.

v

UW-Madison (Statistics) Stat 709 Lecture 1 2018 11/16



Integration
Integration is a type of “average".

Definition 1.4
(a) The integral of a nonnegative simple function ¢ w.r.t. v is defined

as )
/(pdv =Y av(A).
=

(b) Let f be a nonnegative Borel function and let .#; be the collection
of all nonnegative simple functions satisfying ¢(®) < f(®) for any
o € Q. The integral of f w.r.t. v is defined as

/fdv:sup{/(pdv: (peff}.

(Hence, for any Borel function f > 0, there exists a sequence of
simple functions ¢4, ¢o, ... such that 0 < ¢; < f for all / and
limpe [ @pdv = [ fdv.)
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(c) Let f be a Borel function,
fi (@) = max{f(w),0}
be the positive part of f, and
f (o) = max{—f(w),0}
be the negative part of f. (Note that £, and f_ are nonnegative
Borel functions, f(w) = f,(0) — - (@), and |f(®)| = fL(0) + - (®).)

We say that [ fdv exists if and only if at least one of [ f,.dv and
J f_dv is finite, in which case

/mV:/adv—/Ldu

(d) When both [f dv and [ f_dv are finite, we say that f is integrable.
Let A be a measurable set and /4 be its indicator function.
The integral of f over A is defined as

‘/MV:/MMM
A

Note: A Borel function f is integrable if and only if |f| is integrable. ]
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Notation for integrals
@ [fdv = [gfdv=[flw)dv=[fw)dv(w)=[flo)v(dw).
@ In probability and statistics, [ XdP = EX = E(X) and is called the
expectation or expected value of X.

o If Fis the c.d.f. of P on (%%, %), [ f(x)dP = [ f(x)dF(x) = [ fdF.

Extended set

For convenience, we define the integral of a measurable f from
(Q,.7,v) to (#,%), where # = B U{—o0,00}, B = 0(BU{{oo},{—o0}}).
Let Ay = {f=o0} and A_ = {f = —oo}.

If v(Ay) =0, we define [ f.dv tobe [/afidv; otherwise [f dv = eco.
[ f-dv is similarly defined.

If at least one of [f dv and [ f_dv is finite, then

[fdv = [fLdv— [f_dv is well defined.

For a countable 2, .% = all subsets of 2, v = the counting measure,
and a Borel f,
/ fdv =Y (o).

e
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Example 1.6.

If Q =2 and v is the Lebesgue measure, then the Lebesgue integral
of f over an interval [a, b] is written as

/[a,b] f(x)dx = /ab f(x)dx,

which agrees with the Riemann integral in calculus when the latter is
well defined.

However, there are functions for which the Lebesgue integrals are
defined but not the Riemann integrals.

Proposition 1.5
Let (Q,.#,v) be a measure space and f and g be Borel functions.

(i) If [fdv exists and a € #, then [(af)dv exists and is equal to
a/ffdv.

(i) If both [fdv and [ gdv exist and [ fdv + [ gdv is well defined,
then [(f+ g)dv exists and is equal to [ fdv + [ gdv.

It is often a good idea to break the proof into several steps: simple
functions, nonnegative functions, and then general functions.
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Proof of Proposition 1.5(i) (the proof of (ii) is an exercise)

If a=0, then [(af)dv = [0dv=0=a/fdv.

Suppose that a > 0.

If fis simple and > 0, then af is also simple and > 0 and
a/ fdv = [(af)dv follows from the definition of integration.
For a> 0 and a general f > 0,

/(af)dv = sup{/(pdv: (peyaf} :sup{/a(pdv: 0] :(p/aeyf}

= sup{a/¢dv:¢e,7f} :aSUp{/¢dV:¢€yf}:a/de

For a> 0 and general f, since [ fdv exists,

a/fdv - a</f+dv—/f_dv> :a/f+dv—a/f_dv

Fora< 0, af =|a|(—f)

/af+dv—/af,dv:/(af)+dv—/(af),dv:/(af)dv
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