Lecture 3: Densities, moments, inequalities, and

generating functions

Example 1.12.

Let X be a random variable on (Q2,.%#, P) whose c.d.f. Fx has a
Lebesgue p.d.f. fx and Fx(c) < 1, where c is a fixed constant.

Let Y =min{X,c}, i.e., Yis the smaller of X and c.

Note that Y~ ((—c0,x]) = Qif x > cand Y1 ((—oo,x]) = X~ ((e0, x]) if
X <c.

Hence Y is a random variable and the c.d.f. of Y'is

1 X>c
Fy(x) = { Fx(x) x<c.

This c.d.f. is discontinuous at c, since Fx(c) < 1.

Thus, it does not have a Lebesgue p.d.f.

It is not discrete either.

Does Py, the probability measure corresponding to Fy, have a p.d.f.
w.r.t. some measure?

v
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Example 1.12 (continued)
Consider the point mass probability measure on (%, %):

1 ceA
5c(A)—{0 cdA Ac A
Then Py < m+ ., where mis the Lebesgue measure, and the p.d.f.
of Py is

aPy 0 X>c
fy(x) = m(x) = ;XZX’;X(C) iz g

To show this, it suffices to show that

/( F(Dd(m+80) = Py((~e=.x)) forany x < 7
—o0,X

(why?)
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Example 1.12 (continued)
For x < c,

/ fy(t)d(m+5c)=/ fx(t)dm+/ f ()56
(7°°7X] (7°°7X] (7°°7X]

_/OOX] t)dm = Px((—o0, x]) = Py((—o0,x])

For x > c,
/ fy (t)d(m+8;) — /( o ADdm+50)
= |, 0dm 80+ |11~ Fx(@)o(m+ &)

—/mc) dm+/ [ — Fx(c)]d5,

= Fx(©)+[1 = Fx(©)] = 1 = Py((—=.X)
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Example 1.14.
Let X be a random variable with c.d.f. Fx and Lebesgue p.d.f. fx, and
Y = X2,
Since Y~ 1((—eo,x]) is empty if x < 0, Fy(x) =0 if x < 0.
Since Y~ 1((—oo,x]) = X~ ([~ v/X,Vx]) if x >0, the c.d.f. of Yis
Fy(x) = PoY (o0, x]) = Po X~ ([-v/x,VX]) = Fx(vVX) = Fx(—Vx)
Hence, the Lebesgue p.d.f. of Fy is
1
fr(x) = m[fx(ﬁ) + i (= VX)) (X)
In particular, if 1 y
fx(x) = ——e X/2,
X( ) \/E
the Lebesgue p.d.f. of the standard normal distribution N(0,1), then
1

fy(x) = ?Me_x/zl(o,oo)(x),

which is the Lebesgue p.d.f. for the chi-square distribution x12 (Table
1.2).

This is actually an important result in statistics.
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Proposition 1.8 (Transformation)

Let X be a random k-vector with a Lebesgue p.d.f. fx and let

Y = g(X), where g is a Borel function from (%%, 2*) to (%, #").

Let Aq,...,An be disjoint sets in %% such that Z% — (A U---UAp) has
Lebesgue measure 0 and g on A; is one-to-one with a nonvanishing
Jacobian, i.e., the determinant Det(dg(x)/dx) #0on A;, j=1,....m.
Then Y has the following Lebesgue p.d.f.:

m

fr(x) = . [Det (ah(x)/ax) | (y(x).

Jj=1
where h; is the inverse function of gon A;, j=1,....m.

In Example 1.14, A; = (—,0), Az = (0,%), g(x) = x2, hy(x) = —V/X,
ha(x) = v/x, and |ahy(x)/dx] = 1/(2V/x).

Let X = (Xj, X2) be a random 2-vector having a joint Lebesgue p.d.f. fx.

Consider first the transformation g(x) = (x1, X1 + X2).

Using Proposition 1.8, one can show that the joint p.d.f. of g(X) is
fg(X)(X1 7y) = fX(X1 Y — X )7
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where y = x1 + Xo (note that the Jacobian equals 1).
The marginal p.d.f. of Y = Xj + X5 is then

fy(y) :/fx(x1,y—x1)dx1.
In particular, if X; and X, are independent, then

(y) = [ () (y — x).

Next, consider the transformation h(xq,x2) = (X1/X2, X2), assuming that
Xo #0 a.s.
Using Proposition 1.8, one can show that the joint p.d.f. of h(X) is

fhix) (2, X2) = [Xa|fx(2X2, X2),
where z = x1 /Xo.
The marginal p.d.f. of Z = X;/ Xz is

fz(2) :/|x2]fx(zx2,x2)dx2.
In particular, if X; and X, are independent, then

12(2) = [ beelf (200) i 0e) e
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Example 1.16A (F-distribution)

Let X; and X5 be independent random variables having the chi-square
distributions x3 and 3, (Table 1.2), respectively.
The p.d.f.of Z=X;/Xz is

fz(z) = 2M21 g o) xMHR)2 T g (142)%/2 gy
Z 2(n1+n2)/2r(n1/2 r(n2/2) 2
_ Tm+np)/2]  zm/A!

[(n/2)M(n2/2) (14 z)(m+m2)/2 ho)(2)
Using Proposition 1.8, one can show that the p.d.f. of
Y =(Xi/m)/(Xo/n2) = (n2/n)Z
is the p.d.f. of the F-distribution Fp, n, given in Table 1.2.

Example 1.16B (t-distribution)

Let U; be a random variable having the standard normal distribution
N(0,1) and U a random variable having the chi-square distribution 2.
Using the same argument, one can show that if U; and U> are
independent, then the distribution of T = U;//U>/nis the
t-distribution £, given in Table 1.2.
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Noncentral chi-square distribution

Let X, ..., X, be independent random variables and X; = N(u;, 62).

The distribution of Y = (X2 + .-+ X2) /o2 is called the noncentral
chi-square distribution and denoted by x2(8), where

8 = (u2+---+ u2)/o? is the noncentrality parameter.

x2(8) with 5 = 0 is called a central chi-square distribution.

It can be shown (exercise) that Y has the following Lebesgue p.d.f.:

6—5/2 Z (6/2) f2/+n(x)
j=0

where fi(x) is the Lebesgue p.d.f. of the chi-square distribution x2.

If Yi,..., Yx are independent random variables and Y; has the
noncentral chi-square distribution x,%/,(cS,-), i=1,...k, then

Y =Y;+---+ Yy has the noncentral chi-square distribution
Xr271+---+nk(51 + -+ 6k)-

Noncentral t-distribution and F-distribution will be introduced in
discussion session
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e If EX¥ is finite, where k is a positive integer, EX* is called the kth
moment of X or Py.

If E|X|? <  for some real number a, E|X|2 is called the ath
absolute moment of X or Py.

If u = EX, E(X — u)k is called the kth central moment of X or Px.
Var(X) = E(X — EX)? is called the variance of X or Py.

For random matrix M = (Mj), EM = (EM)

For random vector X, Var(X) = E(X — EX)(X — EX)" is its
covariance matrix, whose (/,j)th element, i # j, is called the
covariance of X; and X and denoted by Cov(X;, X;).

[Cov(X;, X)]? < Var(X;)Var(X}), i#]

For random vector X, Var(X) is nonnegative definite

If Cov(Xj, X;) =0, then X and X; are said to be uncorrelated.
Independence implies uncorrelation, not converse

@ If X is random and c is fixed, then E(c*X) = ¢"E(X) and
Var(c*X) = c*Var(X)c.
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Three useful inequalities

@ Cauchy-Schwartz inequality: [E(XY)]? < EX?EY? for random
variables X and Y

@ Jensen'’s inequality: f(EX) < Ef(X) for a random vector X and
convex function f (f” > 0)

@ Chebyshev’s inequality: Let X be a random variable and ¢ a
nonnegative and nondecreasing function on [0,), @(—1t) = ¢(1).
Then, for each constant t > 0,

oWPIXIZD< [ @(X)dP < Eo(X)

Example 1.18.

If X is a nonconstant positive random variable with finite mean, then
(EX)' < E(X™") and E(logX) < log(EX),

since =1 and —logt are convex functions on (0, ).

If f and g are positive integrable functions on a measure space with a
o-finite measure v and [ fdv > [gdv > 0, then

flog(f/g)dv > 0.
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Definition 1.5 (Moment generating and characteristic functions)
Let X be a random k-vector.
(i) The moment generating function (m.g.f.) of X or Py is defined as

wx(t) = Ee!™X, tezk.
(i) The characteristic function (ch.f.) of X or Py is defined as
ox(t) = Ee¥V 11X = E[cos(t*X)] + V=1 E[sin(t°X)], te %"
Properties of m.g.f. and ch.f.

@ If the m.g.f. is finite in a neighborhood of 0 € Z*, then

e moments of X of any order are finite,
@ ¢x(t) can be obtained by replacing ¢ in yx(t) by v/—1t

o If Y=A"X+c, where Ais a k x m matrix and c € #™, then
wy(u)=eVyx(Au) and ¢y(u)=e" ""Yox(Au), ueZ™
@ Forindependent Xi, ..., Xk,
V() =[Twx(t) and gy x(t) =ox(1), tezk
I 1

@ For X = (Xi,...,Xx) with m.g.f. yx finite in a neighborhood of 0,
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ssss

ril---r!

QN ey (t
E(X{" - X[) = 81‘”81”*()
1 k

22y (t)
e EX, ototr

t=0

= E(XX")
t=0

dyx(t)
ot

o If E\X{1 -'-X,ik] < oo for nonnegative integers rq, ..., rg, then
A0

)2 E( X n
8[’1"1...81"?( = (= 1)\t E(X{ - XX)

t=0
Iox(t)|  _ Pox()| .
57 t:O_\/ 1EX, S0t |,y E(XX")
@ Special case of k =1:
> E(XDHE
(=Y, 000 ity <
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Example 1.19.

X =N(u,0?)

1 (e X —
wx(t) = \/%/etxe (x—p)2/202 gy By

242
/ (Gy+u) - y2/2dy ehttost /2 /e*(yfct)z/zdy: eﬂt+6222/2
\/27r \Var
A direct calculation shows that
EX =y (0)=wu

EX? = y}(0) = 62 + u?
EX® =y (0) = 802p + B
EX* = y(0) = 304 + 60212 + u
If u =0, then EXP = 0 when p is an odd integer
EXP=(p—1)(p—3)---3-10P when pis an even integer
The cumulant generating function of X is
kx(t) = log yx(t) = pt+ 0%?/2
=u, ko =02 and x, =0forr=23.4,.

v
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Example 1.19 (continued): A random variable X has finite £(X*)

for k =1,2..., but yx(t) =, forany t #0

Pp: the probability measure for N(0, n?) with p.d.f. f,, n=1,2, ...
P=Y5_,27"P,is a probability measure with Lebesgue p.d.f.

Y 427 "f, (Exercise 35)

Let X be a random variable having distribution P.

It follows from Fubini’s theorem that X has finite moments of any order;
for even kK,

E(X*) /de /Zxk2 dP, —Zz " [ xkap,

Z (k—1)(k=38)---1n% < oo

and E(X*) = 0 for odd k.
By Fubini’s theorem again, for any t # 0,

wx(t) = /e”‘dP: Y 2*”/e’XdPn: Y 27" — o
n=1 n=1
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Theorem 1.6. (Uniqueness)
Let X and Y be random k-vectors.
(i) If dx(t) = oy(t) for all t € Z¥, then Py = Py.
(ii) If wx(t) = yy(t) <o forall tin a neighborhood of 0, then Py = Py.

See the textbook

Example 1.20

Let X;, i =1,...,k, be independent random variables and X; have the
gamma distribution (o, y) (Table 1.2), i=1,...,k.

From Table 1.2, X; has the m.g.f. yx.(f) = (1 —yt) %, t <y’
i=1,..,k.

Then, the m.g.f. of Y = Xj +---+ X is equal to

wy(t) HwX H1—7t) %= (1—ypt)y @ty

From Table 1.2, the gamma distribution I'(a4y + - - - + ak, ¥) has the
m.g.f. yy(t) and, hence, is the distribution of Y (by Theorem 1.6).
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Can the moments determine a distribution?

Can two random variables with different distributions have the same
moments of any order?

X; has pdf fi(x) = A=e~(oex)/2, x>0
Xo has pdf  fo(x) = fi(x)[1 +sin(2wlogx)], x>0

For any positive integer n,

E(XT) = F/ x~1 g (08x)"/2 gy _7/ eV 2y = ™/
n n ™/ —s?/2 n
E(X2)=E(X1)+m ] Te sin(27s)ds = E(X])

This shows that X; and X5 have the same moments of order
n=1,2,..., but they have different distributions.

oo tx
My (t) = & e (oeXP2gy — oo 150
0 V2rmx

oo tx )
My (t) = / & g (osxP/2gy < / \Ae‘(ng)z/zdx:h t<0
0 V271X 0 V271X
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