Lecture 4: Conditional expectation and independence

In elementry probability, conditional probability P(B|A) is defined as
P(B|A) = P(AnB)/P(A) for events A and B with P(A) > 0.

For two random variables, X and Y, how do we define
P(XeB|lY=y)?

Definition 1.6
Let X be an integrable random variable on (,.#, P).

(i) The conditional expectation of X given </ (a sub-o-field of .%),
denoted by E(X|.</), is the a.s.-unique random variable satisfying
the following two conditions:

(a) E(X|«) is measurable from (Q, <) to (%, B);
(b) [AE(X|</)dP = [, XdP forany Ae <.
(i) The conditional probability of B € .# given <7 is defined to be
P(B|<) = E(lg|<7).

(ii) Let Y be measurable from (2,.%#,P) to (A,9).
The conditional expectation of X given Y is defined to be
E(X|Y) = E[X]|o(Y)]-
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@ The existence of E(X|</) follows from Theorem 1.4.
@ o(Y) contains “the information in Y"
@ E(X]Y) is the “expectation” of X given the information in Y

@ For a random vector X, E(X|.</) is defined as the vector of
conditional expectations of components of X.

|

Lemma 1.2

Let Y be measurable from (2,.#) to (A,%¢) and Z a function from
(Q,.F) to ZX.

Then Z is measurable from (Q,c(Y)) to (%%, %) iff there is a
measurable function h from (A, %) to (%%, %*) such that Z = ho Y.

By Lemma 1.2, there is a Borel function h on (A,%) such that
E(X|Y)=hoY.

For y € A, we define E(X|Y = y) = h(y) to be the conditional
expectation of X given Y =y.

h(y) is a function on A, whereas ho Y = E(X]Y) is a function on Q.

UW-Madison (Statistics) Stat 709 Lecture 4 2018 2/15




Example 1.21

Let X be an integrable random variable on (Q,.%, P), Ay, As, ... be
disjoint events on (£2,.%, P) such that UA; = Q and P(A;) > 0 for all i,
and let ay, a», ... be distinct real numbers.

Define Y = aqla, +azla, +---. We now show that

EXIY) = Z P(A

We need to verify (a) and (b) in Definition 1.6 with <7 = o(Y).

Since o(Y) = o({A+, Az, ...}), it is clear that the function on the
right-hand side is measurable on (Q,5(Y)).

This verifies (a).

To verify (b), we need to show

XdP = /
/\”(B) Y-1(B) ,;
for any B € 4,
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Example 1.21 (continued)
Using the fact that Y~1(B) = Uj.5.c5A;, we obtain

XdP — / XdP
/w (B) L

i:a;eB

_ ; fg(A,-) P(A,-m Y—1(B))
- J4, XdP
_ /W(B) ,; Ay | 9P

where the last equality follows from Fubini’s theorem.
This verifies (b) and thus the result.
Let h be a Borel function on & satisfying

h(a)) = /A XdP/P(A).

Then E(X|Y) = ho Y and E(X|Y = y) = h(y).
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Proposition 1.9

Let X be a random n-vector and Y a random m-vector.

Suppose that (X, Y) has a joint p.d.f. f(x,y) w.r.t. v x A, where v and A4
are o-finite measures on (2", %") and (2™, ™), respectively.

Let g(x,y) be a Borel function on 2™ for which E|g(X, Y)| < .
Then

Ja(x, Y)(x,Y)dv(x)

Elg(X,Y)|Y]= [f(x,Y)dv(x)

Proof

Denote the right-hand side by h(Y).

By Fubini’s theorem, his Borel.

Then, by Lemma 1.2, h(Y) is Borel on (Q2,0(Y)).
Also, by Fubini’s theorem,

(y) = [ fxy)av(x)

is the p.d.f. of Y w.r.t. A.
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Proof (continued)
For Bc %™,

/, iy (Y)OP = / h(y)dPy
fg XX Y)AVE) ¢ rday)

Jf(x,y)dv(x)
= f dv x A
PRI CPA LIRS
= Q(X ¥)dPx.v)
= / g(X Y)d

where the first and the last equalities follow from Theorem 1.2, the
second and the next to last equalities follow from the definition of h and
p.d.f.’s, and the third equality follows from Fubini’s theorem.

v
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Conditional p.d.f.

Let (X, Y) be a random vector with a joint p.d.f. f(x,y) w.rt. vx A4
The conditional p.d.f. of X given Y = y is defined to be

fxy(xly) = f(x,y)/fv(y)

where

(y) = [ fxp)av(x)

is the marginal p.d.f. of Y w.r.t. 1.
For each fixed y with fy(y) > 0, fxy(x|y) is a p.d.f. w.r.t. v.
Then Proposition 1.9 states that

Elg(X,Y)IY] Z/Q(X7 V)i v (x]Y)dv(x)

i.e., the conditional expectation of g(X, Y) given Y is equal to the
expectation of g(X, Y) w.r.t. the conditional p.d.f. of X given Y.

V.
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Proposition 1.10

Let X, Y, Xi, Xo,... be integrable random variables on (Q2,.#, P) and </

be a sub-o-field of .7.
(i) f X=ca.s., ceZ,then E(X|&/)=ca.s.

)
(i) fX<Ya.s.,then E(X|«) < E(Y|<) a.s.
(i) If a,be %, then E(aX+bY|«/)=aE(X|«/)+bE(Y|</) a.s.
(iv) E[E(X|«)] = EX.
(v) E[E(X|)| %) = E(X|o%) = E[E(X|%)|</] a.s., where 7 is a
sub-o-field of o7
(vi) fo(Y) C & and E|XY| < oo, then E(XY|</) = YE(X|/) a.s.
(vii) If X and Y are independent and E|g(X, Y)| < « for a Borel
function g, then E[g(X,Y)|Y =y] = E[9(X,y)] a.s. Py.
(viii) If EX? < oo, then [E(X|&7)]? < E(X?| /) a.s.
(ix) (Fatou’s lemma). If X, > 0 for any n, then
E (liminf, Xp|o7) < liminf, E(X,|«/) a.s.
(x) (Dominated convergence theorem). If | X,| < Y for any n and
Xn —as. X, then E(Xp|e?) —as E(X|).
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Example 1.22

Let X be a random variable on (Q,.%, P) with EX? < and let Y be a
measurable function from (2,.7, P) to (A,9).

One may wish to predict the value of X based on an observed value of
Y. Let g(Y) be a predictor, i.e.,

g € X = {all Borel functions g with E[g(Y)]? < }.
Each predictor is assessed by the “mean squared prediction error"
E[X —g(YV)I.
We now show that E(X|Y) is the best predictor of X in the sense that

E[X-EX|Y)]? = ?eig E[X-9(Y)]%.

First, Proposition 1.10(viii) implies E(X]Y) € X.
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Example 1.22 (continued)
Next, for any g € X,

EIX —g(Y)]? =E[X - E(X|Y)+E(X|Y)—g(V)]?
=E[X - E(X|Y)?+ E[E(X|Y) - g(Y)]?
+ 2E{[X = E(X[YV)I[E(X]Y)—9(V)]I}
=E[X - E(X|Y)[?+ E[E(X|Y) - g(Y)]?
+ 2E{E{[X - EXII[E(X|Y) —g(V)]IY}}
=E[X - E(X|Y)]?+ E[E(X|Y) - g(V)]?
+ 2E{[E(X]Y) —g(Y)IE[X - E(X|Y)| Y]}
=E[X - E(X|Y)]?+ E[E(X|Y) - g(V)]?
>E[X - E(X|Y)P?,
where the third equality follows from Proposition 1.10(iv), the fourth

equality follows from Proposition 1.10(vi), and the last equality follows
from Proposition 1.10(i), (iii), and (vi).
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Definition 1.7 (Independence).
Let (©2,.7, P) be a probability space.
() Let % be a collection of subsets in .7.

Events in & are said to be independent iff for any positive integer
n and distinct events Aq,...,A,in &,

P(Ai N A2 -1 An) = P(A1)P(A2) - P(An).

(i) Collections & C .#, i € .# (an index set that can be uncountable),
are said to be independent iff events in any collection of the form
{A; € ;i € 7} are independent.

(i) Random elements X;, i € .#, are said to be independent iff ¢(X;),
i € .#, are independent.

Lemma 1.3 (a useful result for checking the independence of
o-fields)

Let %, i € ., be independent collections of events.

If each € is a m-system (A € %; and B € &; implies AN B € €;), then
o(%;), i € .#, are independent.
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@ Random variables Xj, i =1, ..., k, are independent according to
Definition 1.7 iff

Fixy. 0 (Xts oo Xi) = Fxy (X1) -+ Fx, (Xk), (X1, ... %) € 2%

Take ¢ ={(a,b]:ac Z,be %}, i=1,..,k
@ If X and Y are independent random vectors, then so are g(X) and
h(Y') for Borel functions g and h.

@ Two events A and B are independent iff P(B|A) = P(B), which
means that A provides no information about the probability of the

occurrence of B.

Proposition 1.11

Let X be a random variable with E|X| < e and let Y; be random
ki-vectors, i =1,2.

Suppose that (X, Y1) and Y> are independent.

Then

E[X|(Y1, Y2)] = E(X]Y1) as.
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Proof
First, E(X|Y7) is Borel on (2,0(Y1, Y2)), since o( Y1) C a(Yy, Ya).
Next, we need to show that for any Borel set B € #kithe,

/ aP= | (X|Y1)dP
(Y4,Y2)~ Y1, Ya)~ (B)

If B= By x B>, Where B,- € %’ﬂ, then
(Y1.Y2) '(B) =Y, '(B1)N Y, ' (Bo)
and
EXIY1)AP = [ Iy1(g,) v, 8y E(X|Yi)oP

_ / ly.+(5) E(X|Y1)aP / I
= [ o1 %P [ s 9P
://Y1—1(B1)IY2—1(BZ)XdP

XdP,

/Y1_1(B1 )ﬂY2_1(BZ)

I P 1
Y1 (31 )ﬂ Yz (BZ)
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where the second and the next to last equalities follow the

independence of (X, Yy) and Y2, and the third equality follows from the

fact that E(X|Y7) is the conditional expectation of X given Yj.
This shows that the result for B = By x Bs.

Note that #% x %" is a n-system.

We can show that the following collection is a A-system:

%:{Bc%k1+k2:/ _/ xm)dp}
(VG,Y§ vayé)

Since we have already shown that %”‘1 x B ,%”,
Bratke — o(B% x PB*) C A and thus the result follows.

Remark

The result in Proposition 1.11 still holds if X is replaced by h(X) for any

Borel h and, hence,
P(A|Y1,Y2) = P(A]Yy) a.s. forany A€ o(X),
if (X, Y1) and Y; are independent.
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Conditional independence

Let X, Y, and Z be random vectors.
We say that given Z, X and Y are conditionally independent iff

P(AIX,Z)=P(A|Z) a.s. forany Ac o(Y).

Proposition 1.11 can be stated as: if Y> and (X, Y;) are independent,
then given Yi, X and Y, are conditionally independent.

@ Conditional independence is a very important concept for
statistics.

@ For example, if X and Z are covariates associated with a
response Y, and if given Z, X and Y are conditionally
independent, then when we have Z, we do not need X to study
the relationship between Y and covariates.

@ The dimension of the covariate vector is reduced without losing
information (sufficient dimension reduction).

@ Although X may be unconditionally dependent of Y, it is related
with Y through Z.
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