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Lecture 4: Conditional expectation and independence
In elementry probability, conditional probability P(B|A) is defined as
P(B|A) = P(A∩B)/P(A) for events A and B with P(A) > 0.
For two random variables, X and Y , how do we define
P(X ∈ B|Y = y)?

Definition 1.6
Let X be an integrable random variable on (Ω,F ,P).

(i) The conditional expectation of X given A (a sub-σ -field of F ),
denoted by E(X |A ), is the a.s.-unique random variable satisfying
the following two conditions:
(a) E(X |A ) is measurable from (Ω,A ) to (R,B);
(b)

∫
A E(X |A )dP =

∫
A XdP for any A ∈A .

(ii) The conditional probability of B ∈F given A is defined to be
P(B|A ) = E(IB|A ).

(iii) Let Y be measurable from (Ω,F ,P) to (Λ,G ).
The conditional expectation of X given Y is defined to be
E(X |Y ) = E [X |σ(Y )].
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Remarks
The existence of E(X |A ) follows from Theorem 1.4.
σ(Y ) contains “the information in Y "
E(X |Y ) is the “expectation” of X given the information in Y
For a random vector X , E(X |A ) is defined as the vector of
conditional expectations of components of X .

Lemma 1.2
Let Y be measurable from (Ω,F ) to (Λ,G ) and Z a function from
(Ω,F ) to Rk .
Then Z is measurable from (Ω,σ(Y )) to (Rk ,Bk ) iff there is a
measurable function h from (Λ,G ) to (Rk ,Bk ) such that Z = h ◦Y .

By Lemma 1.2, there is a Borel function h on (Λ,G ) such that
E(X |Y ) = h ◦Y .
For y ∈ Λ, we define E(X |Y = y) = h(y) to be the conditional
expectation of X given Y = y .
h(y) is a function on Λ, whereas h ◦Y = E(X |Y ) is a function on Ω.
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Example 1.21
Let X be an integrable random variable on (Ω,F ,P), A1,A2, ... be
disjoint events on (Ω,F ,P) such that ∪Ai = Ω and P(Ai) > 0 for all i ,
and let a1,a2, ... be distinct real numbers.
Define Y = a1IA1 + a2IA2 + · · · . We now show that

E(X |Y ) =
∞

∑
i=1

∫
Ai

XdP
P(Ai)

IAi .

We need to verify (a) and (b) in Definition 1.6 with A = σ(Y ).
Since σ(Y ) = σ({A1,A2, ...}), it is clear that the function on the
right-hand side is measurable on (Ω,σ(Y )).
This verifies (a).
To verify (b), we need to show

∫
Y−1(B)

XdP =
∫

Y−1(B)

[
∞

∑
i=1

∫
Ai

XdP
P(Ai)

IAi

]
dP.

for any B ∈B,
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Example 1.21 (continued)

Using the fact that Y−1(B) = ∪i:ai∈BAi , we obtain∫
Y−1(B)

XdP = ∑
i:ai∈B

∫
Ai

XdP

=
∞

∑
i=1

∫
Ai

XdP
P(Ai)

P
(

Ai ∩Y−1(B)
)

=
∫

Y−1(B)

[
∞

∑
i=1

∫
Ai

XdP
P(Ai)

IAi

]
dP,

where the last equality follows from Fubini’s theorem.
This verifies (b) and thus the result.
Let h be a Borel function on R satisfying

h(ai) =
∫

Ai

XdP/P(Ai).

Then E(X |Y ) = h ◦Y and E(X |Y = y) = h(y).
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Proposition 1.9
Let X be a random n-vector and Y a random m-vector.
Suppose that (X ,Y ) has a joint p.d.f. f (x ,y) w.r.t. ν×λ , where ν and λ

are σ -finite measures on (Rn,Bn) and (Rm,Bm), respectively.
Let g(x ,y) be a Borel function on Rn+m for which E |g(X ,Y )|< ∞.
Then

E [g(X ,Y )|Y ] =

∫
g(x ,Y )f (x ,Y )dν(x)∫

f (x ,Y )dν(x)
a.s.

Proof
Denote the right-hand side by h(Y ).
By Fubini’s theorem, h is Borel.
Then, by Lemma 1.2, h(Y ) is Borel on (Ω,σ(Y )).
Also, by Fubini’s theorem,

fY (y) =
∫

f (x ,y)dν(x)

is the p.d.f. of Y w.r.t. λ .
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Proof (continued)
For B ∈Bm,∫

Y−1(B)
h(Y )dP =

∫
B

h(y)dPY

=
∫

B

∫
g(x ,y)f (x ,y)dν(x)∫

f (x ,y)dν(x)
fY (y)dλ (y)

=
∫

Rn×B
g(x ,y)f (x ,y)dν×λ

=
∫

Rn×B
g(x ,y)dP(X ,Y )

=
∫

Y−1(B)
g(X ,Y )dP,

where the first and the last equalities follow from Theorem 1.2, the
second and the next to last equalities follow from the definition of h and
p.d.f.’s, and the third equality follows from Fubini’s theorem.
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Conditional p.d.f.
Let (X ,Y ) be a random vector with a joint p.d.f. f (x ,y) w.r.t. ν×λ

The conditional p.d.f. of X given Y = y is defined to be

fX |Y (x |y) = f (x ,y)/fY (y)

where
fY (y) =

∫
f (x ,y)dν(x)

is the marginal p.d.f. of Y w.r.t. λ .
For each fixed y with fY (y) > 0, fX |Y (x |y) is a p.d.f. w.r.t. ν .
Then Proposition 1.9 states that

E [g(X ,Y )|Y ] =
∫

g(x ,Y )fX |Y (x |Y )dν(x)

i.e., the conditional expectation of g(X ,Y ) given Y is equal to the
expectation of g(X ,Y ) w.r.t. the conditional p.d.f. of X given Y .
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Proposition 1.10
Let X , Y , X1,X2, ... be integrable random variables on (Ω,F ,P) and A
be a sub-σ -field of F .

(i) If X = c a.s., c ∈R, then E(X |A ) = c a.s.
(ii) If X ≤ Y a.s., then E(X |A )≤ E(Y |A ) a.s.
(iii) If a,b ∈R, then E(aX + bY |A ) = aE(X |A ) + bE(Y |A ) a.s.
(iv) E [E(X |A )] = EX .
(v) E [E(X |A )|A0] = E(X |A0) = E [E(X |A0)|A ] a.s., where A0 is a

sub-σ -field of A .
(vi) If σ(Y )⊂A and E |XY |< ∞, then E(XY |A ) = YE(X |A ) a.s.
(vii) If X and Y are independent and E |g(X ,Y )|< ∞ for a Borel

function g, then E [g(X ,Y )|Y = y ] = E [g(X ,y)] a.s. PY .
(viii) If EX 2 < ∞, then [E(X |A )]2 ≤ E(X 2|A ) a.s.
(ix) (Fatou’s lemma). If Xn ≥ 0 for any n, then

E
(
liminfn Xn

∣∣A )≤ liminfn E(Xn|A ) a.s.
(x) (Dominated convergence theorem). If |Xn| ≤ Y for any n and

Xn→a.s. X , then E(Xn|A )→a.s. E(X |A ).
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Example 1.22

Let X be a random variable on (Ω,F ,P) with EX 2 < ∞ and let Y be a
measurable function from (Ω,F ,P) to (Λ,G ).
One may wish to predict the value of X based on an observed value of
Y . Let g(Y ) be a predictor, i.e.,

g ∈ℵ = {all Borel functions g with E [g(Y )]2 < ∞}.

Each predictor is assessed by the “mean squared prediction error"

E [X −g(Y )]2.

We now show that E(X |Y ) is the best predictor of X in the sense that

E [X −E(X |Y )]2 = min
g∈ℵ

E [X −g(Y )]2.

First, Proposition 1.10(viii) implies E(X |Y ) ∈ℵ.
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Example 1.22 (continued)
Next, for any g ∈ℵ,

E [X −g(Y )]2 =E [X −E(X |Y ) + E(X |Y )−g(Y )]2

=E [X −E(X |Y )]2 + E [E(X |Y )−g(Y )]2

+ 2E{[X −E(X |Y )][E(X |Y )−g(Y )]}
=E [X −E(X |Y )]2 + E [E(X |Y )−g(Y )]2

+ 2E
{

E{[X −E(X |Y )][E(X |Y )−g(Y )]|Y}
}

=E [X −E(X |Y )]2 + E [E(X |Y )−g(Y )]2

+ 2E{[E(X |Y )−g(Y )]E [X −E(X |Y )|Y ]}
=E [X −E(X |Y )]2 + E [E(X |Y )−g(Y )]2

≥E [X −E(X |Y )]2,

where the third equality follows from Proposition 1.10(iv), the fourth
equality follows from Proposition 1.10(vi), and the last equality follows
from Proposition 1.10(i), (iii), and (vi).
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Definition 1.7 (Independence).
Let (Ω,F ,P) be a probability space.

(i) Let C be a collection of subsets in F .
Events in C are said to be independent iff for any positive integer
n and distinct events A1,...,An in C ,

P(A1∩A2∩·· ·∩An) = P(A1)P(A2) · · ·P(An).

(ii) Collections Ci ⊂F , i ∈I (an index set that can be uncountable),
are said to be independent iff events in any collection of the form
{Ai ∈ Ci : i ∈I } are independent.

(iii) Random elements Xi , i ∈I , are said to be independent iff σ(Xi),
i ∈I , are independent.

Lemma 1.3 (a useful result for checking the independence of
σ -fields)
Let Ci , i ∈I , be independent collections of events.
If each Ci is a π-system (A ∈ Ci and B ∈ Ci implies A∩B ∈ Ci ), then
σ(Ci), i ∈I , are independent.
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Facts
Random variables Xi , i = 1, ...,k , are independent according to
Definition 1.7 iff

F(X1,...,Xk )(x1, ...,xk ) = FX1(x1) · · ·FXk (xk ), (x1, ...,xk ) ∈Rk

Take Ci = {(a,b] : a ∈R,b ∈R}, i = 1, ...,k
If X and Y are independent random vectors, then so are g(X ) and
h(Y ) for Borel functions g and h.
Two events A and B are independent iff P(B|A) = P(B), which
means that A provides no information about the probability of the
occurrence of B.

Proposition 1.11
Let X be a random variable with E |X |< ∞ and let Yi be random
ki -vectors, i = 1,2.
Suppose that (X ,Y1) and Y2 are independent.
Then

E [X |(Y1,Y2)] = E(X |Y1) a.s.
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Proof
First, E(X |Y1) is Borel on (Ω,σ(Y1,Y2)), since σ(Y1)⊂ σ(Y1,Y2).
Next, we need to show that for any Borel set B ∈Bk1+k2 ,∫

(Y1,Y2)−1(B)
XdP =

∫
(Y1,Y2)−1(B)

E(X |Y1)dP.

If B = B1×B2, where Bi ∈Bki , then

(Y1,Y2)−1(B) = Y−1
1 (B1)∩Y−1

2 (B2)

and ∫
Y−1

1 (B1)∩Y−1
2 (B2)

E(X |Y1)dP =
∫

IY−1
1 (B1)

IY−1
2 (B2)

E(X |Y1)dP

=
∫

IY−1
1 (B1)

E(X |Y1)dP
∫

IY−1
2 (B2)

dP

=
∫

IY−1
1 (B1)

XdP
∫

IY−1
2 (B2)

dP

=
∫

IY−1
1 (B1)

IY−1
2 (B2)

XdP

=
∫

Y−1
1 (B1)∩Y−1

2 (B2)
XdP,
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where the second and the next to last equalities follow the
independence of (X ,Y1) and Y2, and the third equality follows from the
fact that E(X |Y1) is the conditional expectation of X given Y1.
This shows that the result for B = B1×B2.
Note that Bk1×Bk2 is a π-system.
We can show that the following collection is a λ -system:

H =

{
B ⊂Rk1+k2 :

∫
(Y1,Y2)−1(B)

XdP =
∫
(Y1,Y2)−1(B)

E(X |Y1)dP
}

Since we have already shown that Bk1×Bk2 ⊂H ,
Bk1+k2 = σ(Bk1×Bk2)⊂H and thus the result follows.

Remark
The result in Proposition 1.11 still holds if X is replaced by h(X ) for any
Borel h and, hence,

P(A|Y1,Y2) = P(A|Y1) a.s. for any A ∈ σ(X ),

if (X ,Y1) and Y2 are independent.
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Conditional independence
Let X , Y , and Z be random vectors.
We say that given Z , X and Y are conditionally independent iff

P(A|X ,Z ) = P(A|Z ) a.s. for any A ∈ σ(Y ).

Proposition 1.11 can be stated as: if Y2 and (X ,Y1) are independent,
then given Y1, X and Y2 are conditionally independent.

Discussion
Conditional independence is a very important concept for
statistics.
For example, if X and Z are covariates associated with a
response Y , and if given Z , X and Y are conditionally
independent, then when we have Z , we do not need X to study
the relationship between Y and covariates.
The dimension of the covariate vector is reduced without losing
information (sufficient dimension reduction).
Although X may be unconditionally dependent of Y , it is related
with Y through Z .
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