Absolutely continuous

Let \(\lambda \) and \(\nu \) be two measures on a measurable space \((\Omega, \mathcal{F}, \nu)\). We say \(\lambda \) is absolutely continuous w.r.t. \(\nu \) and write \(\lambda \ll \nu \) iff

\[
\nu(A) = 0 \quad \text{implies} \quad \lambda(A) = 0.
\]

Let \(f \) be a nonnegative Borel function and

\[
\lambda(A) = \int_A f d\nu, \quad A \in \mathcal{F}
\]

Then \(\lambda \) is a measure and \(\lambda \ll \nu \).

Computing \(\lambda(A) \) can be done through integration w.r.t. a well-known measure.

\(\lambda \ll \nu \) is also almost sufficient for the existence of \(f \) with

\[
\lambda(A) = \int_A f d\nu, \quad A \in \mathcal{F}.
\]
Theorem 1.4 (Radon-Nikodym theorem)

Let ν and λ be two measures on (Ω, \mathcal{F}) and ν be σ-finite. If $\lambda \ll \nu$, then there exists a nonnegative Borel function f on Ω such that

$$\lambda(A) = \int_A f \, d\nu, \quad A \in \mathcal{F}.$$

Furthermore, f is unique a.e. ν, i.e., if $\lambda(A) = \int_A g \, d\nu$ for any $A \in \mathcal{F}$, then $f = g$ a.e. ν.

Remarks

- The function f is called the Radon-Nikodym derivative or density of λ w.r.t. ν and is denoted by $d\lambda / d\nu$.
- Consequence: If f is Borel on (Ω, \mathcal{F}) and $\int_A f \, d\nu = 0$ for any $A \in \mathcal{F}$, then $f = 0$ a.e.
Theorem 1.4 (Radon-Nikodym theorem)

Let ν and λ be two measures on (Ω, \mathcal{F}) and ν be σ-finite. If $\lambda \ll \nu$, then there exists a nonnegative Borel function f on Ω such that

$$\lambda(A) = \int_A f d\nu, \quad A \in \mathcal{F}.$$

Furthermore, f is unique a.e. ν, i.e., if $\lambda(A) = \int_A g d\nu$ for any $A \in \mathcal{F}$, then $f = g$ a.e. ν.

Remarks

- The function f is called the Radon-Nikodym derivative or density of λ w.r.t. ν and is denoted by $d\lambda/d\nu$.
- Consequence: If f is Borel on (Ω, \mathcal{F}) and $\int_A f d\nu = 0$ for any $A \in \mathcal{F}$, then $f = 0$ a.e.
Probability density function

If \(\int f \, d\nu = 1 \) for an \(f \geq 0 \) a.e. \(\nu \), then \(\lambda \) is a probability measure and \(f \) is called its probability density function (p.d.f.) w.r.t. \(\nu \).

For any probability measure \(P \) on \((\mathbb{R}^k, \mathcal{B}^k) \) corresponding to a c.d.f. \(F \) or a random vector \(X \), if \(P \) has a p.d.f. \(f \) w.r.t. a measure \(\nu \), then \(f \) is also called the p.d.f. of \(F \) or \(X \) w.r.t. \(\nu \).

Example 1.10 (Discrete c.d.f. and p.d.f.)

Let \(a_1 < a_2 < \cdots \) be a sequence of real numbers and let \(p_n, \, n = 1, 2, \ldots \), be a sequence of positive numbers such that \(\sum_{n=1}^{\infty} p_n = 1 \).

Then
\[
F(x) = \begin{cases}
\sum_{i=1}^{n} p_i & a_n \leq x < a_{n+1}, \quad n = 1, 2, \ldots \\
0 & -\infty < x < a_1.
\end{cases}
\]

is a stepwise c.d.f.

It has a jump of size \(p_n \) at each \(a_n \) and is flat between \(a_n \) and \(a_{n+1} \), \(n = 1, 2, \ldots \).

Such a c.d.f. is called a discrete c.d.f.
Probability density function

If $\int f \, d\nu = 1$ for an $f \geq 0$ a.e. ν, then λ is a probability measure and f is called its probability density function (p.d.f.) w.r.t. ν.

For any probability measure P on $(\mathbb{R}^k, \mathcal{B}^k)$ corresponding to a c.d.f. F or a random vector X, if P has a p.d.f. f w.r.t. a measure ν, then f is also called the p.d.f. of F or X w.r.t. ν.

Example 1.10 (Discrete c.d.f. and p.d.f.)

Let $a_1 < a_2 < \cdots$ be a sequence of real numbers and let p_n, $n = 1, 2, \ldots$, be a sequence of positive numbers such that $\sum_{n=1}^{\infty} p_n = 1$.

Then

$$F(x) = \begin{cases} \sum_{i=1}^{n} p_i & a_n \leq x < a_{n+1}, \quad n = 1, 2, \ldots \\ 0 & -\infty < x < a_1. \end{cases}$$

is a stepwise c.d.f.

It has a jump of size p_n at each a_n and is flat between a_n and a_{n+1}, $n = 1, 2, \ldots$.

Such a c.d.f. is called a discrete c.d.f.
The corresponding probability measure is

\[P(A) = \sum_{i:a_i \in A} p_i, \quad A \in \mathcal{F}, \]

where \(\mathcal{F} = \) the set of all subsets (power set).

Let \(\nu \) be the counting measure on the power set. Then

\[P(A) = \int_A f d\nu = \sum_{a_i \in A} f(a_i), \quad A \subset \Omega, \]

where \(f(a_i) = p_i, \ i = 1, 2, \ldots \).

That is, \(f \) is the p.d.f. of \(P \) or \(F \) w.r.t. \(\nu \).

Hence, any discrete c.d.f. has a p.d.f. w.r.t. counting measure. A p.d.f. w.r.t. counting measure is called a \textit{discrete} p.d.f.

A discrete p.d.f. \(f \) corresponds to a discrete c.d.f. \(F \) and the value \(f(x) \) is the jump size of \(F \) at \(x \in \mathbb{R} \).
Example 1.11

Let F be a c.d.f.
Assume that F is differentiable in the usual sense in calculus.
Let f be the derivative of F. From calculus,

$$F(x) = \int_{-\infty}^{x} f(y) \, dy, \quad x \in \mathbb{R}.$$

Let P be the probability measure corresponding to F.
Then

$$P(A) = \int_{A} f \, dm \quad \text{for any } A \in \mathcal{B},$$ \hspace{1cm} (1)

where m is the Lebesgue measure on \mathbb{R}.
f is the p.d.f. of P or F w.r.t. Lebesgue measure.
Radon-Nikodym derivative is the same as the usual derivative in calculus.

How do we prove (1)?
Proof of (1): π- and λ-system (Exercise 5)

Let $\mathcal{C} = \{(\neg\infty, x] : x \in \mathbb{R}\}$

\mathcal{C} is a π-system: $A \in \mathcal{C}$ and $B \in \mathcal{C}$ imply $A \cap B \in \mathcal{C}$.

$\sigma(\mathcal{C}) = \mathcal{B}$

Let $\mathcal{D} = \{A \in \mathcal{B} : P(B) = \int f\,dm\}$

$\mathcal{C} \subset \mathcal{D}$.

The result follows (i.e., $\sigma(\mathcal{C}) \subset \mathcal{D}$) if we can show \mathcal{D} is a λ-system:

- $\emptyset \in \mathcal{D}$ (obvious)
- $B \in \mathcal{D}$ implies $B^c \in \mathcal{D}$ (need to verify)
- $B_i \in \mathcal{D}$ and B_i's are disjoint imply $\bigcup_i B_i \in \mathcal{D}$ (need to verify)

If $B \in \mathcal{D}$, then

$$P(B^c) = 1 - P(B) = 1 - \int_B f\,dm = \int f\,dm - \int l_B f\,dm$$

$$= \int (1 - l_B) f\,dm = \int l_{B^c} f\,dm = \int_{B^c} f\,dm.$$

This shows $B^c \in \mathcal{D}$.
Proof of (1): π- and λ-system (Exercise 5)

Let $\mathcal{C} = \{(-\infty, x]: x \in \mathbb{R}\}$

\mathcal{C} is a π-system: $A \in \mathcal{C}$ and $B \in \mathcal{C}$ imply $A \cap B \in \mathcal{C}$.

$\sigma(\mathcal{C}) = \mathcal{B}$

Let $\mathcal{D} = \{A \in \mathcal{B}: P(B) = \int f dm\}$

$\mathcal{C} \subset \mathcal{D}$.

The result follows (i.e., $\sigma(\mathcal{C}) \subset \mathcal{D}$) if we can show \mathcal{D} is a λ-system:

- $\emptyset \in \mathcal{D}$ (obvious)
- $B \in \mathcal{D}$ implies $B^c \in \mathcal{D}$ (need to verify)
- $B_i \in \mathcal{D}$ and B_i’s are disjoint imply $\bigcup_i B_i \in \mathcal{D}$ (need to verify)

If $B \in \mathcal{D}$, then

$$P(B^c) = 1 - P(B) = 1 - \int_B f dm = \int f dm - \int I_B f dm$$

$$= \int (1 - I_B) f dm = \int I_{B^c} f dm = \int_{B^c} f dm.$$

This shows $B^c \in \mathcal{D}$.
If \(B_i \in \mathcal{D} \) and \(B_i \)'s are disjoint, then
\[
\int_{\bigcup_i B_i} f dm = \int I_{\bigcup_i B_i} f dm = \int \sum_i I_{B_i} f dm = \sum_i \int I_{B_i} f dm = \sum_i \int_{B_i} f dm = \sum_i P(B_i) = P(\bigcup_i B_i).
\]
Thus, \(\bigcup_i B_i \in \mathcal{D} \).

Example 1.11 (continued)

A continuous c.d.f. may not have a p.d.f. w.r.t. Lebesgue measure. A necessary and sufficient condition for a c.d.f. \(F \) having a p.d.f. w.r.t. Lebesgue measure is that \(F \) is absolute continuous in the sense that for any \(\varepsilon > 0 \), there exists a \(\delta > 0 \) such that for each finite collection of disjoint bounded open intervals \((a_i, b_i) \), \(\sum (b_i - a_i) < \delta \) implies \(\sum [F(b_i) - F(a_i)] < \varepsilon \). Absolute continuity is weaker than differentiability, but is stronger than continuity.
If \(B_i \in \mathcal{D} \) and \(B_i \)'s are disjoint, then
\[
\int_{\bigcup_i B_i} f dm = \int 1_{\bigcup_i B_i} f dm = \int \sum_i 1_{B_i} f dm = \sum_i \int 1_{B_i} f dm
\]
\[
= \sum_i \int_{B_i} f dm = \sum_i P(B_i) = P(\bigcup_i B_i).
\]
Thus, \(\bigcup_i B_i \in \mathcal{D} \).

Example 1.11 (continued)

A continuous c.d.f. may not have a p.d.f. w.r.t. Lebesgue measure. A necessary and sufficient condition for a c.d.f. \(F \) having a p.d.f. w.r.t. Lebesgue measure is that \(F \) is absolute continuous in the sense that for any \(\varepsilon > 0 \), there exists a \(\delta > 0 \) such that for each finite collection of disjoint bounded open intervals \((a_i, b_i), \sum (b_i - a_i) < \delta \) implies \(\sum [F(b_i) - F(a_i)] < \varepsilon \).

Absolute continuity is weaker than differentiability, but is stronger than continuity.
Remarks

- A p.d.f. w.r.t. Lebesgue measure is called a Lebesgue p.d.f.
- Note that every c.d.f. is differentiable a.e. Lebesgue measure (Chung, 1974, Chapter 1).
- Some c.d.f. does not have Lebesgue p.d.f.

Proposition 1.7 (Calculus with Radon-Nikodym derivatives)

Let ν be a σ-finite measure on a measure space (Ω, \mathcal{F}). All other measures discussed in (i)-(iii) are defined on (Ω, \mathcal{F}).

(i) If λ is a measure, $\lambda \ll \nu$, and $f \geq 0$, then

$$\int f d\lambda = \int f \frac{d\lambda}{d\nu} d\nu.$$

(Notice how the $d\nu$’s “cancel" on the right-hand side.)

(ii) If λ_i, $i = 1, 2$, are measures and $\lambda_i \ll \nu$, then $\lambda_1 + \lambda_2 \ll \nu$ and

$$\frac{d(\lambda_1 + \lambda_2)}{d\nu} = \frac{d\lambda_1}{d\nu} + \frac{d\lambda_2}{d\nu} \quad \text{a.e. } \nu.$$
Remarks

- A p.d.f. w.r.t. Lebesgue measure is called a Lebesgue p.d.f.
- Note that every c.d.f. is differentiable a.e. Lebesgue measure (Chung, 1974, Chapter 1).
- Some c.d.f. does not have Lebesgue p.d.f.

Proposition 1.7 (Calculus with Radon-Nikodym derivatives)

Let ν be a σ-finite measure on a measure space (Ω, \mathcal{F}). All other measures discussed in (i)-(iii) are defined on (Ω, \mathcal{F}).

(i) If λ is a measure, $\lambda \ll \nu$, and $f \geq 0$, then

$$\int f d\lambda = \int f \frac{d\lambda}{d\nu} d\nu.$$

(Notice how the $d\nu$’s “cancel” on the right-hand side.)

(ii) If $\lambda_i, i = 1, 2$, are measures and $\lambda_i \ll \nu$, then $\lambda_1 + \lambda_2 \ll \nu$ and

$$\frac{d(\lambda_1 + \lambda_2)}{d\nu} = \frac{d\lambda_1}{d\nu} + \frac{d\lambda_2}{d\nu} \quad \text{a.e. } \nu.$$
Proposition 1.7 (continued)

(iii) (Chain rule). If τ is a measure, λ is a σ-finite measure, and $\tau \ll \lambda \ll \nu$, then

$$\frac{d\tau}{d\nu} = \frac{d\tau}{d\lambda} \frac{d\lambda}{d\nu} \text{ a.e. } \nu.$$

In particular, if $\lambda \ll \nu$ and $\nu \ll \lambda$ (in which case λ and ν are equivalent), then

$$\frac{d\lambda}{d\nu} = \left(\frac{d\nu}{d\lambda} \right)^{-1} \text{ a.e. } \nu \text{ or } \lambda.$$

(iv) Let $(\Omega_i, \mathcal{F}_i, \nu_i)$ be a measure space and ν_i be σ-finite, $i = 1, 2$. Let λ_i be a σ-finite measure on $(\Omega_i, \mathcal{F}_i)$ and $\lambda_i \ll \nu_i$, $i = 1, 2$. Then $\lambda_1 \times \lambda_2 \ll \nu_1 \times \nu_2$ and

$$\frac{d(\lambda_1 \times \lambda_2)}{d(\nu_1 \times \nu_2)}(\omega_1, \omega_2) = \frac{d\lambda_1}{d\nu_1}(\omega_1) \frac{d\lambda_2}{d\nu_2}(\omega_2) \text{ a.e. } \nu_1 \times \nu_2.$$
Proof of Proposition 1.7(i)

- If \(f = I_B \) is an indicator function, then

\[
\int f \, d\lambda = \int_B d\lambda = \lambda(B) = \int_B \frac{d\lambda}{d\nu} \, d\nu = \int f \frac{d\lambda}{d\nu} \, d\nu
\]

- If \(f = \sum_j a_j I_{B_j} \geq 0 \) (a nonnegative simple function), then

\[
\int f \, d\lambda = \int \sum_j a_j I_{B_j} \, d\lambda = \sum_j a_j \int I_{B_j} \, d\lambda = \sum_j a_j \int I_{B_j} \frac{d\lambda}{d\nu} \, d\nu
\]

\[
= \int \sum_j a_j I_{B_j} \frac{d\lambda}{d\nu} \, d\nu = \int f \frac{d\lambda}{d\nu} \, d\nu
\]

- For general \(f \geq 0 \), there exists an increasing sequence of nonnegative simple functions \(\varphi_k \to f \) and

\[
\int f \, d\lambda = \lim_k \int \varphi_k \, d\lambda = \lim_k \int \varphi_k \frac{d\lambda}{d\nu} \, d\nu = \int f \frac{d\lambda}{d\nu} \, d\nu
\]