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Lecture 5: Conditional distribution, Markov chains, and
martingales
Conditional distribution
For random vectors X and Y , is P[X−1(B)|Y = y ] a probability
measure for given y?
Problem: P[X−1(B)|Y = y ] is defined a.s.

Theorem 1.7(i) (Existence of conditional distributions)
Let X be a random n-vector on a probability space (Ω,F ,P) and A be
a sub-σ -field of F .
Then there exists a function P(B,ω) on Bn×Ω such that
(a) P(B,ω) = P[X−1(B)|A ] a.s. for any fixed B ∈Bn, and
(b) P(·,ω) is a probability measure on (Rn,Bn) for any fixed ω ∈ Ω.

Let Y be measurable from (Ω,F ,P) to (Λ,G ).
Then there exists PX |Y (B|y) such that
(a) PX |Y (B|y) = P[X−1(B)|Y = y ] a.s. PY for any fixed B ∈Bn, and
(b) PX |Y (·|y) is a probability measure on (Rn,Bn) for any fixed y ∈ Λ.

Furthermore, if E |g(X ,Y )|< ∞ with a Borel function g, then

E [g(X ,Y )|Y = y ] = E [g(X ,y)|Y = y ] =
∫

Rn
g(x ,y)dPX |Y (x |y) a.s. PY .
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Theorem 1.7(ii)
Let (Λ,G ,P1) be a probability space.
Suppose that P2 is a function from Bn×Λ to R and satisfies
(a) P2(·,y) is a probability measure on (Rn,Bn) for any y ∈ Λ, and
(b) P2(B, ·) is Borel for any B ∈Bn.

Then there is a unique probability measure P on (Rn×Λ,σ(Bn×G ))
such that, for B ∈Bn and C ∈ G ,

P(B×C) =
∫

C
P2(B,y)dP1(y). (1)

Furthermore, if (Λ,G ) = (Rm,Bm), and X (x ,y) = x and Y (x ,y) = y
define the coordinate random vectors, then PY = P1,
PX |Y (·|y) = P2(·,y), and the probability measure in (1) is the joint
distribution of (X ,Y ), which has the following joint c.d.f.:

F (x ,y) =
∫
(−∞,y ]

PX |Y
(
(−∞,x ]|z

)
dPY (z), x ∈Rn,y ∈Rm, (2)

where (−∞,a] denotes (−∞,a1]×·· ·× (−∞,ak ] for a = (a1, ...,ak ).
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Conditional distribution
For a fixed y , PX |Y=y = PX |Y (·|y) is called the conditional distribution of
X given Y = y .

Two-stage experiment theorem
If Y ∈Rm is selected in stage 1 of an experiment according to its
marginal distribution PY = P1, and X is chosen afterward according to
a distribution P2(·,y), then the combined two-stage experiment
produces a jointly distributed pair (X ,Y ) with distribution P(X ,Y ) given
by (1) and PX |Y=y = P2(·,y).
This provides a way of generating dependent random variables.

Example 1.23
A market survey is conducted to study whether a new product is
preferred over the product currently available in the market.
Questionnaires are sent by mail along with the sample products (both
new and old) to N customers randomly selected from a population.
Each customer is asked to fill out the questionnaire and return it.
Response is either 1 (new is better than old) or 0 (otherwise).
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Some customers, however, do not return the questionnaires.

Let X be the number of ones in the returned questionnaires.
What is the distribution of X?

If every customer returns the questionnaire, then (from elementary
probability) X has the binomial distribution Bi(p,N) in Table 1.1
(assuming that the population is large enough so that customers
respond independently), where p ∈ (0,1) is the overall rate of
customers who prefer the new product.

Now, let Y be the number of customers who respond, which is random.

Suppose that customers respond independently with the same
probability π ∈ (0,1).
Then PY is the binomial distribution Bi(π,N).

Given Y = y (an integer between 0 and N), PX |Y=y is the binomial
distribution Bi(p,y) if y ≥ 1 and the point mass at 0 if y = 0.

Using (2) and the fact that binomial distributions have p.d.f.’s w.r.t.
counting measure, we obtain that the joint c.d.f. of (X ,Y ) is
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F (x ,y) =
y

∑
k=0

PX |Y=k
(
(−∞,x ]

)(N
k

)
π

k (1−π)N−k

=
y

∑
k=0

min{x ,k}

∑
j=0

(
k
j

)
pj(1−p)k−j

(
N
k

)
π

k (1−π)N−k

for x = 0,1, ...,y , y = 0,1, ...,N.
The marginal c.d.f. FX (x) = F (x ,∞) = F (x ,N).
The p.d.f. of X w.r.t. counting measure is

fX (x) =
N

∑
k=x

(
k
x

)
px (1−p)k−x

(
N
k

)
π

k (1−π)N−k

=

(
N
x

)
(πp)x (1−πp)N−x

N

∑
k=x

(
N−x
k −x

)(
π−πp
1−πp

)k−x( 1−π

1−πp

)N−k

=

(
N
x

)
(πp)x (1−πp)N−x

for x = 0,1, ...,N.
It turns out that the marginal distribution of X is the binomial Bi(πp,N).
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Markov chain
An important example of dependent sequence of random variables in
statistical application
A sequence of random vectors {Xn : n = 1,2, ...} is a Markov chain or
Markov process iff

P (B|X1, ...,Xn) = P (B|Xn) a.s., B∈σ(Xn+1), n = 2,3, ....

That is, given Xn, Xn+1 and (X1, ...,Xn−1) are conditionally independent.
We call the previous equation the “Markov property”.

Remarks
Xn+1 (tomorrow) is conditionally independent of (X1, ...,Xn−1) (the
past), given Xn (today).
(X1, ...,Xn−1) is not necessarily independent of (Xn,Xn+1).
A sequence of independent random vectors forms a trivial Markov
chain
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Example 1.24 (First-order autoregressive processes)
Let ε1,ε2, ... be independent random variables defined on a probability
space, X1 = ε1, and Xn+1 = ρXn + εn+1, n = 1,2, ..., where ρ is a
constant in R.
Then {Xn} is called a first-order autoregressive process.

We now show that {Xn} is a Markov chain

We need to show the Markov property, i.e., for any B ∈B and
n = 1,2, ...,

P(Xn+1 ∈ B|X1, ...,Xn) = Pεn+1(B−ρXn) = P(Xn+1 ∈ B|Xn) a.s.,

where B−y = {x ∈R : x + y ∈ B}.
For any y ∈R,

Pεn+1(B−y) = P(εn+1 + y ∈ B) =
∫

IB(x + y)dPεn+1(x)

and, by Fubini’s theorem, Pεn+1(B−y) is Borel.
Hence, Pεn+1(B−ρXn) is Borel w.r.t. σ(Xn) and, thus, is Borel w.r.t.
σ(X1, ...,Xn).
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Example 1.24 (continued)

Let Bj ∈B, j = 1, ...,n, and A = ∩n
j=1X−1

j (Bj).
Since εn+1 + ρXn = Xn+1 and εn+1 is independent of (X1, ...,Xn), it
follows from Theorem 1.2 and Fubini’s theorem that∫

A
Pεn+1(B−ρXn)dP =

∫
xj∈Bj ,j=1,...,n

∫
t∈B−ρxn

dPεn+1(t)dPX (x)

=
∫

xj∈Bj ,j=1,...,n,xn+1∈B
dP(X ,εn+1)(x , t)

=P
(

A∩X−1
n+1(B)

)
,

where X and x denote (X1, ...,Xn) and (x1, ...,xn), respectively, and
xn+1 denotes ρxn + t .
Using this and the argument in the end of the proof for Proposition
1.11, we obtain P(Xn+1 ∈ B|X1, ...,Xn) = Pεn+1(B−ρXn) a.s.
The proof for Pεn+1(B−ρXn) = P(Xn+1 ∈ B|Xn) a.s. is similar and
simpler.
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Proposition 1.12 (Characterizations of Markov chains)
A sequence of random vectors {Xn} is a Markov chain if and only if
one of the following three conditions holds.
(a) For any n = 2,3, ... and any integrable h(Xn+1) with a Borel

function h,

E [h(Xn+1)|X1, ...,Xn] = E [h(Xn+1)|Xn] a.s.

(b) For any n = 1,2, ... and B ∈ σ(Xn+1,Xn+2, ...),

P(B|X1, ...,Xn) = P(B|Xn) a.s.

(“the past and the future are conditionally independent given the
present")

(c) For any n = 2,3, ..., A ∈ σ(X1, ...,Xn), and B ∈ σ(Xn+1,Xn+2, ...),

P(A∩B|Xn) = P(A|Xn)P(B|Xn) a.s.
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Proof
(i) The equivalence between (a) and the Markov property.
It is clear that (a) implies the Markov property.
If h is a simple function, then the Markov property and Proposition
1.10(iii) imply (a).
If h is nonnegative, then there are nonnegative simple functions
h1 ≤ h2 ≤ ·· · ≤ h such that hj → h.
Then the Markov property together with Proposition 1.10(iii) and (x)
imply (a).
Since h = h+−h−, we conclude that the Markov property implies (a).

(ii) The equivalence between (b) and the Markov property.
It is clear that (b) implies the Markov property.
Note that σ(Xn+1,Xn+2, ...) = σ

(
∪∞

j=1σ(Xn+1, ...,Xn+j)
)

(Exercise 19).
Hence, to show that the Markov property implies (b), it suffices to show
that P(B|X1, ...,Xn) = P(B|Xn) a.s. for B ∈ σ(Xn+1, ...,Xn+j) for any
j = 1,2, ....
We use induction.
The result for j = 1 follows from the Markov property.
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Proof (continued)
Suppose that the result holds for any B ∈ σ(Xn+1, ...,Xn+j).
To show the result for any B ∈ σ(Xn+1, ...,Xn+j+1), it is enough (why?)
to show that for any B1 ∈ σ(Xn+j+1) and any B2 ∈ σ(Xn+1, ...,Xn+j),
P(B1∩B2|X1, ...,Xn) = P(B1∩B2|Xn) a.s.
From the proof in (i), the induction assumption implies

E [h(Xn+1, ...,Xn+j)|X1, ...,Xn] = E [h(Xn+1, ...,Xn+j)|Xn] (3)

for any Borel function h.
The result follows from

E(IB1 IB2 |X1, ...,Xn) = E [E(IB1 IB2 |X1, ...,Xn+j)|X1, ...,Xn]

= E [IB2E(IB1 |X1, ...,Xn+j)|X1, ...,Xn]

= E [IB2E(IB1 |Xn+j)|X1, ...,Xn]

= E [IB2E(IB1 |Xn+j)|Xn]

= E [IB2E(IB1 |Xn, ...,Xn+j)|Xn]

= E [E(IB1 IB2 |Xn, ...,Xn+j)|Xn]

= E(IB1 IB2 |Xn) a.s.,
UW-Madison (Statistics) Stat 709 Lecture 5 2018 11 / 15



beamer-tu-logo

Proof (continued)
where the first and last equalities follow from Proposition 1.10(v), the
second and sixth equalities follow from Proposition 1.10(vi), the third
and fifth equalities follow from the Markov property, and the fourth
equality follows from (3).

(iii) The equivalence between (b) and (c)
Let A ∈ σ(X1, ...,Xn) and B ∈ σ(Xn+1,Xn+2, ...).
If (b) holds, then

E(IAIB|Xn) = E [E(IAIB|X1, ...,Xn)|Xn]

= E [IAE(IB|X1, ...,Xn)|Xn]

= E [IAE(IB|Xn)|Xn]

= E(IA|Xn)E(IB|Xn),

which is (c).
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Proof (continued)
Assume that (c) holds.
Let A1 ∈ σ(Xn), A2 ∈ σ(X1, ...,Xn−1), and B ∈ σ(Xn+1,Xn+2, ...).
Then ∫

A1∩A2

E(IB|Xn)dP =
∫

A1

IA2E(IB|Xn)dP

=
∫

A1

E [IA2E(IB|Xn)|Xn]dP

=
∫

A1

E(IA2 |Xn)E(IB|Xn)dP

=
∫

A1

E(IA2 IB|Xn)dP

= P(A1∩A2∩B).

Since disjoint unions of events of the form A1∩A2 as specified above
generate σ(X1, ...,Xn), this shows that E(IB|Xn) = E(IB|X1, ...,Xn) a.s.,
which is (b).
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Martingales
{Xn}: a sequence of integrable random variables on (Ω,F ,P)
F1 ⊂F2 ⊂ ·· · ⊂F : a sequence of σ -fields such that σ(Xn)⊂Fn
{Xn,Fn : n = 1,2, ...} or {Xn} when Fn = σ(X1, ...,Xn) is said to be a
martingale if

E(Xn+1|Fn) = Xn a.s., n = 1,2, ...

a submartingale or supermartingale if = is replaced by ≥ or ≤
A simple property of a martingale (or a submartingale) {Xn,Fn} is that
E(Xn+j |Fn) = Xn a.s. (or E(Xn+j |Fn)≥ Xn a.s.) and
EX1 = EXj (or EX1 ≤ EX2 ≤ ·· · ) for any j = 1,2, ...

Examples
Y : an intgrable random variable, F1 ⊂F2 ⊂ ·· · ⊂F
{E(Y |Fn)} is a martingale
Xn = ε1 + · · ·+ εn, n = 1,2, ..., εn’s are independent

E(Xn+1|X1, ...,Xn) = E(Xn + εn+1|X1, ...,Xn) = Xn + Eεn+1 a.s.,

{Xn} is a martingale or submartingale if Eεn = 0 or ≥ 0 for all n
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Proposition 1.13.
(i) If {Xn,Fn} is a martingale, ϕ is convex, and ϕ(Xn) is integrable for
all n, then {ϕ(Xn),Fn} is a submartingale.
(ii) If {Xn,Fn} is a submartingale, ϕ(Xn) is integrable for all n, and ϕ is
nondecreasing and convex, then {ϕ(Xn),Fn} is a submartingale.
Proof. (i) Note that ϕ(Xn) = ϕ(E(Xn+1|Fn))≤ E [ϕ(Xn+1|Fn)] a.s. by
Jensen’s inequality for conditional expectations (Exercise 89(c)).
(ii) Since ϕ is nondecreasing and {Xn,Fn} is a submartingale,
ϕ(Xn)≤ ϕ(E(Xn+1|Fn))≤ E [ϕ(Xn+1|Fn)] a.s.

Proposition 1.15.
Let {Xn,Fn} be a submartingale. If c = supn E |Xn|< ∞, then
limn→∞ Xn = X a.s., where X is a random variable satisfying E |X | ≤ c.

Example.
Y1, ...,Yn are independent, Yn > 0, and EYn = 1
{Xn = Y1 · · ·Yn} is a martingale
E(Xn+1|X1, ...,Xn) = E(Y1 · · ·Yn+1|Y1, ...,Yn) = Y1 · · ·YnE(Yn+1) = Xn
E |Xn|= 1, hence limn→∞ Y1 · · ·Yn = X a.s.
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