Lecture 6: Convergence modes and relationships

c=(c1,....ck) € Z¥, llcllr = (T4 g1V, r>0.
If r >1, then ||c||; is the L,-distance between 0 and c.
When r =2, ||c|| = ||c|l2 = VcTe.

Definition 1.8 (Covergence modes)

Let X, Xq, X, ... be random k-vectors defined on a probability space.

(i) We say that the sequence {X,} converges to X almost surely
(a.s.) and write X, — 45 X iff lim,,.. Xp = X a.s.

(i) We say that {X,} converges to X in probability and write X, —, X
iff, for every fixed € > 0,

lim P(|[ X~ X|| > €)= 0.

(iii) We say that { X} converges to X in L, (or in rth moment) with a
fixed r > 0 and write X, —, X iff

lim E|| X, — X||/ =0
N—oo
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(iv) Let F, Fy, n=1,2,...,be c.df’son ZK and P, P,, n=1,..., be
their corresponding probability measures.
We say that {F,} converges to F weakly (or {P,} converges to P
weakly) and write F, — F (or P, — P) iff, for each continuity

point x of F,
lim Fnp(x) = F(x).

Nn—o0

We say that { X} converges to X in distribution (or in law) and
write X, —d X iff Fxn —w Fx.

Remarks
@ —as, —p, —L,. How close is between X, and X as n — «?

@ Fx, —w Fx: Fx, is close to Fx
but X, and X may not be close (they may be on different spaces)

Example 1.26.

Let 6, =1+ n~" and X, be a random variable having the exponential
distribution E(0, 6,) (Table 1.2), n=1,2,....
Let X be a random variable having the exponential distribution E(0,1).
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For any x > 0, as n— oo,
Fx (x)=1-—e X% 51— =Fx(x)
Since Fy, (x) =0 = Fx(x) for x <0, we have shown that X, —4 X.
Xn —p X?
@ Need further information about the random variables X and X,,.

@ We consider two cases in which different answers can be
obtained.

Case 1

Suppose that X, = 6,X (then X, has the given c.d.f.).
Xn— X = (6p—1)X = n~' X, which has the c.d..

(1—e ™) o.e)(X).
Then, X, —p X because, for any € > 0,
P(|Xp—X|>¢e)=€e"™ =0
(In fact, by Theorem 1.8(v), X, — 45 X)
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Also, X, —, X for any p > 0, because
E|Xn—XP=n"PEXP -0

Suppose that X, and X are independent random variables.
Since p.d.f’s for X, and —X are 6, e /% l0,)(x) and e*l_.. 0)(x),
respectively, we have

PXa-XI<e)= [ [ 0516 /mer Xlg ()l w(y)dxdly,

which converges to (by the dominated convergence theorem)

€
| e Flom wn(y)dxdy = 1-e7¢
—€
Thus,
P([Xn—X|>¢e)—e >0

for any € > 0 and, therefore, X, —, X does not hold.
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Proposition 1.16 (Pdlya’s theorem)
If F, —w F and F is continuous on %, then

This proposition implies the following useful result:
If F,, —, a continuous F and ¢, € Z* with ¢, — c, then

Fn(cn) — F(c).

| \

Lemma 1.4
For random k-vectors X, Xi, Xo, ... on a probability space, X, — 45 X iff
for every € > 0,

lim P < O {11 Xm = X|| > e}> = 0.

—=n
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It can be verified that
NA={o: im X(@) =X(@)}, A= N {Xa—X] <j'}
j=1 n=1m=n

By Proposition 1.1(iii, continuity),

P(A) = ng(ﬁ{uxm—xusﬂ})

m=n

_ 1—A@NP<D{\\xm—xu>/1})

m=n

P (Um=n{llXm—X|| > €}) — 0 for every € > 0 iff P(A;) =1 for every j,
which is equivalent to P(N72;Aj) =1 (i.e., Xp —as. X), because

P(Af)2P<ﬁAf> =1—P<OA}?> > 1- ) P(4)
Jj=1 J=1 /=1
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Lemma 1.5 (Borel-Cantelli lemma)
Let A, be a sequence of events in a probability space and
limsup A, = ﬂ U Am.
n n=1m=n
(i) X5 1 P(An) < oo, then P(limsup,Ap) =0.

(ii) If A1, Ay, ... are pairwise independent and Y/, ; P(A;) = oo, then
P(limsup,Ap) =1.

Proof of Lemma 1.5 (i)
By Proposition 1.1,

Pl A, =IlimP An | < i P(A,) =0
where the last equality follows from the condition

Y P(An) <.

n=1
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Proof of Lemma 1.5 (ii)

We prove the case of independent Ay’s.
See Chung (1974, pp. 76-78) for the pairwise independence A,’s.

P <I|r:j£pAn> = rllian <mUnAm> =1- rllinmP <mﬂnAC>
n+k n+k n+k n+k
H P(AC) = H [1-P(An)] < H exp{—P(Am)} = exp Z P(Am)
m=n m=n

=N m=n
(1 —t< e !=exp{t}).
Letting kK — oo,

H P i ﬁkP 29) <exp{_§nP(Am)} _

m=n

Hence,
C C
Ai';”(ﬂ A )—H'ELHPAm)—
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The notion of O(-), o(-), and stochastic O(-) and o( -)

In calculus, two sequences of real numbers, {a,} and {b,}, satisfy
@ ap= O(by) iff |an| < c|by| for all nand a constant ¢

Definition 1.9

Let X4, X5,... be random vectors and Yj, Ys, ... be random variables
defined on a common probability space.

(i) Xn=0(Yn) a.s.iff P(|| Xnl| = O(|Yn|)) =1.
(i) Xn = Op(Yn) iff, for any € > 0, there is a constant C, > 0 such that

| \

sup P(|| Xnl| = Ce| Ya|) < e.
n
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Discussions and properties

@ Since a, = O(1) means that {a,} is bounded, {X,} is said to be
bounded in probability if X, = Op(1).

Xn = 0p(Yn) implies X, = Op(Yn)

Xn= Op(Yn) and Y, = Op(Z,) implies X, = Op(Zn)

Xn = Op(Yn) does not imply Y, = Op(Xp)

If Xn = Op(Zn), then X, Yy = Op(YnZp).

If Xn = Op(Zpn) and Y, = Op(Zn), then Xn+ Yn = Op(Zn).

The same conclusion can be obtained if Op(-) and op(-) are
replaced by O(-) a.s. and o( -) a.s., respectively.

If X» —4 X for a random variable X, then X, = Op(1)
If E|Xn| = O(an), then X, = Op(an), where a, € (0,).
() If Xn —a.s. X, then SUpn|Xn| = Op(1 )
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Relationship among convergence modes

(i) If Xn —as. X, then X, =, X. (The converse is not true.)
(i) 1f Xy —, X foran r >0, then X, —, X. (The converse is not true.)
(iii) If Xp, —p X, then X, —4 X. (The converse is not true.)
(iv) (Skorohod’s theorem). If X, —4 X, then there are random vectors
Y, Y1, Yo,... defined on a common probability space such that
Py = Px, Pyn = Pan n= 1,2,..., and Yn —a.s. Y.
(A useful result; a conditional converse of (i)-(iii).)
(v) If, forevery € >0, Y 4 P(||Xn— X|| > €) < oo, then X, =45 X.
(A conditional converse of (i): P(||X,— X|| > €) tends to 0 fast
enough.)

(vi) If Xh —p X, then there is a subsequence {an,j =1,2,...} such that
Xn; —ras. X as j — . (A partial converse of (i).)

v
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Theorem 1.8 (continued)

(vii) If X ¢ X and P(X=c)=1, where c € Z* is a constant vector,
then X, —p c. (A conditional converse of (i).)

(viii) Suppose that X, —4 X.
Then, for any r > 0,

lim E[|X[f = E[IX[; <

[we call this moment convergence (MC)]
iff {||Xnl|}} is uniformly integrable (Ul) in the sense that

lim sup E ([ XallH g xo1,>1) = 0.
— n

(A conditional converse of (ii).)
In particular, X, —, X if and only if {||.X, — X]|}} is Ul
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Discussions on uniform integrability

@ If there is only one random vector, then Ul is
)LTQE(HX”;/{HXHot}) =0,

which is equivalent to the integrability of || X||; (dominated
convergence theorem).

@ Sufficient conditions for uniform integrability:

sup E[| X,|i7% <o fora s >0
n

This is because 5
im sup E (| Xall 1, ) < fim sup E {[1XalF Loty Lome
toe riiXale>t) = 0 Xl 5

1 s
< Jim -5 sup E (|1 X))

=0

@ Exercises 117-120.

v
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Proof of Theorem 1.8
(i) The result follows from Lemma 1.4.
(i) The result follows from Chebyshev’s inequality with ¢(t) = |t|".

(iii) Assume k = 1. (The general case is proved in the textbook.)
Let x be a continuity point of Fx and € > 0 be given.

Then  Fi(x—e)=P(X <x—¢)
<PXn<x)+P(X<x—¢gXy>X)
< Fx,(X)+ P(|Xn—X| > €).

Letting n — o, we obtain that
Fx(X—E) < |imnianXn(X).

Switching X, and X in the previous argument, we can show that
Fx(x+¢€) > limsup Fx, (X).
n

Since ¢ is arbitrary and Fy is continuous at x,
Fx(x) = lim Fy,(x).
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Proof (continued)

(iv) The proof of this part can be found in Billingsley (1995, pp.
333-334).

(v) Let Ap = {||Xn — X|| > €}. The result follows from Lemma 1.4,
Lemma 1.5(i), and Proposition 1.1(iii).

(Vi) Xp —p X means limp_,.. P(|| Xn — X|| > &) = 0 for every € > 0.
That is, for every € > 0, P(|| X, — X|| > €) < € for n> n, (n, is an
integer depending on ¢).

For every j=1,2,..., there is a positive integer n; such that

P(|| X, — X|| >277) < 277
For any € > 0, there is a ke such that for j > k.,
P([| Xn, — X > £) < P([[ Xp, — X|| > 277).

Since Yl 2/ =1, it follows from the result in (v) that Xn —ras. X
as j — oo.

(vii) The proof for this part is left as an exercise.
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Properties of the quotient random variables

Proposition A1

Suppose X, Xi, Xo,..., are positive random variables. Then X, —4¢ X
if and only if for every & > 0, limp .. P{supys, % > 1+ ¢} =0, and
limp_yeo P{supkzn%k >1+¢€}=0.

Proposition A2

Suppose X, X, Xs,..., are positive random variables. If

Yo i P(Xn/X>1+¢€)<eoand Y, ;P(X/Xn>1+¢€) <oo, then
Xn —as X.

| A\

N\

1. Prove these two propositions.

2. Construct two random variable sequences such that these two
propositions can apply.
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