In elementary probability, conditional probability $P(B|A)$ is defined as

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

for events A and B with $P(A) > 0$.

For two random variables, X and Y, how do we define $P(X \in B|Y = y)$?

Definition 1.6

Let X be an integrable random variable on (Ω, \mathcal{F}, P).

(i) The *conditional expectation* of X given \mathcal{A} (a sub-σ-field of \mathcal{F}), denoted by $E(X|\mathcal{A})$, is the a.s.-unique random variable satisfying the following two conditions:

(a) $E(X|\mathcal{A})$ is measurable from (Ω, \mathcal{A}) to $(\mathbb{R}, \mathcal{B})$;

(b) $\int_A E(X|\mathcal{A}) \, dP = \int_A X \, dP$ for any $A \in \mathcal{A}$.

(ii) The *conditional probability* of $B \in \mathcal{F}$ given \mathcal{A} is defined to be

$$P(B|\mathcal{A}) = E(I_B|\mathcal{A}).$$

(iii) Let Y be measurable from (Ω, \mathcal{F}, P) to (Λ, \mathcal{G}).

The conditional expectation of X given Y is defined to be

$$E(X|Y) = E[X|\sigma(Y)].$$
In elementary probability, conditional probability $P(B|A)$ is defined as $P(B|A) = P(A \cap B)/P(A)$ for events A and B with $P(A) > 0$.

For two random variables, X and Y, how do we define $P(X \in B|Y = y)$?

Definition 1.6

Let X be an integrable random variable on (Ω, \mathcal{F}, P).

(i) The *conditional expectation* of X given \mathcal{A} (a sub-σ-field of \mathcal{F}), denoted by $E(X|\mathcal{A})$, is the a.s.-unique random variable satisfying the following two conditions:

(a) $E(X|\mathcal{A})$ is measurable from (Ω, \mathcal{A}) to $(\mathbb{R}, \mathcal{B})$;
(b) $\int_A E(X|\mathcal{A})dP = \int_A XdP$ for any $A \in \mathcal{A}$.

(ii) The *conditional probability* of $B \in \mathcal{F}$ given \mathcal{A} is defined to be $P(B|\mathcal{A}) = E(I_B|\mathcal{A})$.

(iii) Let Y be measurable from (Ω, \mathcal{F}, P) to (Λ, \mathcal{G}).

The conditional expectation of X given Y is defined to be $E(X|Y) = E[X|\sigma(Y)]$.
Remarks

- The existence of \(E(X|\mathcal{A}) \) follows from Theorem 1.4.
- \(\sigma(Y) \) contains “the information in \(Y \)"
- \(E(X|Y) \) is the “expectation” of \(X \) given the information in \(Y \)
- For a random vector \(X \), \(E(X|\mathcal{A}) \) is defined as the vector of conditional expectations of components of \(X \).

Lemma 1.2

Let \(Y \) be measurable from \((\Omega, \mathcal{F}) \) to \((\Lambda, \mathcal{G}) \) and \(Z \) a function from \((\Omega, \mathcal{F}) \) to \(\mathbb{R}^k \).

Then \(Z \) is measurable from \((\Omega, \sigma(Y)) \) to \((\mathbb{R}^k, \mathcal{B}^k) \) iff there is a measurable function \(h \) from \((\Lambda, \mathcal{G}) \) to \((\mathbb{R}^k, \mathcal{B}^k) \) such that \(Z = h \circ Y \).

By Lemma 1.2, there is a Borel function \(h \) on \((\Lambda, \mathcal{G}) \) such that \(E(X|Y) = h \circ Y \).

For \(y \in \Lambda \), we define \(E(X|Y = y) = h(y) \) to be the conditional expectation of \(X \) given \(Y = y \).

\(h(y) \) is a function on \(\Lambda \), whereas \(h \circ Y = E(X|Y) \) is a function on \(\Omega \).
Remarks

- The existence of $E(X|\mathcal{A})$ follows from Theorem 1.4.
- $\sigma(Y)$ contains “the information in Y”
- $E(X|Y)$ is the “expectation” of X given the information in Y
- For a random vector X, $E(X|\mathcal{A})$ is defined as the vector of conditional expectations of components of X.

Lemma 1.2

Let Y be measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) and Z a function from (Ω, \mathcal{F}) to \mathbb{R}^k. Then Z is measurable from $(\Omega, \sigma(Y))$ to $(\mathbb{R}^k, \mathcal{B}^k)$ iff there is a measurable function h from (Λ, \mathcal{G}) to $(\mathbb{R}^k, \mathcal{B}^k)$ such that $Z = h \circ Y$.

By Lemma 1.2, there is a Borel function h on (Λ, \mathcal{G}) such that $E(X|Y) = h \circ Y$.

For $y \in \Lambda$, we define $E(X|Y = y) = h(y)$ to be the conditional expectation of X given $Y = y$.

$h(y)$ is a function on Λ, whereas $h \circ Y = E(X|Y)$ is a function on Ω.
Remarks

- The existence of $E(X|\mathcal{A})$ follows from Theorem 1.4.
- $\sigma(Y)$ contains “the information in Y”
- $E(X|Y)$ is the “expectation” of X given the information in Y
- For a random vector X, $E(X|\mathcal{A})$ is defined as the vector of conditional expectations of components of X.

Lemma 1.2

Let Y be measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) and Z a function from (Ω, \mathcal{F}) to \mathbb{R}^k. Then Z is measurable from $(\Omega, \sigma(Y))$ to $(\mathbb{R}^k, \mathcal{B}^k)$ iff there is a measurable function h from (Λ, \mathcal{G}) to $(\mathbb{R}^k, \mathcal{B}^k)$ such that $Z = h \circ Y$.

By Lemma 1.2, there is a Borel function h on (Λ, \mathcal{G}) such that $E(X|Y) = h \circ Y$.
For $y \in \Lambda$, we define $E(X|Y = y) = h(y)$ to be the conditional expectation of X given $Y = y$.
$h(y)$ is a function on Λ, whereas $h \circ Y = E(X|Y)$ is a function on Ω.
Example 1.21

Let X be an integrable random variable on (Ω, \mathcal{F}, P), A_1, A_2, \ldots be disjoint events on (Ω, \mathcal{F}, P) such that $\cup A_i = \Omega$ and $P(A_i) > 0$ for all i, and let a_1, a_2, \ldots be distinct real numbers. Define $Y = a_1 I_{A_1} + a_2 I_{A_2} + \cdots$. We now show that

$$E(X|Y) = \sum_{i=1}^{\infty} \frac{\int_{A_i} XdP}{P(A_i)} I_{A_i}. \ldots$$

We need to verify (a) and (b) in Definition 1.6 with $\mathcal{A} = \sigma(Y)$.

Since $\sigma(Y) = \sigma(\{A_1, A_2, \ldots\})$, it is clear that the function on the right-hand side is measurable on $(\Omega, \sigma(Y))$.

This verifies (a).

To verify (b), we need to show

$$\int_{Y^{-1}(B)} XdP = \int_{Y^{-1}(B)} \left[\sum_{i=1}^{\infty} \frac{\int_{A_i} XdP}{P(A_i)} I_{A_i} \right] dP.$$

for any $B \in \mathcal{B}$,
Example 1.21

Let X be an integrable random variable on (Ω, \mathcal{F}, P), A_1, A_2, \ldots be disjoint events on (Ω, \mathcal{F}, P) such that $\bigcup A_i = \Omega$ and $P(A_i) > 0$ for all i, and let a_1, a_2, \ldots be distinct real numbers.

Define $Y = a_1 I_{A_1} + a_2 I_{A_2} + \cdots$. We now show that

$$E(X|Y) = \sum_{i=1}^{\infty} \frac{\int_{A_i} X dP}{P(A_i)} I_{A_i}.$$

We need to verify (a) and (b) in Definition 1.6 with $\mathcal{A} = \sigma(Y)$.

Since $\sigma(Y) = \sigma(\{A_1, A_2, \ldots\})$, it is clear that the function on the right-hand side is measurable on $(\Omega, \sigma(Y))$.

This verifies (a).

To verify (b), we need to show

$$\int_{Y^{-1}(B)} X dP = \int_{Y^{-1}(B)} \left[\sum_{i=1}^{\infty} \frac{\int_{A_i} X dP}{P(A_i)} I_{A_i} \right] dP,$$

for any $B \in \mathcal{B}$,
Example 1.21

Let X be an integrable random variable on (Ω, \mathcal{F}, P), A_1, A_2, \ldots be disjoint events on (Ω, \mathcal{F}, P) such that $\cup A_i = \Omega$ and $P(A_i) > 0$ for all i, and let a_1, a_2, \ldots be distinct real numbers.

Define $Y = a_1 I_{A_1} + a_2 I_{A_2} + \cdots$. We now show that

$$E(X|Y) = \sum_{i=1}^{\infty} \frac{\int_{A_i} XdP}{P(A_i)} I_{A_i}.$$

We need to verify (a) and (b) in Definition 1.6 with $\mathcal{A} = \sigma(Y)$.

Since $\sigma(Y) = \sigma(\{A_1, A_2, \ldots\})$, it is clear that the function on the right-hand side is measurable on $(\Omega, \sigma(Y))$.

This verifies (a).

To verify (b), we need to show

$$\int_{Y^{-1}(B)} XdP = \int_{Y^{-1}(B)} \left[\sum_{i=1}^{\infty} \frac{\int_{A_i} XdP}{P(A_i)} I_{A_i} \right] dP.$$

for any $B \in \mathcal{B}$,
Example 1.21 (continued)

Using the fact that \(Y^{-1}(B) = \bigcup_{i:a_i \in B} A_i\), we obtain

\[
\int_{Y^{-1}(B)} X \, dP = \sum_{i:a_i \in B} \int_{A_i} X \, dP
\]

\[
= \sum_{i=1}^{\infty} \frac{\int_{A_i} X \, dP}{P(A_i)} P \left(A_i \cap Y^{-1}(B) \right)
\]

\[
= \int_{Y^{-1}(B)} \left[\sum_{i=1}^{\infty} \frac{\int_{A_i} X \, dP}{P(A_i)} I_{A_i} \right] dP,
\]

where the last equality follows from Fubini’s theorem. This verifies (b) and thus the result.

Let \(h\) be a Borel function on \(\mathbb{R}\) satisfying

\[
h(a_i) = \int_{A_i} X \, dP / P(A_i).
\]

Then \(E(X \mid Y) = h \circ Y\) and \(E(X \mid Y = y) = h(y)\).
Proposition 1.9

Let X be a random n-vector and Y a random m-vector. Suppose that (X, Y) has a joint p.d.f. $f(x, y)$ w.r.t. $\nu \times \lambda$, where ν and λ are σ-finite measures on $(\mathbb{R}^n, \mathcal{B}^n)$ and $(\mathbb{R}^m, \mathcal{B}^m)$, respectively. Let $g(x, y)$ be a Borel function on \mathbb{R}^{n+m} for which $E|g(X, Y)| < \infty$. Then

$$E[g(X, Y)|Y] = \frac{\int g(x, Y)f(x, Y)d\nu(x)}{\int f(x, Y)d\nu(x)} \text{ a.s.}$$

Proof

Denote the right-hand side by $h(Y)$. By Fubini’s theorem, h is Borel. Then, by Lemma 1.2, $h(Y)$ is Borel on $(\Omega, \sigma(Y))$. Also, by Fubini’s theorem,

$$f_Y(y) = \int f(x, y)d\nu(x)$$

is the p.d.f. of Y w.r.t. λ.
Proposition 1.9

Let X be a random n-vector and Y a random m-vector. Suppose that (X, Y) has a joint p.d.f. $f(x, y)$ w.r.t. $\nu \times \lambda$, where ν and λ are σ-finite measures on $(\mathbb{R}^n, \mathcal{B}^n)$ and $(\mathbb{R}^m, \mathcal{B}^m)$, respectively. Let $g(x, y)$ be a Borel function on \mathbb{R}^{n+m} for which $E|g(X, Y)| < \infty$. Then

$$E[g(X, Y)|Y] = \frac{\int g(x, Y)f(x, Y)d\nu(x)}{\int f(x, Y)d\nu(x)} \quad \text{a.s.}$$

Proof

Denote the right-hand side by $h(Y)$. By Fubini’s theorem, h is Borel. Then, by Lemma 1.2, $h(Y)$ is Borel on $(\Omega, \sigma(Y))$. Also, by Fubini’s theorem,

$$f_Y(y) = \int f(x, y)d\nu(x)$$

is the p.d.f. of Y w.r.t. λ.
Proof (continued)

For $B \in \mathcal{B}^m$,

$$
\int_{Y^{-1}(B)} h(Y) dP = \int_B h(y) dP_Y \\
= \int_B \frac{\int g(x, y) f(x, y) d\nu(x)}{\int f(x, y) d\nu(x)} f_Y(y) d\lambda(y) \\
= \int_{\mathbb{R}^n \times B} g(x, y) f(x, y) d\nu \times \lambda \\
= \int_{\mathbb{R}^n \times B} g(x, y) dP_{(X,Y)} \\
= \int_{Y^{-1}(B)} g(X, Y) dP,
$$

where the first and the last equalities follow from Theorem 1.2, the second and the next to last equalities follow from the definition of h and p.d.f.’s, and the third equality follows from Fubini’s theorem.
Conditional p.d.f.

Let \((X, Y)\) be a random vector with a joint p.d.f. \(f(x, y)\) w.r.t. \(\nu \times \lambda\). The *conditional* p.d.f. of \(X\) given \(Y = y\) is defined to be

\[
f_{X|Y}(x|y) = \frac{f(x, y)}{f_Y(y)}
\]

where

\[
f_Y(y) = \int f(x, y) d\nu(x)
\]

is the marginal p.d.f. of \(Y\) w.r.t. \(\lambda\).

For each fixed \(y\) with \(f_Y(y) > 0\), \(f_{X|Y}(x|y)\) is a p.d.f. w.r.t. \(\nu\).

Then Proposition 1.9 states that

\[
E[g(X, Y)|Y] = \int g(x, Y) f_{X|Y}(x|Y) d\nu(x)
\]

i.e., the conditional expectation of \(g(X, Y)\) given \(Y\) is equal to the expectation of \(g(X, Y)\) w.r.t. the conditional p.d.f. of \(X\) given \(Y\).
Proposition 1.10

Let X, Y, X_1, X_2, \ldots be integrable random variables on (Ω, \mathcal{F}, P) and \mathcal{A} be a sub-σ-field of \mathcal{F}.

(i) If $X = c$ a.s., $c \in \mathbb{R}$, then $E(X|\mathcal{A}) = c$ a.s.

(ii) If $X \leq Y$ a.s., then $E(X|\mathcal{A}) \leq E(Y|\mathcal{A})$ a.s.

(iii) If $a, b \in \mathbb{R}$, then $E(aX + bY|\mathcal{A}) = aE(X|\mathcal{A}) + bE(Y|\mathcal{A})$ a.s.

(iv) $E[E(X|\mathcal{A})] = EX$.

(v) $E[E(X|\mathcal{A})|\mathcal{A}_0] = E(X|\mathcal{A}_0) = E[E(X|\mathcal{A}_0)|\mathcal{A}]$ a.s., where \mathcal{A}_0 is a sub-σ-field of \mathcal{A}.

(vi) If $\sigma(Y) \subset \mathcal{A}$ and $E|XY| < \infty$, then $E(XY|\mathcal{A}) = YE(X|\mathcal{A})$ a.s.

(vii) If X and Y are independent and $E|g(X, Y)| < \infty$ for a Borel function g, then $E[g(X, Y)|Y = y] = E[g(X, y)]$ a.s. P_Y.

(viii) If $EX^2 < \infty$, then $[E(X|\mathcal{A})]^2 \leq E(X^2|\mathcal{A})$ a.s.

(ix) (Fatou’s lemma). If $X_n \geq 0$ for any n, then $E \left(\liminf_n X_n \big| \mathcal{A} \right) \leq \liminf_n E(X_n|\mathcal{A})$ a.s.

(x) (Dominated convergence theorem). If $|X_n| \leq Y$ for any n and $X_n \rightarrow_{a.s.} X$, then $E(X_n|\mathcal{A}) \rightarrow_{a.s.} E(X|\mathcal{A})$.
Example 1.22

Let X be a random variable on (Ω, \mathcal{F}, P) with $EX^2 < \infty$ and let Y be a measurable function from (Ω, \mathcal{F}, P) to (Λ, \mathcal{G}). One may wish to predict the value of X based on an observed value of Y. Let $g(Y)$ be a predictor, i.e.,

$$g \in \mathfrak{g} = \{ \text{all Borel functions } g \text{ with } E[g(Y)]^2 < \infty \}.$$

Each predictor is assessed by the “mean squared prediction error”

$$E[X - g(Y)]^2.$$

We now show that $E(X|Y)$ is the best predictor of X in the sense that

$$E[X - E(X|Y)]^2 = \min_{g \in \mathfrak{g}} E[X - g(Y)]^2.$$

First, Proposition 1.10(viii) implies $E(X|Y) \in \mathfrak{g}$.
Example 1.22 (continued)

Next, for any $g \in \mathbb{R}$,

\[
E[X - g(Y)]^2 = E[X - E(X|Y) + E(X|Y) - g(Y)]^2 \\
= E[X - E(X|Y)]^2 + E[E(X|Y) - g(Y)]^2 \\
+ 2E\{[X - E(X|Y)][E(X|Y) - g(Y)]\} \\
= E[X - E(X|Y)]^2 + E[E(X|Y) - g(Y)]^2 \\
+ 2E\{E\{[X - E(X|Y)][E(X|Y) - g(Y)]\}|Y\} \\
= E[X - E(X|Y)]^2 + E[E(X|Y) - g(Y)]^2 \\
+ 2E\{[E(X|Y) - g(Y)]E[X - E(X|Y)|Y]\} \\
= E[X - E(X|Y)]^2 + E[E(X|Y) - g(Y)]^2 \\
\geq E[X - E(X|Y)]^2,
\]

where the third equality follows from Proposition 1.10(iv), the fourth equality follows from Proposition 1.10(vi), and the last equality follows from Proposition 1.10(i), (iii), and (vi).