Lecture 6: Convergence modes and relationships

Notation

 $c = (c_1, ..., c_k) \in \mathcal{R}^k$, $||c||_r = (\sum_{j=1}^k |c_j|^r)^{1/r}$, r > 0. If $r \ge 1$, then $||c||_r$ is the L_r -distance between 0 and c. When r = 2, $||c|| = ||c||_2 = \sqrt{c^\tau c}$.

Definition 1.8 (Covergence modes)

Let $X, X_1, X_2,...$ be random k-vectors defined on a probability space.

- (i) We say that the sequence $\{X_n\}$ converges to X almost surely (a.s.) and write $X_n \to_{a.s.} X$ iff $\lim_{n\to\infty} X_n = X$ a.s.
- (ii) We say that $\{X_n\}$ converges to X in probability and write $X_n \to_p X$ iff, for every fixed $\varepsilon > 0$,

$$\lim_{n\to\infty}P(\|X_n-X\|>\varepsilon)=0.$$

(iii) We say that $\{X_n\}$ converges to X in L_r (or in rth moment) with a fixed r > 0 and write $X_n \to_{L_r} X$ iff

$$\lim_{n\to\infty} E\|X_n - X\|_r^r = 0$$

(iv) Let F, F_n , n = 1, 2, ..., be c.d.f.'s on \mathcal{R}^k and P, P_n , n = 1, ..., be their corresponding probability measures. We say that $\{F_n\}$ converges to F weakly (or $\{P_n\}$ converges to P weakly) and write $F_n \to_w F$ (or $P_n \to_w P$) iff, for each continuity

$$\lim_{n\to\infty} F_n(x) = F(x).$$

We say that $\{X_n\}$ converges to X in distribution (or in law) and write $X_n \to_d X$ iff $F_{X_n} \to_w F_X$.

Remarks

- $\rightarrow_{a.s.}$, \rightarrow_p , \rightarrow_{L_r} : How close is between X_n and X as $n \rightarrow \infty$?
- $F_{X_n} \to_w F_X$: F_{X_n} is close to F_X but X_n and X may not be close (they may be on different spaces)

Example 1.26.

point x of F,

Let $\theta_n = 1 + n^{-1}$ and X_n be a random variable having the exponential distribution $E(0, \theta_n)$ (Table 1.2), n = 1, 2, ...

Let X be a random variable having the exponential distribution E(0,1).

For any x > 0, as $n \to \infty$,

$$F_{X_n}(x) = 1 - e^{-x/\theta_n} \to 1 - e^{-x} = F_X(x)$$

Since $F_{X_n}(x) \equiv 0 \equiv F_X(x)$ for $x \leq 0$, we have shown that $X_n \to_d X$. $X_n \to_p X$?

- Need further information about the random variables X and X_n .
- We consider two cases in which different answers can be obtained.

Case 1

Suppose that $X_n \equiv \theta_n X$ (then X_n has the given c.d.f.).

 $X_n - X = (\theta_n - 1)X = n^{-1}X$, which has the c.d.f.

$$(1-e^{-nx})I_{[0,\infty)}(x).$$

Then, $X_n \rightarrow_{p} X$ because, for any $\varepsilon > 0$,

$$P(|X_n - X| \ge \varepsilon) = e^{-n\varepsilon} \to 0$$

(In fact, by Theorem 1.8(v), $X_n \rightarrow_{a.s.} X$)

3/16

Also, $X_n \rightarrow_{L_n} X$ for any p > 0, because

$$E|X_n-X|^p=n^{-p}EX^p\to 0$$

Case 2

Suppose that X_n and X are independent random variables. Since p.d.f.'s for X_n and -X are $\theta_n^{-1}e^{-x/\theta_n}I_{(0,\infty)}(x)$ and $e^xI_{(-\infty,0)}(x)$, respectively, we have

$$P(|X_n-X|\leq \varepsilon)=\int_{-\varepsilon}^\varepsilon\int\theta_n^{-1}e^{-x/\theta_n}e^{y-x}I_{(0,\infty)}(x)I_{(-\infty,x)}(y)dxdy,$$

which converges to (by the dominated convergence theorem)

$$\int_{-\varepsilon}^{\varepsilon} \int e^{-x} e^{y-x} I_{(0,\infty)}(x) I_{(-\infty,x)}(y) dx dy = 1 - e^{-\varepsilon}.$$

Thus,

$$P(|X_n - X| \ge \varepsilon) \to e^{-\varepsilon} > 0$$

for any $\varepsilon > 0$ and, therefore, $X_n \to_p X$ does not hold.

Proposition 1.16 (Pólya's theorem)

If $F_n \to_w F$ and F is continuous on \mathcal{R}^k , then

$$\lim_{n\to\infty}\sup_{x\in\mathscr{R}^k}|F_n(x)-F(x)|=0.$$

This proposition implies the following useful result: If $F_n \to_w a$ continuous F and $c_n \in \mathcal{R}^k$ with $c_n \to c$, then

$$F_n(c_n) \rightarrow F(c)$$
.

Lemma 1.4

For random k-vectors $X, X_1, X_2, ...$ on a probability space, $X_n \rightarrow_{a.s.} X$ iff for every $\varepsilon > 0$,

$$\lim_{n\to\infty}P\left(\bigcup_{m=n}^{\infty}\{\|X_m-X\|>\varepsilon\}\right)=0.$$

UW-Madison (Statistics) Stat 709 Lecture 6 2018 5 / 16

Proof

It can be verified that

$$\bigcap_{j=1}^{\infty} A_j = \{\omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}, \quad A_j = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \{\|X_m - X\| \le j^{-1}\}$$

By Proposition 1.1(iii, continuity),

$$P(A_{j}) = \lim_{n \to \infty} P\left(\bigcap_{m=n}^{\infty} \{\|X_{m} - X\| \le j^{-1}\}\right)$$
$$= 1 - \lim_{n \to \infty} P\left(\bigcup_{m=n}^{\infty} \{\|X_{m} - X\| > j^{-1}\}\right)$$

 $P(\bigcup_{m=n}^{\infty}\{\|X_m-X\|>\varepsilon\})\to 0$ for every $\varepsilon>0$ iff $P(A_j)=1$ for every j, which is equivalent to $P(\cap_{j=1}^{\infty}A_j)=1$ (i.e., $X_n\to_{a.s.}X$), because

$$P(A_j) \ge P\left(\bigcap_{j=1}^{\infty} A_j\right) = 1 - P\left(\bigcup_{j=1}^{\infty} A_j^c\right) \ge 1 - \sum_{j=1}^{\infty} P(A_j^c)$$

6/16

Lemma 1.5 (Borel-Cantelli lemma)

Let A_n be a sequence of events in a probability space and

$$\limsup_{n} A_{n} = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}.$$

- (i) If $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P(\limsup_n A_n) = 0$.
- (ii) If $A_1, A_2, ...$ are pairwise independent and $\sum_{n=1}^{\infty} P(A_n) = \infty$, then $P(\limsup_n A_n) = 1$.

Proof of Lemma 1.5 (i)

By Proposition 1.1,

$$P\left(\limsup_{n\to\infty}A_n\right)=\lim_{n\to\infty}P\left(\bigcup_{m=n}^{\infty}A_m\right)\leq\lim_{n\to\infty}\sum_{m=n}^{\infty}P(A_n)=0$$

where the last equality follows from the condition

$$\sum_{n=1}^{\infty} P(A_n) < \infty.$$

Proof of Lemma 1.5 (ii)

We prove the case of independent A_n 's.

See Chung (1974, pp. 76-78) for the pairwise independence A_n 's.

$$P\left(\limsup_{n\to\infty}A_n\right)=\lim_{n\to\infty}P\left(\bigcup_{m=n}^{\infty}A_m\right)=1-\lim_{n\to\infty}P\left(\bigcap_{m=n}^{\infty}A_m^c\right)$$

$$\prod_{m=n}^{n+k} P(A_m^c) = \prod_{m=n}^{n+k} [1 - P(A_m)] \le \prod_{m=n}^{n+k} \exp\{-P(A_m)\} = \exp\left\{-\sum_{m=n}^{n+k} P(A_m)\right\}$$

$$(1 - t < e^{-t} = \exp\{t\}).$$

Letting $k \to \infty$,

$$\prod_{m=n}^{\infty} P(A_m^c) = \lim_{k \to \infty} \prod_{m=n}^{n+k} P(A_m^c) \le \exp\left\{-\sum_{m=n}^{\infty} P(A_m)\right\} = 0.$$

Hence,

$$\lim_{n\to\infty}P\left(\bigcap_{m=n}^{\infty}A_{m}^{c}\right)=\lim_{n\to\infty}\prod_{m=n}^{\infty}P(A_{m}^{c})=0.$$

The notion of $O(\cdot)$, $o(\cdot)$, and stochastic $O(\cdot)$ and $o(\cdot)$

In calculus, two sequences of real numbers, $\{a_n\}$ and $\{b_n\}$, satisfy

- $a_n = O(b_n)$ iff $|a_n| \le c|b_n|$ for all n and a constant c
- $a_n = o(b_n)$ iff $a_n/b_n \to 0$ as $n \to \infty$

Definition 1.9

Let $X_1, X_2, ...$ be random vectors and $Y_1, Y_2, ...$ be random variables defined on a common probability space.

- (i) $X_n = O(Y_n)$ a.s. iff $P(||X_n|| = O(|Y_n|)) = 1$.
- (ii) $X_n = o(Y_n)$ a.s. iff $X_n/Y_n \rightarrow_{a.s.} 0$.
- (iii) $X_n = O_p(Y_n)$ iff, for any $\varepsilon > 0$, there is a constant $C_{\varepsilon} > 0$ such that

$$\sup_{n} P(\|X_n\| \geq C_{\varepsilon}|Y_n|) < \varepsilon.$$

(iv) $X_n = o_p(Y_n)$ iff $X_n/Y_n \rightarrow_p 0$.

9/16

Discussions and properties

- Since $a_n = O(1)$ means that $\{a_n\}$ is bounded, $\{X_n\}$ is said to be bounded in probability if $X_n = O_p(1)$.
- $X_n = o_p(Y_n)$ implies $X_n = O_p(Y_n)$
- $X_n = O_p(Y_n)$ and $Y_n = O_p(Z_n)$ implies $X_n = O_p(Z_n)$
- $X_n = O_p(Y_n)$ does not imply $Y_n = O_p(X_n)$
- If $X_n = O_p(Z_n)$, then $X_n Y_n = O_p(Y_n Z_n)$.
- If $X_n = O_p(Z_n)$ and $Y_n = O_p(Z_n)$, then $X_n + Y_n = O_p(Z_n)$.
- The same conclusion can be obtained if $O_p(\cdot)$ and $o_p(\cdot)$ are replaced by $O(\cdot)$ a.s. and $o(\cdot)$ a.s., respectively.
- If $X_n \rightarrow_d X$ for a random variable X, then $X_n = O_p(1)$
- If $E|X_n| = O(a_n)$, then $X_n = O_p(a_n)$, where $a_n \in (0, \infty)$.
- If $X_n \rightarrow_{a.s.} X$, then $\sup_n |X_n| = O_p(1)$.

Relationship among convergence modes

Theorem 1.8

- (i) If $X_n \rightarrow_{a.s.} X$, then $X_n \rightarrow_p X$. (The converse is not true.)
- (ii) If $X_n \to_{L_r} X$ for an r > 0, then $X_n \to_p X$. (The converse is not true.)
- (iii) If $X_n \rightarrow_p X$, then $X_n \rightarrow_d X$. (The converse is not true.)
- (iv) (Skorohod's theorem). If $X_n \rightarrow_d X$, then there are random vectors $Y, Y_1, Y_2, ...$ defined on a common probability space such that $P_Y = P_X, P_{Y_n} = P_{X_n}, n = 1, 2, ...,$ and $Y_n \rightarrow_{a.s.} Y$. (A useful result; a conditional converse of (i)-(iii).)
- (v) If, for every $\varepsilon > 0$, $\sum_{n=1}^{\infty} P(\|X_n X\| \ge \varepsilon) < \infty$, then $X_n \to_{a.s.} X$. (A conditional converse of (i): $P(\|X_n X\| \ge \varepsilon)$ tends to 0 fast enough.)
- (vi) If $X_n \to_p X$, then there is a subsequence $\{X_{n_j}, j=1,2,...\}$ such that $X_{n_i} \to_{a.s.} X$ as $j \to \infty$. (A partial converse of (i).)

UW-Madison (Statistics) Stat 709 Lecture 6 2018 11 / 16

Theorem 1.8 (continued)

- (vii) If $X_n \to_d X$ and P(X = c) = 1, where $c \in \mathcal{R}^k$ is a constant vector, then $X_n \to_p c$. (A conditional converse of (i).)
- (viii) Suppose that $X_n \rightarrow_d X$. Then, for any r > 0,

$$\lim_{n\to\infty} E\|X_n\|_r^r = E\|X\|_r^r < \infty$$

[we call this moment convergence (MC)] iff $\{\|X_n\|_r^r\}$ is *uniformly integrable* (UI) in the sense that

$$\lim_{t\to\infty}\sup_{n}E\left(\|X_{n}\|_{r}^{r}I_{\{\|X_{n}\|_{r}>t\}}\right)=0.$$

(A conditional converse of (ii).) In particular, $X_n \to_{L_r} X$ if and only if $\{\|X_n - X\|_r^r\}$ is UI

UW-Madison (Statistics) Stat 709 Lecture 6 2018 12 / 16

Discussions on uniform integrability

• If there is only one random vector, then UI is

$$\lim_{t\to\infty} E\left(\|X\|_r^r I_{\{\|X\|_r>t\}}\right) = 0,$$

which is equivalent to the integrability of $||X||_r^r$ (dominated convergence theorem).

• Sufficient conditions for uniform integrability:

$$\sup_n E \|X_n\|_r^{r+\delta} < \infty \quad \text{for a } \delta > 0$$

This is because

$$\lim_{t \to \infty} \sup_{n} E\left(\|X_{n}\|_{r}^{r} I_{\{\|X_{n}\|_{r} > t\}}\right) \leq \lim_{t \to \infty} \sup_{n} E\left(\|X_{n}\|_{r}^{r} I_{\{\|X_{n}\|_{r} > t\}} \frac{\|X_{n}\|_{r}^{\delta}}{t^{\delta}}\right)$$

$$\leq \lim_{t \to \infty} \frac{1}{t^{\delta}} \sup_{n} E\left(\|X_{n}\|_{r}^{r+\delta}\right)$$

$$= 0$$

Exercises 117-120.

Proof of Theorem 1.8

- (i) The result follows from Lemma 1.4.
- (ii) The result follows from Chebyshev's inequality with $\varphi(t) = |t|^r$.
- (iii) Assume k = 1. (The general case is proved in the textbook.) Let x be a continuity point of F_X and $\varepsilon > 0$ be given.

Then
$$F_X(x-\varepsilon) = P(X \le x - \varepsilon)$$

$$\le P(X_n \le x) + P(X \le x - \varepsilon, X_n > x)$$

$$\le F_{X_n}(x) + P(|X_n - X| > \varepsilon).$$

Letting $n \to \infty$, we obtain that

$$F_X(x-\varepsilon) \leq \liminf_n F_{X_n}(x).$$

Switching X_n and X in the previous argument, we can show that

$$F_X(x+\varepsilon) \ge \limsup_n F_{X_n}(x).$$

Since ε is arbitrary and F_X is continuous at x,

$$F_X(x) = \lim_{n \to \infty} F_{X_n}(x).$$

Proof (continued)

- (iv) The proof of this part can be found in Billingsley (1995, pp. 333-334).
- (v) Let $A_n = \{\|X_n X\| \ge \varepsilon\}$. The result follows from Lemma 1.4, Lemma 1.5(i), and Proposition 1.1(iii).
- (vi) $X_n \to_{\mathcal{P}} X$ means $\lim_{n \to \infty} P(\|X_n X\| > \varepsilon) = 0$ for every $\varepsilon > 0$. That is, for every $\varepsilon > 0$, $P(\|X_n - X\| > \varepsilon) < \varepsilon$ for $n > n_{\varepsilon}$ (n_{ε} is an integer depending on ε).

For every j = 1, 2, ..., there is a positive integer n_j such that

$$P(||X_{n_i}-X||>2^{-j})<2^{-j}.$$

For any $\varepsilon > 0$, there is a k_{ε} such that for $j \geq k_{\varepsilon}$, $P(\|X_{n_j} - X\| > \varepsilon) < P(\|X_{n_j} - X\| > 2^{-j})$. Since $\sum_{j=1}^{\infty} 2^{-j} = 1$, it follows from the result in (v) that $X_{n_j} \to_{a.s.} X$ as $j \to \infty$.

2018

15 / 16

(vii) The proof for this part is left as an exercise.

Properties of the quotient random variables

Proposition A1

Suppose X, X_1, X_2, \ldots , are positive random variables. Then $X_n \to_{a.s.} X$ if and only if for every $\varepsilon > 0$, $\lim_{n \to \infty} P\{\sup_{k \ge n} \frac{X_k}{X} > 1 + \varepsilon\} = 0$, and $\lim_{n \to \infty} P\{\sup_{k \ge n} \frac{X}{X_k} > 1 + \varepsilon\} = 0$.

Proposition A2

Suppose X, X_1, X_2, \ldots , are positive random variables. If $\sum_{n=1}^{\infty} P(X_n/X > 1 + \varepsilon) < \infty$ and $\sum_{n=1}^{\infty} P(X/X_n > 1 + \varepsilon) < \infty$, then $X_n \to_{a.s.} X$.

Homework

- 1. Prove these two propositions.
- 2. Construct two random variable sequences such that these two propositions can apply.