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Lecture 7: Uniform integrability and weak convergence
Proof of Theorem 1.8(viii)
First, by part (iv), we may assume that Xn→a.s. X (why?).
Next, for simplicity, we consider r = 1 and k = 1 only
(the general case is shown in the textbook)

UI: limt→∞ supn E
(
|Xn|I{|Xn|>t}

)
= 0

MC: limn→∞ E |Xn|= E |X |< ∞

Proof of UI implies MC
By UI, for an ε > 0, there is a finite t > 0 such that

sup
n

E
(
|Xn|I{|Xn|>t}

)
< ε

Then
sup

n
E |Xn| ≤ sup

n
E
(
|Xn|I{|Xn|>t}

)
+ sup

n
E
(
|Xn|I{|Xn|≤t}

)
< ε + t < ∞

By Fatou’s lemma (Theorem 1.1(i)),

E |X | ≤ liminf
n

E |Xn|< sup
n

E |Xn|< ∞
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Proof of UI implies MC
Hence, MC follows if we can show that

limsup
n

E |Xn| ≤ E |X |.

For any ε > 0 and t > 0, let An = {|Xn−X | ≤ ε} and Bn = {|Xn|> t}.
Then

E |Xn|= E(|Xn|IAc
n∩Bn ) + E(|Xn|IAc

n∩Bc
n
) + E(|Xn|IAn )

≤ E(|Xn|IBn ) + tP(Ac
n) + E |XnIAn |.

Since |XnIAn | ≤ (|Xn−X |+ |X |)IAn ,

E |XnIAn | ≤ E [(|Xn−X |+ |X |)IAn ]≤ ε + E |X |.

Since ε is arbitrary, limsupn E |XnIAn | ≤ E |X |.
This result and previous inequality imply that

limsup
n

E |Xn| ≤ limsup
n

E(|Xn|IBn ) + t lim
n→∞

P(Ac
n) + E |X |,

Since limn→∞ P(Ac
n) = 0 and {|Xn|} is uniformly integrable, letting t → ∞

we obtain the result.
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Proof of MC implies UI
Let ξn = |Xn|IBc

n
−|X |IBc

n
, Bn = {|Xn|> t}.

Then ξn→a.s. 0 and |ξn| ≤ t + |X |, which is integrable.
By the dominated convergence theorem, Eξn→ 0; this and UI imply

E(|Xn|IBn )−E(|X |IBn )→ 0.

Since E |X |< ∞, by the dominated convergence theorem,
lim
n→∞

E(|X |I{|Xn−X |>t/2}) = 0

From the definition of Bn,
|X |IBn ≤ |X |I{|Xn−X |>t/2}+ |X |I{|X |>t/2}.

Hence

limsup
n

E(|Xn|IBn )≤ limsup
n

E(|X |IBn )≤ E(|X |I{|X |>t/2}).

Letting t → ∞, it follows from the dominated convergence theorem that

lim
t→∞

limsup
n

E(|Xn|IBn )≤ lim
t→∞

E(|X |I{|X |>t/2}) = 0.

This proves UI.
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Example 1.27.
As an application of Theorem 1.8(viii) and Proposition 1.15, we
consider again the prediction problem in Example 1.22.

Suppose that we predict a random variable X by a random n-vector
Y = (Y1, ...,Yn), all random variables are defined on (Ω,F )

It is shown in Example 1.22 that Xn = E(X |Y1, ...,Yn) is the best
predictor in terms of the mean squared prediction error, when
EX 2 < ∞.

We now show that Xn→a.s. X when n→ ∞ under the assumption that
F = σ(Y1,Y2, ...) (i.e., Y1,Y2, ... provide all information).

From the discussion in §1.4.4, {Xn} is a martingale.

Also, supn E |Xn| ≤ supn E [E(|X ||Y1, ...,Yn)] = E |X |< ∞.

Hence, by Proposition 1.15, Xn→a.s. Z for some random variable Z .

We now need to show Z = X a.s.

Since EX 2
n ≤ EX 2 < ∞ (why?), {|Xn|} is uniformly integrable (why?).
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Example 1.27 (continued)
By Theorem 1.8(viii), E |Xn−Z | → 0, which implies

∫
A XndP→

∫
A ZdP

for any event A.

Note that if A ∈ σ(Y1, ...,Yn), then
∫

A XndP =
∫

A XdP.

Also, σ(Y1, ...,Yn)⊂ σ(Y1, ...,Ym) if m > n

Therefore, for any A ∈ ∪∞

j=1σ(Y1, ...,Yj),
∫

A XdP =
∫

A ZdP.

Since ∪∞

j=1σ(Y1, ...,Yj) generates σ(Y1,Y2, ...) = F , we conclude that∫
A XdP =

∫
A ZdP for any A ∈F and thus Z = X a.s.

In the proof above, the condition EX 2 < ∞ is used only for showing the
uniform integrability of {|Xn|}.

But by Exercise 120, {|Xn|} is uniformly integrable as long as
E |X |< ∞.

Hence Xn→a.s. X is still true if the condition EX 2 < ∞ is replaced by
E |X |< ∞.

UW-Madison (Statistics) Stat 709 Lecture 7 2018 5 / 15



beamer-tu-logo

Tightness

A sequence {Pn} of probability measures on (Rk ,Bk ) is tight if for
every ε > 0, there is a compact set C ⊂Rk such that
infn Pn(C) > 1− ε.
If {Xn} is a sequence of random k -vectors, then the tightness of {PXn}
is the same as the boundedness of {‖Xn‖} in probability
(‖Xn‖= Op(1)), i.e., for any ε > 0, there is a constant Cε > 0 such that
supn P(‖Xn‖ ≥ Cε ) < ε.

Proposition 1.17

Let {Pn} be a sequence of probability measures on (Rk ,Bk ).
(i) Tightness of {Pn} is a necessary and sufficient condition that for

every subsequence {Pni} there exists a further subsequence
{Pnj} ⊂ {Pni} and a probability measure P on (Rk ,Bk ) such that
Pnj →w P as j → ∞.

(ii) If {Pn} is tight and if each subsequence that converges weakly at
all converges to the same probability measure P, then Pn→w P.

Proof: See Billingsley (1995, pp. 336-337)
UW-Madison (Statistics) Stat 709 Lecture 7 2018 6 / 15



beamer-tu-logo

Theorem 1.9 (useful sufficient and necessary conditions for
convergence in distribution)
Let X ,X1,X2, . . . be random k -vectors.

(i) Xn→d X is equivalent to any one of the following conditions:
(a) E [h(Xn)]→ E [h(X )] for every bounded continuous function h;
(b) limsupn PXn (C)≤ PX (C) for any closed set C ⊂Rk ;
(c) liminfn PXn (O)≥ PX (O) for any open set O ⊂Rk .

(ii) (Lévy-Cramér continuity theorem). Let φX ,φX1 ,φX2 , ... be the ch.f.’s
of X ,X1,X2, ..., respectively.
Xn→d X iff limn→∞ φXn (t) = φX (t) for all t ∈Rk .

(iii) (Cramér-Wold device). Xn→d X iff cτXn→d cτX for every c ∈Rk .

Proof of Theorem 1.9(i)
First, we show Xn→d X implies (a).
By Theorem 1.8(iv) (Skorohod’s theorem), there exists a sequence of
random vectors {Yn} and a random vector Y such that PYn = PXn for all
n, PY = PX and Yn→a.s. Y .
For bounded continuous h, h(Yn)→a.s. h(Y ) and, by the dominated
convergence theorem, E [h(Yn)]→ E [h(Y )].
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(a) follows from E [h(Xn)] = E [h(Yn)] for all n and E [h(X )] = E [h(Y )].
The proof of (b) implies (c) is in the textbook.
For any open set O, Oc is closed: hence, (b) is equivalent to (c).

To complete the proof we now show that (b) and (c) imply Xn→d X .
For x = (x1, ...,xk ) ∈Rk , let (−∞,x ] = (−∞,x1]×·· ·× (−∞,xk ] and
(−∞,x) = (−∞,x1)×·· ·× (−∞,xk ).
From (b) and (c),

PX
(
(−∞,x)

)
≤ liminf

n
PXn

(
(−∞,x)

)
≤ liminf

n
FXn (x)

≤ limsup
n

FXn (x) = limsup
n

PXn

(
(−∞,x ]

)
≤ PX

(
(−∞,x ]

)
= FX (x).

If x is a continuity point of FX , then PX
(
(−∞,x)

)
= FX (x).

This proves Xn→d X .

Proof of Theorem 1.9(ii)
From (a) of part (i), Xn→d X implies φXn (t)→ φX (t), since
e
√
−1tτ x = cos(tτx) +

√
−1sin(tτx) and cos(tτx) and sin(tτx) are

bounded continuous functions for any fixed t .
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Proof of Theorem 1.9(ii) (continued)
Suppose that k = 1 and that φXn (t)→ φX (t) for every t ∈R.
We want to show that Xn→d X .
We first show that {PXn} is tight.
By Fubini’s theorem,

1
u

∫ u

−u
[1−φXn (t)]dt =

∫
∞

−∞

[
1
u

∫ u

−u
(1−e

√
−1tx )dt

]
dPXn (x)

= 2
∫

∞

−∞

(
1− sinux

ux

)
dPXn (x)

≥ 2
∫
{|x |>2u−1}

(
1− 1
|ux |

)
dPXn (x)

≥ PXn

(
(−∞,−2u−1)∪ (2u−1,∞)

)
for any u > 0.
Since φX is continuous at 0 and φX (0) = 1, for any ε > 0 there is a
u > 0 such that u−1 ∫ u

−u[1−φX (t)]dt < ε/2.
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Proof of Theorem 1.9(ii) (continued)
Since φXn → φX , by the dominated convergence theorem,

sup
n
{u−1

∫ u

−u
[1−φXn (t)]dt}< ε.

Hence,

inf
n

PXn

(
[−2u−1,2u−1]

)
≥ 1− sup

n

{
1
u

∫ u

−u
[1−φXn (t)]dt

}
≥ 1− ε,

i.e., {PXn} is tight.
Let {PXnj

} be any subsequence that converges to a probability
measure P.
By the first part of the proof, φXnj

→ φ , which is the ch.f. of P.
By the convergence of φXn , φ = φX .
By the uniqueness theorem, P = PX .
By Proposition 1.17(ii), Xn→d X .
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Proof of Theorem 1.9(ii) (continued)
Consider now the case where k ≥ 2 and φXn → φX .
Let Ynj be the j th component of Xn and Yj be the j th component of X .
Then φYnj → φYj for each j .
By the proof for the case of k = 1, Ynj →d Yj .
By Proposition 1.17(i), {PYnj} is tight, j = 1, ...,k .
This implies that {PXn} is tight (why?).
Then the proof for Xn→d X is the same as that for the case of k = 1.

Proof of Theorem 1.9(iii)
Note that φcτ Xn (u) = φXn (uc) and φcτ X (u) = φX (uc) for any u ∈R and
any c ∈Rk .
Hence, convergence of φXn to φX is equivalent to convergence of φcτ Xn

to φcτ X for every c ∈Rk .
Then the result follows from part (ii).
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Example 1.28
Let X1, ...,Xn be independent random variables having a common c.d.f.
and Tn = X1 + · · ·+ Xn, n = 1,2, ....
Suppose that E |X1|< ∞.
It follows from a result in calculus that the ch.f. of X1 satisfies

φX1(t) = φX1(0) +
√
−1µt + o(|t |)

as |t | → 0, where µ = EX1.

Then, the ch.f. of Tn/n is

φTn/n(t) =

[
φX1

(
t
n

)]n

=

[
1 +

√
−1µt
n

+ o
(

t
n

)]n

→ e
√
−1µt

for any t ∈R as n→ ∞, because (1 + cn/n)n→ ec for any complex
sequence {cn} satisfying cn→ c.
e
√
−1µt is the ch.f. of the point mass probability measure at µ.

By Theorem 1.9(ii), Tn/n→d µ.
From Theorem 1.8(vii), this also shows that Tn/n→p µ.

UW-Madison (Statistics) Stat 709 Lecture 7 2018 12 / 15



beamer-tu-logo

Example 1.28 (continued)

Similarly, µ = 0 and σ2 = var(X1) < ∞ imply

φTn/
√

n(t) =

[
1− σ2t2

2n
+ o

(
t2

n

)]n

→ e−σ2t2/2

for any t ∈R as n→ ∞.
e−σ2t2/2 is the ch.f. of N(0,σ2).
Hence Tn/

√
n→d N(0,σ2).

If µ 6= 0, a transformation of Yi = Xi −µ leads to

(Tn−nµ)/
√

n→d N(0,σ2).

Suppose now that X1, ...,Xn are random k -vectors and µ = EX1 and
Σ = var(X1) are finite.
For any fixed c ∈Rk , it follows from the previous discussion that
(cτTn−ncτ µ)/

√
n→d N(0,cτ Σc).

From Theorem 1.9(iii) and a property of the normal distribution
(Exercise 81), we conclude that

(Tn−nµ)/
√

n→d Nk (0,Σ).
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Example 1.29
Let X1, ...,Xn be independent random variables having a common
Lebesgue p.d.f. f (x) = (1− cosx)/(πx2).
Then the ch.f. of X1 is max{1−|t |,0} (Exercise 73) and the ch.f. of
Tn/n = (X1 + · · ·+ Xn)/n is(

max

{
1− |t |

n
,0
})n

→ e−|t |, t ∈R.

Since e−|t | is the ch.f. of the Cauchy distribution C(0,1) (Table 1.2), we
conclude that Tn/n→d X , where X has the Cauchy distribution C(0,1).

Does this result contradict the first result in Example 1.28?
Other examples are given in Exercises 135-140.

The next result can be used to check whether Xn→d X when X has a
p.d.f. f and Xn has a p.d.f. fn.
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Proposition 1.18 (Scheffé’s theorem)

Let {fn} be a sequence of p.d.f.’s on Rk w.r.t. a measure ν .
Suppose that limn→∞ fn(x) = f (x) a.e. ν and f (x) is a p.d.f. w.r.t. ν .
Then limn→∞

∫
|fn(x)− f (x)|dν = 0.

Proof
Let gn(x) = [f (x)− fn(x)]I{f≥fn}(x), n = 1,2,....
Then ∫

|fn(x)− f (x)|dν = 2
∫

gn(x)dν .

Since 0≤ gn(x)≤ f (x) for all x and gn→ 0 a.e. ν , the result follows
from the dominated convergence theorem.

As an example, consider the Lebesgue p.d.f. fn of the t-distribution tn
(Table 1.2), n = 1,2,....
One can show (exercise) that fn→ f , where f is the p.d.f. of N(0,1).
This is an important result in statistics.
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