Lecture 7: Uniform integrability and weak convergence

Proof of Theorem 1.8(viii)

First, by part (iv), we may assume that $X_n \rightarrow_{a.s.} X$ (why?).

Next, for simplicity, we consider r = 1 and k = 1 only (the general case is shown in the textbook)

UI:
$$\lim_{t\to\infty} \sup_n E\left(|X_n|I_{\{|X_n|>t\}}\right) = 0$$

MC: $\lim_{n\to\infty} E|X_n| = E|X| < \infty$

Proof of UI implies MC

By UI, for an $\varepsilon > 0$, there is a finite t > 0 such that

$$\sup_{n} E\left(|X_{n}|I_{\{|X_{n}|>t\}}\right) < \varepsilon$$

Then

$$\sup_n E|X_n| \leq \sup_n E\left(|X_n|I_{\{|X_n|>t\}}\right) + \sup_n E\left(|X_n|I_{\{|X_n|\leq t\}}\right) < \varepsilon + t < \infty$$

By Fatou's lemma (Theorem 1.1(i)),

$$E|X| \leq \liminf_n E|X_n| < \sup_n E|X_n| < \infty$$

UW-Madison (Statistics) Stat 709 Lecture 7 2018 1 / 15

Proof of UI implies MC

Hence, MC follows if we can show that

$$\limsup_n E|X_n| \le E|X|.$$

For any $\varepsilon > 0$ and t > 0, let $A_n = \{|X_n - X| \le \varepsilon\}$ and $B_n = \{|X_n| > t\}$. Then

$$E|X_n| = E(|X_n|I_{A_n^c \cap B_n}) + E(|X_n|I_{A_n^c \cap B_n^c}) + E(|X_n|I_{A_n})$$

$$\leq E(|X_n|I_{B_n}) + tP(A_n^c) + E|X_nI_{A_n}|.$$

Since $|X_n I_{A_n}| \le (|X_n - X| + |X|)I_{A_n}$,

$$E|X_nI_{A_n}| \leq E[(|X_n - X| + |X|)I_{A_n}] \leq \varepsilon + E|X|.$$

Since ε is arbitrary, $\limsup_n E|X_nI_{A_n}| \le E|X|$.

This result and previous inequality imply that

$$\limsup_{n} E|X_{n}| \leq \limsup_{n} E(|X_{n}|I_{B_{n}}) + t \lim_{n \to \infty} P(A_{n}^{c}) + E|X|,$$

Since $\lim_{n\to\infty} P(A_n^c) = 0$ and $\{|X_n|\}$ is uniformly integrable, letting $t\to\infty$ we obtain the result.

Proof of MC implies UI

Let $\xi_n = |X_n|I_{B_n^c} - |X|I_{B_n^c}$, $B_n = \{|X_n| > t\}$.

Then $\xi_n \to_{a.s.} 0$ and $|\xi_n| \le t + |X|$, which is integrable.

By the dominated convergence theorem, $E\xi_n \rightarrow 0$; this and UI imply

$$E(|X_n|I_{B_n})-E(|X|I_{B_n})\to 0.$$

Since $E|X| < \infty$, by the dominated convergence theorem,

$$\lim_{n \to \infty} E(|X|I_{\{|X_n - X| > t/2\}}) = 0$$

From the definition of B_n ,

$$|X|I_{B_n} \leq |X|I_{\{|X_n-X|>t/2\}} + |X|I_{\{|X|>t/2\}}.$$

Hence

$$\limsup_{n} E(|X_{n}|I_{B_{n}}) \leq \limsup_{n} E(|X|I_{B_{n}}) \leq E(|X|I_{\{|X|>t/2\}}).$$

Letting $t \to \infty$, it follows from the dominated convergence theorem that

$$\lim_{t\to\infty}\limsup_n E(|X_n|I_{B_n})\leq \lim_{t\to\infty} E(|X|I_{\{|X|>t/2\}})=0.$$

This proves UI.

Example 1.27.

As an application of Theorem 1.8(viii) and Proposition 1.15, we consider again the prediction problem in Example 1.22.

Suppose that we predict a random variable X by a random n-vector $Y = (Y_1, ..., Y_n)$, all random variables are defined on (Ω, \mathscr{F})

It is shown in Example 1.22 that $X_n = E(X|Y_1,...,Y_n)$ is the best predictor in terms of the mean squared prediction error, when $EX^2 < \infty$.

We now show that $X_n \to_{a.s.} X$ when $n \to \infty$ under the assumption that $\mathscr{F} = \sigma(Y_1, Y_2,...)$ (i.e., $Y_1, Y_2,...$ provide all information).

From the discussion in §1.4.4, $\{X_n\}$ is a martingale.

Also,
$$\sup_n E|X_n| \le \sup_n E[E(|X||Y_1,...,Y_n)] = E|X| < \infty$$
.

Hence, by Proposition 1.15, $X_n \rightarrow_{a.s.} Z$ for some random variable Z.

We now need to show Z = X a.s.

Since $EX_n^2 \le EX^2 < \infty$ (why?), $\{|X_n|\}$ is uniformly integrable (why?).

Example 1.27 (continued)

By Theorem 1.8(viii), $E|X_n-Z|\to 0$, which implies $\int_A X_n dP\to \int_A Z dP$ for any event A.

Note that if $A \in \sigma(Y_1, ..., Y_n)$, then $\int_A X_n dP = \int_A X dP$.

Also, $\sigma(Y_1,...,Y_n) \subset \sigma(Y_1,...,Y_m)$ if m > n

Therefore, for any $A \in \bigcup_{j=1}^{\infty} \sigma(Y_1, ..., Y_j)$, $\int_A XdP = \int_A ZdP$.

Since $\bigcup_{j=1}^{\infty} \sigma(Y_1,...,Y_j)$ generates $\sigma(Y_1,Y_2,...) = \mathscr{F}$, we conclude that $\int_A XdP = \int_A ZdP$ for any $A \in \mathscr{F}$ and thus Z = X a.s.

In the proof above, the condition $EX^2 < \infty$ is used only for showing the uniform integrability of $\{|X_n|\}$.

But by Exercise 120, $\{|X_n|\}$ is uniformly integrable as long as $E|X| < \infty$.

Hence $X_n \to_{a.s.} X$ is still true if the condition $EX^2 < \infty$ is replaced by $E|X| < \infty$.

UW-Madison (Statistics) Stat 709 Lecture 7 2018 5 / 15

Tightness

A sequence $\{P_n\}$ of probability measures on $(\mathcal{R}^k, \mathcal{B}^k)$ is *tight* if for every $\varepsilon > 0$, there is a compact set $C \subset \mathcal{R}^k$ such that $\inf_n P_n(C) > 1 - \varepsilon$.

If $\{X_n\}$ is a sequence of random k-vectors, then the tightness of $\{P_{X_n}\}$ is the same as the boundedness of $\{\|X_n\|\}$ in probability $(\|X_n\| = O_p(1))$, i.e., for any $\varepsilon > 0$, there is a constant $C_{\varepsilon} > 0$ such that $\sup_{n} P(\|X_n\| \ge C_{\varepsilon}) < \varepsilon$.

Proposition 1.17

Let $\{P_n\}$ be a sequence of probability measures on $(\mathcal{R}^k, \mathcal{B}^k)$.

- (i) Tightness of $\{P_n\}$ is a necessary and sufficient condition that for every subsequence $\{P_{n_i}\}$ there exists a further subsequence $\{P_{n_i}\} \subset \{P_{n_i}\}$ and a probability measure P on $(\mathscr{R}^k,\mathscr{B}^k)$ such that $P_{n_i} \to_w P$ as $j \to \infty$.
- (ii) If $\{P_n\}$ is tight and if each subsequence that converges weakly at all converges to the same probability measure P, then $P_n \to_w P$.

Proof: See Billingsley (1995, pp. 336-337)

Theorem 1.9 (useful sufficient and necessary conditions for convergence in distribution)

Let $X, X_1, X_2, ...$ be random k-vectors.

- (i) $X_n \rightarrow_d X$ is equivalent to any one of the following conditions:
 - (a) $E[h(X_n)] \rightarrow E[h(X)]$ for every bounded continuous function h;
 - (b) $\limsup_{n} P_{X_n}(C) \leq P_X(C)$ for any closed set $C \subset \mathcal{R}^k$;
 - (c) $\liminf_n P_{X_n}(O) \ge P_X(O)$ for any open set $O \subset \mathcal{R}^k$.
- (ii) (Lévy-Cramér continuity theorem). Let $\phi_X, \phi_{X_1}, \phi_{X_2}, ...$ be the ch.f.'s of $X, X_1, X_2, ...$, respectively. $X_n \to_d X$ iff $\lim_{n\to\infty} \phi_{X_n}(t) = \phi_X(t)$ for all $t \in \mathcal{R}^k$.
- (iii) (Cramér-Wold device). $X_n \rightarrow_d X$ iff $c^{\tau}X_n \rightarrow_d c^{\tau}X$ for every $c \in \mathcal{R}^k$.

Proof of Theorem 1.9(i)

First, we show $X_n \rightarrow_d X$ implies (a).

By Theorem 1.8(iv) (Skorohod's theorem), there exists a sequence of random vectors $\{Y_n\}$ and a random vector Y such that $P_{Y_n} = P_{X_n}$ for all $n, P_Y = P_X$ and $Y_n \to_{a.s.} Y$.

For bounded continuous h, $h(Y_n) \rightarrow_{a.s.} h(Y)$ and, by the dominated convergence theorem, $E[h(Y_n)] \rightarrow E[h(Y)]$.

7/15

(a) follows from $E[h(X_n)] = E[h(Y_n)]$ for all n and E[h(X)] = E[h(Y)]. The proof of (b) implies (c) is in the textbook.

For any open set O, O^c is closed: hence, (b) is equivalent to (c).

To complete the proof we now show that (b) and (c) imply $X_n \rightarrow_d X$.

For
$$x = (x_1, ..., x_k) \in \mathcal{R}^k$$
, let $(-\infty, x] = (-\infty, x_1] \times \cdots \times (-\infty, x_k]$ and $(-\infty, x) = (-\infty, x_1) \times \cdots \times (-\infty, x_k)$.
From (b) and (c),

$$P_X((-\infty,x)) \le \liminf_n P_{X_n}((-\infty,x)) \le \liminf_n F_{X_n}(x)$$

$$\leq \limsup_{n} F_{X_{n}}(x) = \limsup_{n} P_{X_{n}}((-\infty, x]) \leq P_{X}((-\infty, x]) = F_{X}(x).$$

If x is a continuity point of F_X , then $P_X((-\infty, x)) = F_X(x)$. This proves $X_n \to_d X$.

Proof of Theorem 1.9(ii)

From (a) of part (i), $X_n \to_d X$ implies $\phi_{X_n}(t) \to \phi_X(t)$, since $e^{\sqrt{-1}t^{\tau}x} = \cos(t^{\tau}x) + \sqrt{-1}\sin(t^{\tau}x)$ and $\cos(t^{\tau}x)$ and $\sin(t^{\tau}x)$ are bounded continuous functions for any fixed t.

Proof of Theorem 1.9(ii) (continued)

Suppose that k = 1 and that $\phi_{X_n}(t) \to \phi_X(t)$ for every $t \in \mathcal{R}$.

We want to show that $X_n \rightarrow_d X$.

We first show that $\{P_{X_n}\}$ is tight.

By Fubini's theorem,

$$\frac{1}{u} \int_{-u}^{u} [1 - \phi_{X_n}(t)] dt = \int_{-\infty}^{\infty} \left[\frac{1}{u} \int_{-u}^{u} (1 - e^{\sqrt{-1}tx}) dt \right] dP_{X_n}(x)
= 2 \int_{-\infty}^{\infty} \left(1 - \frac{\sin ux}{ux} \right) dP_{X_n}(x)
\ge 2 \int_{\{|x| > 2u^{-1}\}} \left(1 - \frac{1}{|ux|} \right) dP_{X_n}(x)
\ge P_{X_n} \left((-\infty, -2u^{-1}) \cup (2u^{-1}, \infty) \right)$$

for any u > 0.

Since ϕ_X is continuous at 0 and $\phi_X(0) = 1$, for any $\varepsilon > 0$ there is a u > 0 such that $u^{-1} \int_{-u}^{u} [1 - \phi_X(t)] dt < \varepsilon/2$.

Proof of Theorem 1.9(ii) (continued)

Since $\phi_{X_n} \to \phi_X$, by the dominated convergence theorem,

$$\sup_{n}\{u^{-1}\int_{-u}^{u}[1-\phi_{X_{n}}(t)]dt\}<\varepsilon.$$

Hence,

$$\inf_{n} P_{X_n} \left([-2u^{-1}, 2u^{-1}] \right) \ge 1 - \sup_{n} \left\{ \frac{1}{u} \int_{-u}^{u} [1 - \phi_{X_n}(t)] dt \right\} \ge 1 - \varepsilon,$$

i.e., $\{P_{X_n}\}$ is tight.

Let $\{P_{X_{n_j}}\}$ be any subsequence that converges to a probability measure P.

By the first part of the proof, $\phi_{X_{n_i}} \to \phi$, which is the ch.f. of P.

By the convergence of ϕ_{X_n} , $\phi = \phi_X$.

By the uniqueness theorem, $P = P_X$.

By Proposition 1.17(ii), $X_n \rightarrow_d X$.

4□ > 4□ > 4 = > 4 = > = 900

Proof of Theorem 1.9(ii) (continued)

Consider now the case where $k \ge 2$ and $\phi_{X_n} \to \phi_X$.

Let Y_{nj} be the *j*th component of X_n and Y_j be the *j*th component of X.

Then $\phi_{Y_{nj}} \to \phi_{Y_j}$ for each j.

By the proof for the case of k = 1, $Y_{nj} \rightarrow_d Y_j$.

By Proposition 1.17(i), $\{P_{Y_{nj}}\}$ is tight, j = 1, ..., k.

This implies that $\{P_{X_n}\}$ is tight (why?).

Then the proof for $X_n \rightarrow_d X$ is the same as that for the case of k = 1.

Proof of Theorem 1.9(iii)

Note that $\phi_{c^{\tau}X_n}(u) = \phi_{X_n}(uc)$ and $\phi_{c^{\tau}X}(u) = \phi_X(uc)$ for any $u \in \mathscr{R}$ and any $c \in \mathscr{R}^k$.

Hence, convergence of ϕ_{X_n} to ϕ_X is equivalent to convergence of $\phi_{c^{\tau}X_n}$ to $\phi_{c^{\tau}X}$ for every $c \in \mathscr{R}^k$.

Then the result follows from part (ii).

UW-Madison (Statistics) Stat 709 Lecture 7 2018 11 / 15

Example 1.28

Let $X_1,...,X_n$ be independent random variables having a common c.d.f. and $T_n = X_1 + \cdots + X_n$, n = 1, 2,...

Suppose that $E|X_1| < \infty$.

It follows from a result in calculus that the ch.f. of X_1 satisfies

$$\phi_{X_1}(t) = \phi_{X_1}(0) + \sqrt{-1}\mu t + o(|t|)$$

as $|t| \rightarrow 0$, where $\mu = EX_1$.

Then, the ch.f. of T_n/n is

$$\phi_{T_n/n}(t) = \left[\phi_{X_1}\left(\frac{t}{n}\right)\right]^n = \left[1 + \frac{\sqrt{-1}\mu t}{n} + o\left(\frac{t}{n}\right)\right]^n \to e^{\sqrt{-1}\mu t}$$

for any $t \in \mathcal{R}$ as $n \to \infty$, because $(1 + c_n/n)^n \to e^c$ for any complex sequence $\{c_n\}$ satisfying $c_n \to c$.

 $e^{\sqrt{-1}\mu t}$ is the ch.f. of the point mass probability measure at μ .

By Theorem 1.9(ii), $T_n/n \rightarrow_d \mu$.

From Theorem 1.8(vii), this also shows that $T_n/n \rightarrow_p \mu$.

Example 1.28 (continued)

Similarly, $\mu=0$ and $\sigma^2={\sf var}(X_1)<\infty$ imply

$$\phi_{T_n/\sqrt{n}}(t) = \left[1 - \frac{\sigma^2 t^2}{2n} + o\left(\frac{t^2}{n}\right)\right]^n \to e^{-\sigma^2 t^2/2}$$

for any $t \in \mathcal{R}$ as $n \to \infty$.

 $e^{-\sigma^2t^2/2}$ is the ch.f. of $N(0,\sigma^2)$.

Hence $T_n/\sqrt{n} \rightarrow_d N(0, \sigma^2)$.

If $\mu \neq 0$, a transformation of $Y_i = X_i - \mu$ leads to

$$(T_n - n\mu)/\sqrt{n} \rightarrow_d N(0, \sigma^2).$$

Suppose now that $X_1,...,X_n$ are random k-vectors and $\mu = EX_1$ and $\Sigma = \text{var}(X_1)$ are finite.

For any fixed $c \in \mathcal{R}^k$, it follows from the previous discussion that $(c^{\tau}T_n - nc^{\tau}\mu)/\sqrt{n} \rightarrow_d N(0, c^{\tau}\Sigma c)$.

From Theorem 1.9(iii) and a property of the normal distribution (Exercise 81), we conclude that

$$(T_n - n\mu)/\sqrt{n} \rightarrow_d N_k(0, \Sigma).$$

Example 1.29

Let $X_1,...,X_n$ be independent random variables having a common Lebesgue p.d.f. $f(x) = (1 - \cos x)/(\pi x^2)$.

Then the ch.f. of X_1 is $\max\{1-|t|,0\}$ (Exercise 73) and the ch.f. of $T_n/n=(X_1+\cdots+X_n)/n$ is

$$\left(\max\left\{1-\frac{|t|}{n},0\right\}\right)^n o e^{-|t|}, \qquad t\in\mathscr{R}.$$

Since $e^{-|t|}$ is the ch.f. of the Cauchy distribution C(0,1) (Table 1.2), we conclude that $T_n/n \rightarrow_d X$, where X has the Cauchy distribution C(0,1).

- Does this result contradict the first result in Example 1.28?
- Other examples are given in Exercises 135-140.

The next result can be used to check whether $X_n \to_d X$ when X has a p.d.f. f and X_n has a p.d.f. f_n .

Proposition 1.18 (Scheffé's theorem)

Let $\{f_n\}$ be a sequence of p.d.f.'s on \mathscr{R}^k w.r.t. a measure v. Suppose that $\lim_{n\to\infty} f_n(x) = f(x)$ a.e. v and f(x) is a p.d.f. w.r.t. v. Then $\lim_{n\to\infty} \int |f_n(x) - f(x)| dv = 0$.

Proof

Let $g_n(x) = [f(x) - f_n(x)]I_{\{f \ge f_n\}}(x), n = 1, 2, ...$ Then

$$\int |f_n(x)-f(x)|dv=2\int g_n(x)dv.$$

Since $0 \le g_n(x) \le f(x)$ for all x and $g_n \to 0$ a.e. v, the result follows from the dominated convergence theorem.

As an example, consider the Lebesgue p.d.f. f_n of the t-distribution t_n (Table 1.2), n = 1, 2, ...

One can show (exercise) that $f_n \to f$, where f is the p.d.f. of N(0,1). This is an important result in statistics.