Lecture 7: Uniform integrability and weak convergence

Proof of Theorem 1.8(viii)

First, by part (iv), we may assume that X, —5s X (why?).
Next, for simplicity, we consider r =1 and k = 1 only
(the general case is shown in the textbook)

Ul: lim¢ oo supp E (| Xa| Iy x,>11) =0
MC: limp_ye E| Xn| = E|X]| < o0

Proof of Ul implies MC
By Ul, for an € > 0, there is a finite t > 0 such that

sup (IXnll 3 >0) <&

Then
sup E|Xn| < sup E (| Xallyjx,j>t}) +-sup E (|Xnl fxoi<ty) <&+t <o
By Fatou’s lemma (Theorem 1.1(i)),
E|X| < Iimninf E|Xn| <supE|Xn| <o
n

UW-Madison (Statistics) Stat 709 Lecture 7 2018 1/15




Proof of Ul implies MC
Hence, MC follows if we can show that

limsup E| Xn| < E|X].
n

Forany e >0andt>0,let A, ={|X,— X| <€} and B, = {| Xp| > t}.

Then
E|Xn| = E(| Xnllacns,) + E(|Xnllasnse) + E(| Xnlla,)

< E(|Xn|lg,) + tP(AS) + E| Xnla,|-
since | Xnla,| < (1Xn — X| +1X])a,.
E|Xnla,| < E[(|1Xn—X|+|X])1a,] < e+ E|X|.
Since ¢ is arbitrary, limsup, E|Xnla,| < E|X].
This result and previous inequality imply that
Iimnsup E| X, < Iimnsup E(|Xn|an)+t’li_r>nMP(Ag)+E|X|,

Since limp_,. P(A%) = 0 and {|X,|} is uniformly integrable, letting t — oo
we obtain the result.
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Proof of MC implies Ul

Then &, —as 0 and |&,| < t+]|X]|, which is integrable.
By the dominated convergence theorem, E&, — 0; this and Ul imply

E(|Xnll3,) — E(1X|I5,) = O.
Since E|X| < =, by the dominated convergence theorem,
Jim E(IX[lx,x|>t/2}) =0

From the definition of Bp,
|X11g, < |X|lgx,—x|>t/2 + 1 X| I x>/2) -
Hence
Iimnsup E(|Xn|IB,,) < |imnSupE(|X“Bn) < E(|X|/{\X|>t/2})

Letting t — o, it follows from the dominated convergence theorem that

lim Iimsup E(|Xn|/Bn) S lim E(‘X|/{|X\>t/2}) = 0
t—>o0 n t—>o0

This proves Ul.
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Example 1.27.

As an application of Theorem 1.8(viii) and Proposition 1.15, we
consider again the prediction problem in Example 1.22.

Suppose that we predict a random variable X by a random n-vector
Y =(Yi,..., Yn), all random variables are defined on (Q2,.%)

It is shown in Example 1.22 that X,, = E(X|Yj,..., Yn) is the best
predictor in terms of the mean squared prediction error, when
EX? < co.

We now show that X, — s X when n — oo under the assumption that
F =0(Y1,Ye,...) (i.e., Yy, Yo,... provide all information).

From the discussion in §1.4.4, {X,} is a martingale.

Also, sup,, E|Xn| < sup, E[E(|1X]|Y1,..., Yn)] = E|X| < eo.

Hence, by Proposition 1.15, X, —4s. Z for some random variable Z.
We now need to show Z = X a.s.

Since EX2 < EX? < o (why?), {|Xs|} is uniformly integrable (why?).
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Example 1.27 (continued)

By Theorem 1.8(viii), E|X, — Z| — 0, which implies [, X,dP — [, ZdP
for any event A.

Note that if A< o(Yi,..., Yn), then [, X,dP = [, XdP.
Also, o(Yy,...,Yn) Co(Yq,..., Ym)ifm>n
Therefore, forany Ac Uz 1o(Ys,...,Y)), [4XdP = [, ZdP.

Since U 10(Yy,...,Y)) generates G(Y1, Ys,...) =%, we conclude that
JaXdP = [, ZdP for any A€ .# and thus Z = X a.s.

In the proof above, the condition EX? < « is used only for showing the
uniform integrability of {|Xp|}.

But by Exercise 120, {|Xn|} is uniformly integrable as long as
E|X| < co.

Hence X, —a4s X is still true if the condition EX? < « is replaced by
E|X| < eo.
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Tightness

A sequence {P,} of probability measures on (%%, %) is tight if for
every ¢ > 0, there is a compact set C ¢ Z* such that

inf, Pp(C) >1—c¢.

If {X»} is a sequence of random k-vectors, then the tightness of { Py, }
is the same as the boundedness of {|| Xx||} in probability

(|[Xnl| = Op(1)), i.e., for any € > 0, there is a constant C, > 0 such that
sup, P(||Xn|| > Ce) < €.

Proposition 1.17

Let {P,} be a sequence of probability measures on (%%, %*).

(i) Tightness of {P,} is a necessary and sufficient condition that for
every subsequence { P, } there exists a further subsequence
{Pn} € {Pn} and a probability measure P on (%*,2*) such that

(i) If {Pn} is tight and if each subsequence that converges weakly at
all converges to the same probability measure P, then P, —, P.

Proof: See Billingsley (1995, pp. 336-337)
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Theorem 1.9 (useful sufficient and necessary conditions for

convergence in distribution)

Let X, Xi,Xo,... be random k-vectors.
(i) Xn —q X is equivalent to any one of the following conditions:
(@) E[h(Xn)] — E[h(X)] for every bounded continuous function h;
(b) limsup,Px,(C) < Px(C) for any closed set C c #*;
(c) liminf, Py (O) > Px(O) for any open set O C Z*.
(ii) (Lévy-Cramér continuity theorem). Let ¢x, ¢x, , dx,,... be the ch.f’s
of X, Xy, X5, ..., respectively.
Xn —g X iff limp e 0x (1) = dx (1) for all t € K.
(i) (Cramér-Wold device). X, —4 X iff c* X, —4 c* X for every ¢ € ZX.
Proof of Theorem 1.9(i)
First, we show X, —4 X implies (a).
By Theorem 1.8(iv) (Skorohod’s theorem), there exists a sequence of
random vectors { Y,} and a random vector Y such that Py, = Py, for all
n, PY: PX and Yn —>a_s' Y
For bounded continuous h, h(Y,) —as. h(Y) and, by the dominated
convergence theorem, E[h(Y,)] — E[h(Y)].
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(a) follows from E[h(Xn)] = E[h(Yp)] for all nand E[h(X)] = E[h(Y)].
The proof of (b) implies (c) is in the textbook.

For any open set O, O° is closed: hence, (b) is equivalent to (c).

To complete the proof we now show that (b) and (c) imply X, —4 X.
For x = (Xq,...,Xk) € Z¥, let (—o0,X] = (—o0,X¢] X - -- X (—o0, X4] and
(—oo7X) = (_°°7X1) X X (—oo7Xk)_

From (b) and (c),

Px ((—e°, X)) < Iimninf Px, ((—0,x)) < Iimninf Fx.(x)
< Iimnsup Fx,(x) = Iimﬁup Pxn((—OO,X]) < Px((—“,x]) = Fx(x).

If x is a continuity point of Fx, then Px ((—ee,x)) = Fx(x).
This proves X, —q X.

Proof of Theorem 1.9(ii)

From (a) of part (i), X, —q X implies ¢x (1) — ¢x(t), since
eV~ — cos(°x) + v/—1sin(t*x) and cos(t*x) and sin(t°x) are
bounded continuous functions for any fixed t.
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Proof of Theorem 1.9(ii) (continued)

Suppose that kK = 1 and that ¢x () — ¢x(t) for every t € %.
We want to show that X, —4 X.

We first show that { Py} is tight.

By Fubini’s theorem,

o Lon-oxna= [ |5 [ - e Toar
_2/< s'““")dpxn(x)

1
>2/ 1 dPy (x
= {x>2u1}< |UX|> X (%)
> Px, (-~ —2u U (20 =0))

dPx,(x)

for any u > 0.
Since ¢x is continuous at 0 and ¢x(0) =1, for any € > 0 there is a

u>0suchthat u=' [Y,[1 —ox(t)]dt < g/2.
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Proof of Theorem 1.9(ii) (continued)
Since ¢x. — ¢x, by the dominated convergence theorem,

sup{u”’ /_’Ln —ox(D]dt) < e.

Hence,
inf P ou~t 2u™ ") >1 1 u1 Hldt s > 1
inf Px, (1-2u™".207"]) = 1 —supq - [ [1=ox (0]t p = 1 -,

i.e., {Px,} is tight.

Let {Pxnj} be any subsequence that converges to a probability
measure P.

By the first part of the proof, ¢an — ¢, which is the ch.f. of P.
By the convergence of ¢x,, ¢ = ¢x.

By the uniqueness theorem, P = Px.

By Proposition 1.17(ii), X, —q4 X.

v
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Proof of Theorem 1.9(ii) (continued)

Consider now the case where k > 2 and ¢x, — ¢x.

Let Y, be the jth component of X, and Y; be the jth component of X.
Then ¢y, — ¢y, for each j.

By the proof for the case of k =1, Yy —4 V).

By Proposition 1.17(i), { Py, } is tight, j =1,.... k.

This implies that { Py, } is tight (why?).

Then the proof for X, —4 X is the same as that for the case of k = 1.

v

Proof of Theorem 1.9(iii)

Note that ¢cx,(U) = ¢x,(uc) and ¢e-x(u) = ¢px(uc) for any u € # and
any ¢ € Z*.

Hence, convergence of ¢x, to ¢x is equivalent to convergence of ¢qcx,
to ¢ x for every c e ZK.

Then the result follows from part (ii).
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Example 1.28
Let Xj,..., X, be independent random variables having a common c.d.f.
and T,=X;+---+Xp,n=1.,2,....

Suppose that E|X7| < ee.

It follows from a result in calculus that the ch.f. of X satisfies

0x, (1) = 0x,(0) +v—1ut+o(|t))

as |t| — 0, where u = EXj.
Then, the ch.f. of T,/nis

¢7,/n(t) = [4’x1 (;)]n: [1 + \ﬁ;“t+o(z>]n—> eV—Tut

forany t € Z as n — oo, because (1-+ c,/n)" — e° for any complex
sequence {cp} satisfying c, — c.

eVt is the ch.f. of the point mass probability measure at p.

By Theorem 1.9(ii), T,/n —4 U.

From Theorem 1.8(vii), this also shows that T,/n —p u.

v
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Example 1.28 (continued)

Similarly, u = 0 and 62 = var(Xj) < o imply

() 2 n o212
— 1= il —o°t°/2
¢Tn/ﬁ(t) |:1 on +0<n):| — €

forany t € # as n — co.

e o°/2is the ch.f. of N(0,52).

Hence T,/v/n—4 N(0,62).

If u # 0, a transformation of Y; = X; — u leads to

(Th—nu)/v/n—4 N(O,c2).
Suppose now that Xi,..., X, are random k-vectors and u = EX; and
Y =var(Xj) are finite.
For any fixed ¢ € Z, it follows from the previous discussion that
(c*Th—nc*u)//n—q N(0,c"Xc).
From Theorem 1.9(iii) and a property of the normal distribution
(Exercise 81), we conclude that

(Tn = n,u)/ﬁ —d Nk(O,Z)
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Example 1.29

Let Xj,..., X, be independent random variables having a common
Lebesgue p.d.f. f(x) = (1 —cosx)/(mx?).

Then the ch.f. of X is max{1—[t]|,0} (Exercise 73) and the ch.f. of
To/n=(X1+---+Xn)/nis

|t] ST
max _F’O — e "l teZ.

Since eIl is the ch.f. of the Cauchy distribution C(0,1) (Table 1.2), we
conclude that T,/n—4 X, where X has the Cauchy distribution C(0,1).

@ Does this result contradict the first result in Example 1.28?
@ Other examples are given in Exercises 135-140.

The next result can be used to check whether X, —4 X when X has a
p.d.f. f and X, has a p.d.f. f,.
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Proposition 1.18 (Scheffé’s theorem)

Let {f,} be a sequence of p.d.f’s on Z* w.r.t. a measure v.
Suppose that lim,_,. fa(Xx) = f(x) a.e. v and f(x) is a p.d.f. w.r.t. v.
Then limp_e [ |fa(Xx) — f(x)|dv = 0.

| \

Proof
Let gn(x) = [f(x) — f,,(x)]l{fzfn}(x), n=1,2,...

Then
/ I2(x) — F(x)|dV = 2 / gn(X)dv.

Since 0 < gn(x) < f(x) for all x and g, — 0 a.e. v, the result follows
from the dominated convergence theorem.

.

As an example, consider the Lebesgue p.d.f. f, of the t-distribution ¢,
(Table 1.2), n=1,2,....

One can show (exercise) that f, — f, where f is the p.d.f. of N(0,1).
This is an important result in statistics.

v
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