# Lecture 8: Convergence of transformations and law of large numbers

## Transformation and convergence

- Transformation is an important tool in statistics.
- If  $X_n$  converges to X in some sense, we often need to check whether  $g(X_n)$  converges to g(X) in the same sense.
- The continuous mapping theorem provides an answer to the question in many problems.

## Theorem 1.10. Continuous mapping theorem

Let  $X, X_1, X_2, ...$  be random k-vectors defined on a probability space and g be a measurable function from  $(\mathcal{R}^k, \mathcal{B}^k)$  to  $(\mathcal{R}^l, \mathcal{B}^l)$ . Suppose that g is continuous a.s.  $P_X$ . Then

- (i)  $X_n \rightarrow_{a.s.} X$  implies  $g(X_n) \rightarrow_{a.s.} g(X)$ ;
- (ii)  $X_n \rightarrow_p X$  implies  $g(X_n) \rightarrow_p g(X)$ ;
- (iii)  $X_n \rightarrow_d X$  implies  $g(X_n) \rightarrow_d g(X)$ .

#### **Proof**

- (i) can be established using a result in calculus.
- (iii) follows from Theorem 1.9(i): for any bounded and continuous h,  $E[h(g(X_n))] \to E[h(g(X))]$ , since  $h \circ g$  is bounded and continuous.

We prove (ii) for the special case of X = c (a constant).

From the continuity of g, for any  $\varepsilon>0$ , there is a  $\delta_{\varepsilon}>0$  such that

$$\|g(x) - g(c)\| < \varepsilon$$
 whenever  $\|x - c\| < \delta_{\varepsilon}$ .

Hence,

$$\{\omega: \|g(X_n(\omega)) - g(c)\| < \epsilon\} \supset \{\omega: \|X_n(\omega) - c\| < \delta_\epsilon\}$$

and

$$P(\|g(X_n)-g(c)\|\geq \varepsilon)\leq P(\|X_n-c\|\geq \delta_{\varepsilon}).$$

Hence  $g(X_n) \rightarrow_{p} g(c)$  follows from  $X_n \rightarrow_{p} c$ .

Is the previous arguement still valid when c is replaced by the random vector X in the general case? If not, how do we fix the proof?

2/15

## Example 1.30.

- (i) Let  $X_1, X_2, ...$  be random variables. If  $X_n \to_d X$ , where X has the N(0,1) distribution, then  $X_n^2 \to_d Y$ , where Y has the chi-square distribution  $\chi_1^2$ .
- (ii) Let  $(X_n, Y_n)$  be random 2-vectors satisfying  $(X_n, Y_n) \rightarrow_d (X, Y)$ , where X and Y are independent random variables having the N(0,1) distribution. Then  $X_n/Y_n \rightarrow_d X/Y$ , which has the Cauchy distribution C(0,1).
- (iii) Under the conditions in part (ii),  $\max\{X_n, Y_n\} \to_d \max\{X, Y\}$ , which has the c.d.f.  $[\Phi(x)]^2$   $(\Phi(x)$  is the c.d.f. of N(0,1)).

In Example 1.30(ii) and (iii), the condition that  $(X_n, Y_n) \to_d (X, Y)$  cannot be relaxed to  $X_n \to_d X$  and  $Y_n \to_d Y$  (exercise); i.e., we need the convergence of the joint c.d.f. of  $(X_n, Y_n)$ . This is different when  $\to_d$  is replaced by  $\to_p$  or  $\to_{a.s.}$ .

The next result, which plays an important role in statistics, establishes the convergence in distribution of  $X_n + Y_n$  or  $X_n Y_n$  when no information regarding the joint c.d.f. of  $(X_n, Y_n)$  is provided.

# Theorem 1.11 (Slutsky's theorem)

Let  $X, X_1, X_2, ..., Y_1, Y_2, ...$  be random variables on a probability space. Suppose that  $X_n \to_d X$  and  $Y_n \to_p c$ , where c is a constant.

Then

(i) 
$$X_n + Y_n \rightarrow_d X + c$$
;

- (ii)  $Y_nX_n \rightarrow_d cX$ ;
- (iii)  $X_n/Y_n \rightarrow_d X/c$  if  $c \neq 0$ .

#### **Proof**

We prove (i) only.

The proofs of (ii) and (iii) are left as exercises.

Let  $t \in \mathcal{R}$  and  $\varepsilon > 0$  be fixed constants.

Then

$$F_{X_n+Y_n}(t) = P(X_n + Y_n \le t)$$

$$\leq P(\{X_n + Y_n \le t\} \cap \{|Y_n - c| < \varepsilon\}) + P(|Y_n - c| \ge \varepsilon)$$

$$\leq P(X_n \le t - c + \varepsilon) + P(|Y_n - c| \ge \varepsilon)$$

## Proof (continued)

Similarly,

$$F_{X_n+Y_n}(t) \ge P(X_n \le t-c-\varepsilon) - P(|Y_n-c| \ge \varepsilon).$$

If t-c,  $t-c+\varepsilon$ , and  $t-c-\varepsilon$  are continuity points of  $F_X$ , then it follows from the previous two inequalities and the hypotheses of the theorem that

$$F_X(t-c-\varepsilon) \leq \liminf_n F_{X_n+Y_n}(t) \leq \limsup_n F_{X_n+Y_n}(t) \leq F_X(t-c+\varepsilon).$$

Since  $\varepsilon$  can be arbitrary (why?),

$$\lim_{n\to\infty} F_{X_n+Y_n}(t) = F_X(t-c).$$

The result follows from  $F_{X+c}(t) = F_X(t-c)$ .

An application of Theorem 1.11 is given in the proof of the following important result.

#### Theorem 1.12

Let  $X_1, X_2, ...$  and  $Y = (Y_1, ..., Y_k)$  be random k-vectors satisfying

$$a_n(X_n-c)\rightarrow_d Y$$
,

where  $c \in \mathcal{R}^k$  and  $\{a_n\}$  is a sequence of positive numbers with  $\lim_{n \to \infty} a_n = \infty$ .

Let g be a function from  $\mathcal{R}^k$  to  $\mathcal{R}$ .

(i) If g is differentiable at c, then

$$a_n[g(X_n)-g(c)] \rightarrow_d [\nabla g(c)]^{\tau} Y$$
,

where  $\nabla g(x)$  denotes the *k*-vector of partial derivatives of *g* at *x*.

(ii) Suppose that g has continuous partial derivatives of order m>1 in a neighborhood of c, with all the partial derivatives of order j,  $1 \le j \le m-1$ , vanishing at c, but with the mth-order partial derivatives not all vanishing at c. Then

$$a_n^m[g(X_n)-g(c)] \rightarrow_d \frac{1}{m!} \sum_{i_1=1}^k \cdots \sum_{i_m=1}^k \frac{\partial^m g}{\partial x_{i_1} \cdots \partial x_{i_m}} \bigg|_{x=c} Y_{i_1} \cdots Y_{i_m}$$

#### **Proof**

We prove (i) only.

Let

$$Z_n = a_n[g(X_n) - g(c)] - a_n[\nabla g(c)]^{\tau}(X_n - c).$$

If we can show that  $Z_n = o_p(1)$ , then by  $a_n(X_n - c) \rightarrow_d Y$ , Theorem 1.9(iii), and Theorem 1.11(i), result (i) holds.

The differentiability of g at c implies that for any  $\varepsilon>0$ , there is a  $\delta_{\varepsilon}>0$  such that

$$|g(x)-g(c)-[\nabla g(c)]^{\tau}(x-c)|\leq \varepsilon ||x-c||$$

whenever  $\|x - c\| < \delta_{\epsilon}$ .

Then for a fixed  $\eta > 0$ ,

$$P(|Z_n| \ge \eta) \le P(\|X_n - c\| \ge \delta_{\varepsilon}) + P(a_n\|X_n - c\| \ge \eta/\varepsilon).$$

Since  $a_n \to \infty$ ,  $a_n(X_n-c) \to_d Y$  and Theorem 1.11(ii) imply  $X_n \to_p c$ . By Theorem 1.10(iii),  $a_n(X_n-c) \to_d Y$  implies  $a_n\|X_n-c\| \to_d \|Y\|$ . Without loss of generality, we can assume that  $\eta/\varepsilon$  is a continuity point of  $F_{\|Y\|}$ .

4 D > 4 P > 4 E > 4 E >

## Proof (continued)

Then

$$\begin{split} \limsup_{n} P(|Z_{n}| \geq \eta) &\leq \lim_{n \to \infty} P(\|X_{n} - c\| \geq \delta_{\varepsilon}) \\ &+ \lim_{n \to \infty} P(a_{n} \|X_{n} - c\| \geq \eta/\varepsilon) \\ &= P(\|Y\| \geq \eta/\varepsilon). \end{split}$$

 $Z_n \rightarrow_p 0$  follows since  $\varepsilon$  can be arbitrary.

#### Remarks

- In statistics, we often need a nondegenerated limiting distribution of  $a_n[g(X_n)-g(c)]$  so that probabilities involving  $a_n[g(X_n)-g(c)]$  can be approximated by the c.d.f. of  $[\nabla g(c)]^{\tau}Y$ , under Theorem 1.12(i).
- When  $\nabla g(c) = 0$ , Theorem 1.12(i) indicates that the limiting distribution of  $a_n[g(X_n) g(c)]$  is degenerated. In such cases the result in Theorem 1.12(ii) may be useful.

# Corollary 1.1 (the $\delta$ -method)

Assume the conditions of Theorem 1.12. If *Y* has the  $N_k(0,\Sigma)$  distribution, then

$$a_n[g(X_n)-g(c)] \rightarrow_d N(0, [\nabla g(c)]^{\tau} \Sigma \nabla g(c)).$$

### Example 1.31

Let  $\{X_n\}$  be a sequence of random variables satisfying

$$\sqrt{n}(X_n-c)\rightarrow_d N(0,1).$$

Consider the function  $g(x) = x^2$ .

If  $c \neq 0$ , then an application of Corollary 1.1 gives that

$$\sqrt{n}(X_n^2 - c^2) \to_d N(0, 4c^2).$$

If c = 0, g'(c) = 0 but g''(c) = 2.

Hence, an application of Theorem 1.12(ii) gives that

$$nX_n^2 \to_d [N(0,1)]^2$$
,

9/15

which has the chi-square distribution  $\chi_1^2$  (Example 1.14).

The last result can also be obtained by applying Theorem 1.10(iii).

# Example: Ratio estimator

 $(X_1, Y_1), ..., (X_n, Y_n)$  are iid bivariate random vectors with finite 2nd order momemnts

$$ar{X}_n = n^{-1} \sum_i X_i, \ ar{Y}_n = n^{-1} \sum_i Y_i \\ \mu_X = E(X_1), \ \mu_Y = E(Y_1) \neq 0, \ \sigma_X^2 = \text{Var}(X_1), \ \sigma_Y^2 = \text{Var}(Y_1), \\ \sigma_{XY} = \text{Cov}(X_1, Y_1)$$

By the CLT,

$$\sqrt{n} \left( \left( \begin{array}{c} \bar{X}_n \\ \bar{Y}_n \end{array} \right) - \left( \begin{array}{c} \mu_x \\ \mu_y \end{array} \right) \right) \rightarrow_d N_2 \left( 0, \left( \begin{array}{cc} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{array} \right) \right)$$

By the  $\delta$ -method, g(x,y) = x/y,  $\partial g/\partial x = y^{-1}$ ,  $\partial g/\partial y = -xy^{-2}$ 

$$\sqrt{n}\left(rac{ar{X}_n}{ar{Y}_n} - rac{\mu_{\scriptscriptstyle X}}{\mu_{\scriptscriptstyle V}}
ight) 
ightarrow_{\scriptstyle d} N(0,\sigma^2)$$

$$\sigma^{2} = (\mu_{y}^{-1}, -\mu_{x}\mu_{y}^{-2}) \begin{pmatrix} \sigma_{x}^{2} & \sigma_{xy} \\ \sigma_{xy} & \sigma_{y}^{2} \end{pmatrix} \begin{pmatrix} \mu_{y}^{-1} \\ -\mu_{x}\mu_{y}^{-2} \end{pmatrix} = \frac{\sigma_{x}^{2}}{\mu_{y}^{2}} - \frac{\mu_{x}\sigma_{xy}}{\mu_{y}^{3}} + \frac{\mu_{x}^{2}\sigma_{y}^{2}}{\mu_{y}^{4}}$$

2018

10 / 15

# The law of large numbers

- The law of large numbers concerns the limiting behavior of a sum of random variables.
- The weak law of large numbers (WLLN) refers to convergence in probability.
- The strong law of large numbers (SLLN) refers to a.s. convergence.
- The WLLN and SLLN play important roles in establishing consistency of estimators in large sample statistical inference.

### Lemma 1.6. (Kronecker's lemma)

Let  $x_n \in \mathcal{R}$ ,  $a_n \in \mathcal{R}$ ,  $0 < a_n \le a_{n+1}$ , n = 1, 2, ..., and  $a_n \to \infty$ . If the series  $\sum_{n=1}^{\infty} x_n/a_n$  converges, then  $a_n^{-1} \sum_{i=1}^{n} x_i \to 0$ .

Our first result gives the WLLN and SLLN for a sequence of independent and identically distributed (i.i.d.) random variables.

#### Theorem 1.13

Let  $X_1, X_2, ...$  be i.i.d. random variables.

(i) (The WLLN). A necessary and sufficient condition for the existence of a sequence of real numbers  $\{a_n\}$  for which

$$\frac{1}{n}\sum_{i=1}^n X_i - a_n \to_p 0$$

is that  $nP(|X_1| > n) \rightarrow 0$ , in which case we may take

$$a_n = E(X_1 I_{\{|X_1| \le n\}}).$$

(ii) (The SLLN). A necessary and sufficient condition for the existence of a constant *c* for which

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\rightarrow_{a.s.}c$$

is that  $E|X_1| < \infty$ , in which case  $c = EX_1$  and

$$\frac{1}{n}\sum_{i=1}^{n}c_{i}(X_{i}-EX_{1})\rightarrow_{a.s.}0$$

2018

12 / 15

for any bounded sequence of real numbers  $\{c_i\}$ .

### Proof of Theorem 1.13(i)

We prove the sufficiency.

The proof of necessity can be found in Petrov (1975).

Consider a sequence of random variables obtained by truncating  $X_j$ 's at n:

$$Y_{nj}=X_{j}I_{\{|X_{j}|\leq n\}}.$$

Let

$$T_n = X_1 + \cdots + X_n$$
,  $Z_n = Y_{n1} + \cdots + Y_{nn}$ .

Then

$$P(T_n \neq Z_n) \leq \sum_{j=1}^n P(Y_{nj} \neq X_j) = nP(|X_1| > n) \to 0.$$

For any  $\varepsilon > 0$ , it follows from Chebyshev's inequality that

$$P\left(\left|\frac{Z_n - EZ_n}{n}\right| > \varepsilon\right) \le \frac{\operatorname{var}(Z_n)}{\varepsilon^2 n^2} = \frac{\operatorname{var}(Y_{n1})}{\varepsilon^2 n} \le \frac{EY_{n1}^2}{\varepsilon^2 n},$$

where the last equality follows from the fact that  $Y_{nj}$ , j = 1, ..., n, are i.i.d.

2018

13 / 15

## Proof of Theorem 1.13(i) (continued)

From integration by parts, we obtain that

$$\frac{EY_{n1}^2}{n} = \frac{1}{n} \int_{[0,n]} x^2 dF_{|X_1|}(x) = \frac{2}{n} \int_0^n x P(|X_1| > x) dx - nP(|X_1| > n),$$

which converges to 0 since  $nP(|X_1| > n) \rightarrow 0$  (why?).

This proves that  $(Z_n - EZ_n)/n \rightarrow_p 0$ , which together with

 $P(T_n \neq Z_n) \rightarrow 0$  and the fact that  $EY_{nj} = E(X_1 I_{\{|X_1| \leq n\}})$  imply the result.

#### Proof of Theorem 1.13(ii)

The proof for sufficiency is given in the textbook.

We prove the necessity.

Suppose that  $T_n/n \rightarrow_{a.s.}$  holds for some  $c \in \mathcal{R}$ ,  $T_n = X_1 + \cdots + X_n$ .

Then

$$\frac{X_n}{n} = \frac{T_n}{n} - c - \frac{n-1}{n} \left( \frac{T_{n-1}}{n-1} - c \right) + \frac{c}{n} \to_{a.s.} 0.$$

UW-Madison (Statistics) Stat 709 Lecture 8 2018 14 / 15

# Proof of Theorem 1.13 (ii)

From Exercise 114,  $X_n/n \rightarrow_{a.s.} 0$  and the i.i.d. assumption on  $X_n$ 's imply

 $\sum_{n=1}^{\infty} P(|X_n| \ge n) = \sum_{n=1}^{\infty} P(|X_1| \ge n) < \infty,$ 

which implies  $E|X_1| < \infty$  (Exercise 54).

From the proved sufficiency,  $c = EX_1$ .

#### Remarks

- If  $E|X_1| < \infty$ , then  $a_n = E(X_1 I_{\{|X_1| \le n\}}) \to EX_1$  and result the WLLN is actually established in Example 1.28 in a much simpler way.
- On the other hand, if  $E|X_1| < \infty$ , then a stronger result, the SLLN, can be obtained.
- Some results for the case of  $E|X_1| = \infty$  can be found in Exercise 148 and Theorem 5.4.3 in Chung (1974).

The next result is for sequences of independent but not necessarily identically distributed random variables.