Lecture 8: Convergence of transformations and law of

large numbers

Transformation and convergence
@ Transformation is an important tool in statistics.

@ If X, converges to X in some sense, we often need to check
whether g(X,) converges to g(X) in the same sense.

@ The continuous mapping theorem provides an answer to the
question in many problems.

|

Theorem 1.10. Continuous mapping theorem

Let X, X1, X, ... be random k-vectors defined on a probability space
and g be a measurable function from (%%, %*) to (%', %").
Suppose that g is continuous a.s. Px. Then

(i) Xn—as X implies g(Xn) —as g(X);
(i) Xn —p X implies g(Xn) —p 9(X);
(i) X, —¢ X implies g(Xn) —q 9(X).

v
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(i) can be established using a result in calculus.

(iii) follows from Theorem 1.9(i): for any bounded and continuous h,
El[h(g(Xn))] — E[h(g(X))], since ho g is bounded and continuous.

We prove (ii) for the special case of X = ¢ (a constant).
From the continuity of g, for any € > 0, there is a 6, > 0 such that

llg(x)—g(c)|| <& whenever ||x —cl < &.
Hence,
{o:[[g(Xn(w))—g(c)|| <&} D> {o: || Xs(w)—cl| < &}

and
P(llg(Xn) —g(c)l| = €) < P([|Xn— || = &).

Hence g(X») —p g(c) follows from X, — c.

Is the previous arguement still valid when c is replaced by the random
vector X in the general case?

If not, how do we fix the proof?
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Example 1.30.

(i) Let Xq,Xo,... be random variables.
If X, —4 X, where X has the N(0, 1) distribution, then X2 — Y,
where Y has the chi-square distribution x12

(i) Let (Xn, Yn) be random 2-vectors satisfying (Xy, Yn) —q (X, Y),
where X and Y are independent random variables having the
N(0,1) distribution.
Then X,/ Y, —q X/ Y, which has the Cauchy distribution C(0,1).

(iif) Under the conditions in part (ii), max{Xn, Yn} —g max{X, Y},
which has the c.d.f. [®(x)]? (®(x) is the c.d.f. of N(0,1)).

In Example 1.30(ii) and (iii), the condition that (Xp, Y»n) —q (X, Y)
cannot be relaxed to X, —¢ X and Y, —4 Y (exercise); i.e., we need
the convergence of the joint c.d.f. of (Xj, Y»).

This is different when — 4 is replaced by —p or — 5.

The next result, which plays an important role in statistics, establishes
the convergence in distribution of X, + Y, or X, Y, when no information
regarding the joint c.d.f. of (X, Y») is provided.
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Theorem 1.11 (Slutsky’s theorem)

Let X, Xq, X5, ..., Y1, Yo, ... be random variables on a probability space.
Suppose that X, —4 X and Y, —, ¢, where c is a constant.
Then

(i) Xn+Yn—qg X+c;
(iii) Xn/Yn—q X/cif 0.

Proof
We prove (i) only.
The proofs of (ii) and (iii) are left as exercises.

Let t € # and € > 0 be fixed constants.
Then

FXn+Yn(t) = P(Xn+ Yn S t)
< PUXp+ Yo < thn{|Yn—c| < e})+P(|Y,—c| > ¢)
<PXp<t—c+e)+P(|Yn—c|>¢)

| 5\
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Proof (continued)
Similarly,

Fx 1v,(t)>P(Xp <t—c—¢€)—P(|Yn—c| > ¢).

If t—c, t—c+¢, and t— c— € are continuity points of Fx, then it follows
from the previous two inequalities and the hypotheses of the theorem
that

Fx(t— C—S) < |imnianXn_|_yn(t) < |imSupFXn+yn(t) < Fx(t— C+8).
n
Since € can be arbitrary (why?),
lim Fx, v, (f) = Fx(t—c).

The result follows from Fx. c(t) = Fx(t—c).

An application of Theorem 1.11 is given in the proof of the following

important result.
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Theorem 1.12
Let Xi,X>,... and Y = (Y4,..., Yx) be random k-vectors satisfying
an()(n'—’c)'—?d ’/,

where ¢ € Z* and {a,} is a sequence of positive numbers with
Iimn_)oo an = 0o,
Let g be a function from Z* to %.

(i) If g is differentiable at c, then
an[g(Xn) —9(¢)] =4 [V9(C)]*Y,

where Vg(x) denotes the k-vector of partial derivatives of g at x.

(i) Suppose that g has continuous partial derivatives of order m > 1
in a neighborhood of ¢, with all the partial derivatives of order j,
1 <j<m-—1, vanishing at ¢, but with the mth-order partial
derivatives not all vanishing at c.
Then

an9(Xn)—9g(e)] =a —; Yoy 2o
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Proof
We prove (i) only.
Let

Zn = an[9(Xn) — 9(c)] — an[Vg(c)]*(Xn - ©).
If we can show that Z, = 0,(1), then by an(X,—c) =4 Y, Theorem
1.9(iii), and Theorem 1.11(i), result (i) holds.
The differentiability of g at ¢ implies that for any € > 0, thereisa §; >0
such that

l9(x) —g(c) - [Vg(e)]*(x —c)| < e[| x — ¢

whenever || x —c|| < .
Then for a fixed np > 0,

P(1Zn] = n) < P([| Xn— ¢l = 8¢) + P(anl| Xn —cl| = n/e).
Since ap — oo, an(Xp—c) =4 Y and Theorem 1.11(ii) imply X, —p c.
By Theorem 1.10(iii), an(X, —c) —¢ Y implies ap||Xn —c|| =4 || Y-
Without loss of generality, we can assume that n/¢ is a continuity point
of Fjy-

UW-Madison (Statistics) Stat 709 Lecture 8 2018 7/15



Proof (continued)
Then

imsup P(1Zo] > 1) < lim P(|Xo— ] = &)
n Nn—o0
+ lim P(anlXo— o > n/e)
=P(IYl =n/e).

Zn —p 0 follows since € can be arbitrary.

Remarks

@ In statistics, we often need a nondegenerated limiting distribution
of an[g(Xn) — g(c)] so that probabilities involving a,[g(Xn) — g(c)]
can be approximated by the c.d.f. of [Vg(c)]*Y, under Theorem
1.12(i).

@ When Vg(c) =0, Theorem 1.12(i) indicates that the limiting
distribution of a,[g(X») — g(c)] is degenerated.

In such cases the result in Theorem 1.12(ii) may be useful.

| 5\
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Corollary 1.1 (the 6-method)

Assume the conditions of Theorem 1.12.
If Y has the Ni(0,X) distribution, then

an[g(Xn) —g(c)] —a N(0,[Vg(c)I"ZVy(c)).

Example 1.31
Let {X,} be a sequence of random variables satisfying
Vn(Xn—c¢) —4 N(0,1).
Consider the function g(x) = x2.
If ¢ #£ 0, then an application of Corollary 1.1 gives that
VN(X2 —c?) =4 N(0,4c?).
Ifc=0, g'(c)=0but g"(c) =2.
Hence, an application of Theorem 1.12(ii) gives that
nXZ =4 [N(0,1)]%,

which has the chi-square distribution x2 (Example 1.14).
The last result can also be obtained by applying Theorem 1.10(iii).
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Example: Ratio estimator

(X1, Y1),...,(Xn, Yn) are iid bivariate random vectors with finite 2nd
order momemnts

Xo=n""5: X, Yo=n""%; Y
Ux = E(X1), Uy = E(Y1) 7& 0, Gf :Var(X1), 0'}? :Var( Y1),
Oxy :COV(X17 Y‘I)

By the CLT,
£)-(3)mbe (2 )
c — N> (0,
A((%)-() 05 3
By the 8-method, g(x,y) = x/y, dg/dx =y~ ', dg/dy = —xy—?

vn (iﬁ” - “X> 4 N(0,02)

n My

_ 2 2
o2 ny)( v >_03_Hx0xy+“x6y

2 —1 —2
o° = ,— o ===
(Hy s —hebty )< oy o5 )\ —mxy® ) w o ou
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The law of large numbers

@ The law of large numbers concerns the limiting behavior of a sum
of random variables.

@ The weak law of large numbers (WLLN) refers to convergence in
probability.

@ The strong law of large numbers (SLLN) refers to a.s.
convergence.

@ The WLLN and SLLN play important roles in establishing
consistency of estimators in large sample statistical inference.

Lemma 1.6. (Kronecker’s lemma)

Letx, e Z,anc Z,0< ap<apy1,n=1,2,...,and a, — oo.
If the series Y'°_, Xn/an converges, then a,' ¥, x; — 0.

Our first result gives the WLLN and SLLN for a sequence of
independent and identically distributed (i.i.d.) random variables.
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Theorem 1.13

Let Xi, X5, ... be i.i.d. random variables.

(i) (The WLLN). A necessary and sufficient condition for the
existence of a sequence of real numbers {a,} for which

1 n
- /; Xi—an—p0
is that nP(|Xi| > n) — 0, in which case we may take

an = E(Xilx1<ny)-

(i) (The SLLN). A necessary and sufficient condition for the existence
of a constant c for which

1 n
- Z Xi —as. C
iz
is that E|Xj| < e, in which case ¢ = EX; and
1 n
" Z Ci(Xi— EXq) —as. 0

i=1
for any bounded sequence of real numbers {c;}.
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Proof of Theorem 1.13(i)

We prove the sufficiency.

The proof of necessity can be found in Petrov (1975).

Consider a sequence of random variables obtained by truncating Xj's
at n:

Yoj = Xl x1<n)-
Let
Th=Xi+-+Xn, Zn=Yn+ -+ Ym.
Then ;
P(Th# 2Zp) < Z P(Yn # X;) = nP(|X1| > n) — 0.
j=1
For any € > 0, it follows from Chebyshev’s inequality that

P< @ - e> . var(Z,) _ var(Ym) _ EY?

where the last equality follows from the fact that Yy, j=1,...,n, are i.i.d.

)

e2n? e2n ~ €2n
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Proof of Theorem 1.13(i) (continued)
From integration by parts, we obtain that

EYZ 1

2 [
2
— dF, _—/PX> dx —nP(|Xq| > n),
n n/[O’n]X |X1\(X) nJo xP(|X1| > x)dx (1X1] )

which converges to 0 since nP(|X1| > n) — 0 (why?).
This proves that (Z, — EZ,)/n —p 0, which together with
P(Th # Z5) — 0 and the fact that EY,; = E(Xi /| x,<n) imply the result.

Proof of Theorem 1.13(ii)

The proof for sufficiency is given in the textbook.
We prove the necessity.
Suppose that T,/n—4s holds forsome c€ Z, Tp = X;+---+ X.

Then X T, 1/T,
n:n_c_n_< n—1 —C>+,C7—>a.s.0.

n n n n—1
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Proof of Theorem 1.13 (ii)
From Exercise 114, X,/n — 45 0 and the i.i.d. assumption on Xj’s
imply

ZP!Xny>n) ZP|X1]>n)<oo

which implies E\X1] < oo (Exercise 54)
From the proved sufﬂmency, c= EX;.

REINELE
@ If E|Xi| <o, then ap = E(Xilj|x,|<m) — EXq and result the WLLN
is actually established in Example 1.28 in a much simpler way.

@ On the other hand, if E|Xi| < oo, then a stronger result, the SLLN,
can be obtained.

@ Some results for the case of E|X;| =« can be found in Exercise
148 and Theorem 5.4.3 in Chung (1974).

The next result is for sequences of independent but not necessarily
identically distributed random variables.
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