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Lecture 8: Convergence of transformations and law of
large numbers
Transformation and convergence

Transformation is an important tool in statistics.
If Xn converges to X in some sense, we often need to check
whether g(Xn) converges to g(X ) in the same sense.
The continuous mapping theorem provides an answer to the
question in many problems.

Theorem 1.10. Continuous mapping theorem
Let X ,X1,X2, ... be random k -vectors defined on a probability space
and g be a measurable function from (Rk ,Bk ) to (R l ,Bl).
Suppose that g is continuous a.s. PX . Then

(i) Xn→a.s. X implies g(Xn)→a.s. g(X );
(ii) Xn→p X implies g(Xn)→p g(X );
(iii) Xn→d X implies g(Xn)→d g(X ).
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Proof
(i) can be established using a result in calculus.

(iii) follows from Theorem 1.9(i): for any bounded and continuous h,
E [h(g(Xn))]→ E [h(g(X ))], since h ◦g is bounded and continuous.

We prove (ii) for the special case of X = c (a constant).
From the continuity of g, for any ε > 0, there is a δε > 0 such that

‖g(x)−g(c)‖< ε whenever ‖x−c‖< δε .

Hence,

{ω : ‖g(Xn(ω))−g(c)‖< ε} ⊃ {ω : ‖Xn(ω)−c‖< δε}

and
P(‖g(Xn)−g(c)‖ ≥ ε)≤ P(‖Xn−c‖ ≥ δε ).

Hence g(Xn)→p g(c) follows from Xn→p c.

Is the previous arguement still valid when c is replaced by the random
vector X in the general case?
If not, how do we fix the proof?
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Example 1.30.
(i) Let X1,X2, ... be random variables.

If Xn→d X , where X has the N(0,1) distribution, then X 2
n →d Y ,

where Y has the chi-square distribution χ2
1 .

(ii) Let (Xn,Yn) be random 2-vectors satisfying (Xn,Yn)→d (X ,Y ),
where X and Y are independent random variables having the
N(0,1) distribution.
Then Xn/Yn→d X/Y , which has the Cauchy distribution C(0,1).

(iii) Under the conditions in part (ii), max{Xn,Yn}→d max{X ,Y},
which has the c.d.f. [Φ(x)]2 (Φ(x) is the c.d.f. of N(0,1)).

In Example 1.30(ii) and (iii), the condition that (Xn,Yn)→d (X ,Y )
cannot be relaxed to Xn→d X and Yn→d Y (exercise); i.e., we need
the convergence of the joint c.d.f. of (Xn,Yn).
This is different when→d is replaced by→p or→a.s..

The next result, which plays an important role in statistics, establishes
the convergence in distribution of Xn + Yn or XnYn when no information
regarding the joint c.d.f. of (Xn,Yn) is provided.
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Theorem 1.11 (Slutsky’s theorem)
Let X ,X1,X2, ..., Y1,Y2, ... be random variables on a probability space.
Suppose that Xn→d X and Yn→p c, where c is a constant.
Then

(i) Xn + Yn→d X + c;
(ii) YnXn→d cX ;
(iii) Xn/Yn→d X/c if c 6= 0.

Proof
We prove (i) only.
The proofs of (ii) and (iii) are left as exercises.
Let t ∈R and ε > 0 be fixed constants.
Then

FXn+Yn (t) = P(Xn + Yn ≤ t)
≤ P({Xn + Yn ≤ t}∩{|Yn−c|< ε}) + P(|Yn−c| ≥ ε)

≤ P(Xn ≤ t−c + ε) + P(|Yn−c| ≥ ε)
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Proof (continued)
Similarly,

FXn+Yn (t)≥ P(Xn ≤ t−c− ε)−P(|Yn−c| ≥ ε).

If t−c, t−c + ε, and t−c− ε are continuity points of FX , then it follows
from the previous two inequalities and the hypotheses of the theorem
that

FX (t−c− ε)≤ liminf
n

FXn+Yn (t)≤ limsup
n

FXn+Yn (t)≤ FX (t−c + ε).

Since ε can be arbitrary (why?),

lim
n→∞

FXn+Yn (t) = FX (t−c).

The result follows from FX+c(t) = FX (t−c).

An application of Theorem 1.11 is given in the proof of the following
important result.
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Theorem 1.12
Let X1,X2, ... and Y = (Y1, ...,Yk ) be random k -vectors satisfying

an(Xn−c)→d Y ,

where c ∈Rk and {an} is a sequence of positive numbers with
limn→∞ an = ∞.
Let g be a function from Rk to R.

(i) If g is differentiable at c, then

an[g(Xn)−g(c)]→d [∇g(c)]τY ,

where ∇g(x) denotes the k -vector of partial derivatives of g at x .
(ii) Suppose that g has continuous partial derivatives of order m > 1

in a neighborhood of c, with all the partial derivatives of order j ,
1≤ j ≤m−1, vanishing at c, but with the mth-order partial
derivatives not all vanishing at c.
Then

am
n [g(Xn)−g(c)]→d

1
m!

k

∑
i1=1
· · ·

k

∑
im=1

∂ mg
∂xi1 · · ·∂xim

∣∣∣∣
x=c

Yi1 · · ·Yim
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Proof
We prove (i) only.
Let

Zn = an[g(Xn)−g(c)]−an[∇g(c)]τ (Xn−c).

If we can show that Zn = op(1), then by an(Xn−c)→d Y , Theorem
1.9(iii), and Theorem 1.11(i), result (i) holds.
The differentiability of g at c implies that for any ε > 0, there is a δε > 0
such that

|g(x)−g(c)− [∇g(c)]τ (x −c)| ≤ ε‖x−c‖
whenever ‖x−c‖< δε .
Then for a fixed η > 0,

P(|Zn| ≥ η)≤ P(‖Xn−c‖ ≥ δε ) + P(an‖Xn−c‖ ≥ η/ε).

Since an→ ∞, an(Xn−c)→d Y and Theorem 1.11(ii) imply Xn→p c.
By Theorem 1.10(iii), an(Xn−c)→d Y implies an‖Xn−c‖→d ‖Y‖.
Without loss of generality, we can assume that η/ε is a continuity point
of F‖Y‖.
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Proof (continued)
Then

limsup
n

P(|Zn| ≥ η)≤ lim
n→∞

P(‖Xn−c‖ ≥ δε )

+ lim
n→∞

P(an‖Xn−c‖ ≥ η/ε)

= P(‖Y‖ ≥ η/ε).

Zn→p 0 follows since ε can be arbitrary.

Remarks
In statistics, we often need a nondegenerated limiting distribution
of an[g(Xn)−g(c)] so that probabilities involving an[g(Xn)−g(c)]
can be approximated by the c.d.f. of [∇g(c)]τY , under Theorem
1.12(i).
When ∇g(c) = 0, Theorem 1.12(i) indicates that the limiting
distribution of an[g(Xn)−g(c)] is degenerated.
In such cases the result in Theorem 1.12(ii) may be useful.
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Corollary 1.1 (the δ -method)
Assume the conditions of Theorem 1.12.
If Y has the Nk (0,Σ) distribution, then

an[g(Xn)−g(c)]→d N (0, [∇g(c)]τ Σ∇g(c)) .

Example 1.31
Let {Xn} be a sequence of random variables satisfying

√
n(Xn−c)→d N(0,1).

Consider the function g(x) = x2.
If c 6= 0, then an application of Corollary 1.1 gives that

√
n(X 2

n −c2)→d N(0,4c2).

If c = 0, g′(c) = 0 but g′′(c) = 2.
Hence, an application of Theorem 1.12(ii) gives that

nX 2
n →d [N(0,1)]2,

which has the chi-square distribution χ2
1 (Example 1.14).

The last result can also be obtained by applying Theorem 1.10(iii).
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Example: Ratio estimator
(X1,Y1), ...,(Xn,Yn) are iid bivariate random vectors with finite 2nd
order momemnts

X̄n = n−1
∑i Xi , Ȳn = n−1

∑i Yi
µx = E(X1), µy = E(Y1) 6= 0, σ2

x =Var(X1), σ2
y =Var(Y1),

σxy =Cov(X1,Y1)

By the CLT,

√
n
((

X̄n
Ȳn

)
−
(

µx
µy

))
→d N2

(
0,
(

σ2
x σxy

σxy σ2
y

))
By the δ -method, g(x ,y) = x/y , ∂g/∂x = y−1, ∂g/∂y =−xy−2

√
n
(

X̄n

Ȳn
− µx

µy

)
→d N(0,σ2)

σ
2 = (µ

−1
y ,−µx µ

−2
y )

(
σ2

x σxy
σxy σ2

y

)(
µ
−1
y

−µx µ
−2
y

)
=

σ2
x

µ2
y
−

µx σxy

µ3
y

+
µ2

x σ2
y

µ4
y
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The law of large numbers

The law of large numbers concerns the limiting behavior of a sum
of random variables.
The weak law of large numbers (WLLN) refers to convergence in
probability.
The strong law of large numbers (SLLN) refers to a.s.
convergence.
The WLLN and SLLN play important roles in establishing
consistency of estimators in large sample statistical inference.

Lemma 1.6. (Kronecker’s lemma)
Let xn ∈R, an ∈R, 0 < an ≤ an+1, n = 1,2, ..., and an→ ∞.
If the series ∑

∞

n=1 xn/an converges, then a−1
n ∑

n
i=1 xi → 0.

Our first result gives the WLLN and SLLN for a sequence of
independent and identically distributed (i.i.d.) random variables.
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Theorem 1.13
Let X1,X2, ... be i.i.d. random variables.

(i) (The WLLN). A necessary and sufficient condition for the
existence of a sequence of real numbers {an} for which

1
n

n

∑
i=1

Xi −an→p 0

is that nP(|X1|> n)→ 0, in which case we may take

an = E(X1I{|X1|≤n}).

(ii) (The SLLN). A necessary and sufficient condition for the existence
of a constant c for which

1
n

n

∑
i=1

Xi →a.s. c

is that E |X1|< ∞, in which case c = EX1 and
1
n

n

∑
i=1

ci(Xi −EX1)→a.s. 0

for any bounded sequence of real numbers {ci}.
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Proof of Theorem 1.13(i)
We prove the sufficiency.
The proof of necessity can be found in Petrov (1975).
Consider a sequence of random variables obtained by truncating Xj ’s
at n:

Ynj = Xj I{|Xj |≤n}.

Let
Tn = X1 + · · ·+ Xn, Zn = Yn1 + · · ·+ Ynn.

Then

P(Tn 6= Zn)≤
n

∑
j=1

P(Ynj 6= Xj) = nP(|X1|> n)→ 0.

For any ε > 0, it follows from Chebyshev’s inequality that

P
(∣∣∣∣Zn−EZn

n

∣∣∣∣> ε

)
≤ var(Zn)

ε2n2 =
var(Yn1)

ε2n
≤

EY 2
n1

ε2n
,

where the last equality follows from the fact that Ynj , j = 1, ...,n, are i.i.d.
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Proof of Theorem 1.13(i) (continued)
From integration by parts, we obtain that

EY 2
n1

n
=

1
n

∫
[0,n]

x2dF|X1|(x) =
2
n

∫ n

0
xP(|X1|> x)dx −nP(|X1|> n),

which converges to 0 since nP(|X1|> n)→ 0 (why?).
This proves that (Zn−EZn)/n→p 0, which together with
P(Tn 6= Zn)→ 0 and the fact that EYnj = E(X1I{|X1|≤n}) imply the result.

Proof of Theorem 1.13(ii)
The proof for sufficiency is given in the textbook.
We prove the necessity.
Suppose that Tn/n→a.s. holds for some c ∈R, Tn = X1 + · · ·+ Xn.
Then

Xn

n
=

Tn

n
−c− n−1

n

(
Tn−1

n−1
−c
)

+
c
n
→a.s. 0.
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Proof of Theorem 1.13 (ii)
From Exercise 114, Xn/n→a.s. 0 and the i.i.d. assumption on Xn’s
imply ∞

∑
n=1

P(|Xn| ≥ n) =
∞

∑
n=1

P(|X1| ≥ n) < ∞,

which implies E |X1|< ∞ (Exercise 54).
From the proved sufficiency, c = EX1.

Remarks
If E |X1|< ∞, then an = E(X1I{|X1|≤n})→ EX1 and result the WLLN
is actually established in Example 1.28 in a much simpler way.
On the other hand, if E |X1|< ∞, then a stronger result, the SLLN,
can be obtained.
Some results for the case of E |X1|= ∞ can be found in Exercise
148 and Theorem 5.4.3 in Chung (1974).

The next result is for sequences of independent but not necessarily
identically distributed random variables.
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