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Lecture 9: The law of large numbers and central limit
theorem
Theorem 1.14
Let X1,X2, ... be independent random variables with finite expectations.

(i) (The SLLN). If there is a constant p ∈ [1,2] such that
∞

∑
i=1

E |Xi |p

ip
< ∞, (1)

then 1
n

n

∑
i=1

(Xi −EXi)→a.s. 0.

(ii) (The WLLN). If there is a constant p ∈ [1,2] such that

lim
n→∞

1
np

n

∑
i=1

E |Xi |p = 0, (2)

then 1
n

n

∑
i=1

(Xi −EXi)→p 0.
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Remarks
Note that (1) implies (2) (Lemma 1.6).
The result in Theorem 1.14(i) is called Kolmogorov’s SLLN when
p = 2 and is due to Marcinkiewicz and Zygmund when 1≤ p < 2.
An obvious sufficient condition for (1) with p ∈ (1,2] is
supn E |Xn|p < ∞.
The WLLN and SLLN have many applications in probability and
statistics.

Example 1.32
Let f and g be continuous functions on [0,1] satisfying
0≤ f (x)≤ Cg(x) for all x , where C > 0 is a constant.
We now show that

lim
n→∞

∫ 1

0

∫ 1

0
· · ·
∫ 1

0

∑
n
i=1 f (xi)

∑
n
i=1 g(xi)

dx1dx2 · · ·dxn =

∫ 1
0 f (x)dx∫ 1
0 g(x)dx

(3)

(assuming that
∫ 1

0 g(x)dx 6= 0).
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Example 1.32 (continued)
X1,X2, ... be i.i.d. random variables having the uniform distribution on
[0,1].
By Theorem 1.2,

E [f (X1)] =
∫ 1

0
f (x)dx < ∞, E [g(X1)] =

∫ 1

0
g(x)dx < ∞.

By the SLLN (Theorem 1.13(ii)),

1
n

n

∑
i=1

f (Xi)→a.s. E [f (X1)],
1
n

n

∑
i=1

g(Xi)→a.s. E [g(X1)],

By Theorem 1.10(i),

∑
n
i=1 f (Xi)

∑
n
i=1 g(Xi)

→a.s.
E [f (X1)]

E [g(X1)]
. (4)

Since the random variable on the left-hand side of (4) is bounded by C,
result (3) follows from the dominated convergence theorem and the
fact that the left-hand side of (3) is the expectation of the random
variable on the left-hand side of (4).
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Example
Let Tn = ∑

n
i=1 Xi , where Xn’s are independent random variables

satisfying P(Xn =±nθ ) = 0.5 and θ > 0 is a constant.
We want to show that Tn/n→a.s. 0 when θ < 0.5.
For θ < 0.5,

∞

∑
n=1

EX 2
n

n2 =
∞

∑
n=1

n2θ

n2 < ∞.

By the Kolmogorov strong law of large numbers, Tn/n→a.s. 0.

Example (Exercise 165)
Let X1,X2, ... be independent random variables.
Suppose that

1
σn

n

∑
j=1

(Xj −EXj)→d N(0,1),

where σ2
n = var(∑

n
j=1 Xj).
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Example (Exercise 165)
We want to show that

1
n

n

∑
j=1

(Xj −EXj)→p 0 iff σn/n→ 0.

If σn/n→ 0, then by Slutsky’s theorem,

1
n

n

∑
j=1

(Xj −EXj) =
σn

n
1

σn

n

∑
j=1

(Xj −EXj)→d 0.

Assume now σn/n does not converge to 0 but n−1
∑

n
j=1(Xj −EXj)→p 0.

Without loss of generality, assume that σn/n→ c ∈ (0,∞].
By Slutsky’s theorem,

1
σn

n

∑
j=1

(Xj −EXj) =
n
σn

1
n

n

∑
j=1

(Xj −EXj)→p 0.

This contradicts the fact that ∑
n
j=1(Xj −EXj)/σn→d N(0,1).

Hence, n−1
∑

n
j=1(Xj −EXj) does not converge to 0 in probability.
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The central limit theorem

The WLLN and SLLN may not be useful in approximating the
distributions of (normalized) sums of independent random variables.
We need to use the central limit theorem (CLT), which plays a
fundamental role in statistical asymptotic theory.

Theorem 1.15 (Lindeberg’s CLT)
Let {Xnj , j = 1, ...,kn} be independent random variables with kn→ ∞ as
n→ ∞ and

0 < σ
2
n = var

(
kn

∑
j=1

Xnj

)
< ∞, n = 1,2, ...,

If
1

σ2
n

kn

∑
j=1

E
[
(Xnj −EXnj)

2I{|Xnj−EXnj |>εσn}

]
→ 0 for any ε > 0, (5)

then
1

σn

kn

∑
j=1

(Xnj −EXnj)→d N(0,1).
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Proof
Considering (Xnj −EXnj)/σn, without loss of generality we may assume
EXnj = 0 and σ2

n = 1 in this proof.
Let t ∈R be given.
From the inequality

|e
√
−1tx − (1 +

√
−1tx − t2x2/2)| ≤min{|tx |2, |tx |3},

the ch.f. of Xnj satisfies∣∣∣∣φXnj (t)−
(

1− t2
σ

2
nj/2

)∣∣∣∣≤ E
(

min{|tXnj |2, |tXnj |3}
)
,

where σ2
nj = var(Xnj).

For any ε > 0, the right-hand side of the previous expression is
bounded by

E(|tXnj |3I{|Xnj |<ε}) + E(|tXnj |2I{|Xnj |≥ε}),

which is bounded by

ε|t |3σ
2
nj + t2E(X 2

nj I{|Xnj |≥ε}).
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Proof (continued)

Summing over j and using σ2
n = 1, we obtain that

kn

∑
j=1

∣∣∣∣φXnj (t)−
(

1− t2
σ

2
nj/2

)∣∣∣∣≤ kn

∑
j=1
{ε|t |3σ

2
nj + t2E(X 2

nj I{|Xnj |≥ε})}

= ε|t |3 + t2
kn

∑
j=1

E(X 2
nj I{|Xnj |≥ε})→ ε|t |3

by condition (5).
Also by condition (5) and σ2

n = 1,

max
j≤kn

σ2
nj

σ2
n
≤ ε

2 + max
j≤kn

E(X 2
nj I{|Xnj |>ε})→ ε

2

Since ε > 0 is arbitrary and t is fixed,
kn

∑
j=1

∣∣∣∣φXnj (t)−
(

1− t2
σ

2
nj/2

)∣∣∣∣→ 0

and
lim
n→∞

max
j≤kn

σ2
nj

σ2
n

= 0. (6)
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Proof (continued)

This implies that 1− t2σ2
nj are all between 0 and 1 for large enough n.

Using the inequality

|a1 · · ·am−b1 · · ·bm| ≤
m

∑
j=1
|aj −bj |

for any complex numbers aj ’s and bj ’s with |aj | ≤ 1 and |bj | ≤ 1,
j = 1, ...,m, we obtain that∣∣∣∣ kn

∏
j=1

e−t2σ2
nj/2−

kn

∏
j=1

(
1− t2

σ
2
nj/2

)∣∣∣∣≤ kn

∑
j=1

∣∣∣∣e−t2σ2
nj/2−

(
1− t2

σ
2
nj/2

)∣∣∣∣,
which is bounded by

t4
kn

∑
j=1

σ
4
nj ≤ t4 max

j≤kn
σ

2
nj → 0,

since |ex −1−x | ≤ x2/2 if |x | ≤ 1
2 and ∑

kn
j=1 σ2

nj = σ2
n = 1.

UW-Madison (Statistics) Stat 709 Lecture 9 2018 9 / 15



beamer-tu-logo

Proof (continued)
Then∣∣∣∣ kn

∏
j=1

φXnj (t)−
kn

∏
j=1

e−t2σ2
nj/2
∣∣∣∣ ≤ kn

∑
j=1

∣∣∣∣φXnj (t)−e−t2σ2
nj/2
∣∣∣∣

≤
kn

∑
j=1

∣∣∣∣φXnj (t)−
(

1− t2
σ

2
nj/2

)∣∣∣∣
+

kn

∑
j=1

∣∣∣∣e−t2σ2
nj/2−

(
1− t2

σ
2
nj/2

)∣∣∣∣
→ 0

as previously shown.
Thus,

kn

∏
j=1

φXnj (t) =
kn

∏
j=1

e−t2σ2
nj/2 + o(1) = e−t2/2 + o(1)

i.e., the ch.f. of ∑
kn
j=1 Xnj converges to the ch.f. of N(0,1) for every t .

By Theorem 1.9(ii), the result follows.
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Remarks
Condition (5) is called Lindeberg’s condition.
From the proof, Lindeberg’s condition implies (6), which is called
Feller’s condition.
Feller’s condition (6) means that all terms in the sum σ2

n = ∑
kn
j=1 σ2

nj
are uniformly negligible as n→ ∞.
If Feller’s condition is assumed, then Lindeberg’s condition is not
only sufficient but also necessary for the result in Theorem 1.15,
which is the well-known Lindeberg-Feller CLT.
A proof can be found in Billingsley (1995, pp. 359-361).
Note that neither Lindeberg’s condition nor Feller’s condition is
necessary for the result in Theorem 1.15 (Exercise 158).

Liapounov’s condition
A sufficient condition for Lindeberg’s condition is the following
Liapounov’s condition, which is somewhat easier to verify:

1
σ

2+δ
n

kn

∑
j=1

E |Xnj −EXnj |2+δ → 0 for some δ > 0. (7)
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Example 1.33
Let X1,X2, ... be independent random variables.
Suppose that Xi has the binomial distribution Bi(pi ,1), i = 1,2,..., and
that σ2

n = ∑
n
i=1 var(Xi) = ∑

n
i=1 pi(1−pi)→ ∞ as n→ ∞.

For each i , EXi = pi and
E |Xi −EXi |3 = (1−pi)

3pi + p3
i (1−pi)≤ 2pi(1−pi).

Hence ∑
n
i=1 E |Xi −EXi |3 ≤ 2σ2

n , i.e., Liapounov’s condition (7) holds
with δ = 1.
Thus, by Theorem 1.15,

1
σn

n

∑
i=1

(Xi −pi)→d N(0,1). (8)

It can be shown (exercise) that the condition σn→ ∞ is also necessary
for result (8).

The following are useful corollaries of Theorem 1.15 and Theorem
1.9(iii).
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Corollary 1.2 (Multivariate CLT)
For i.i.d. random k -vectors X1, ...,Xn with a finite Σ = var(X1),

1√
n

n

∑
i=1

(Xi −EX1)→d Nk (0,Σ).

Corollary 1.3
Let Xni ∈Rmi , i = 1, ...,kn, be independent random vectors with mi ≤m
(a fixed integer), n = 1,2,..., kn→ ∞ as n→ ∞, and
inf i ,n λ−[var(Xni)] > 0, where λ−[A] is the smallest eigenvalue of A.
Let cni ∈Rmi be vectors such that

lim
n→∞

(
max

1≤i≤kn
‖cni‖2

/ kn

∑
i=1
‖cni‖2

)
= 0.

(i) If supi ,n E‖Xni‖2+δ < ∞ for some δ > 0, then
kn

∑
i=1

cτ

ni(Xni −EXni)

/[ kn

∑
i=1

var(cτ

niXni)

]1/2

→d N(0,1). (9)

(ii) If whenever mi =mj , 1≤ i < j≤kn, n=1,2, ..., Xni and Xnj have the
same distribution with E‖Xni‖2 < ∞, then (9) holds.
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Remarks
Proving Corollary 1.3 is a good exercise.
Applications of these corollaries can be found in later chapters.
More results on the CLT can be found, for example, in Serfling
(1980) and Shorack and Wellner (1986).

More on Pólya’s theorem
Let Yn be a sequence of random variables, {µn} and {σn} be
sequences of real numbers such that σn > 0 for all n, and

(Yn−µn)/σn→d N(0,1).

Then, by Proposition 1.16,

lim
n→∞

sup
x
|F(Yn−µn)/σn (x)−Φ(x)|= 0, (10)

where Φ is the c.d.f. of N(0,1).
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Asymptotic normality
(10) implies that for any sequence of real numbers {cn},

lim
n→∞
|P(Yn ≤ cn)−Φ

(cn−µn

σn

)
|= 0,

i.e., P(Yn ≤ cn) can be approximated by Φ
(cn−µn

σn

)
, regardless of

whether {cn} has a limit.
Since Φ

( t−µn
σn

)
is the c.d.f. of N(µn,σ

2
n ), Yn is said to be asymptotically

distributed as N(µn,σ
2
n ) or simply asymptotically normal.

Examples

For example, ∑
kn
i=1 cτ

niXni in Corollary 1.3 is asymptotically normal.
This can be extended to random vectors.
For example, ∑

n
i=1 Xi in Corollary 1.2 is asymptotically distributed

as Nk (nEX1,nΣ).
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